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ABSTRACT  

Machine learning enables computers to address problems by learning from data. Deep learning is 

a type of machine learning that uses hierarchical recombination of features to extract pertinent 

information, and then learn the patterns represented in the data. Over the last eight years, its 

abilities have increasingly been applied to a wide variety of chemical challenges, from improving 

computational chemistry, to drug and materials design, and even synthesis planning. This review 

aims to explain the concepts of deep learning to chemists from any background and will follow 

this with an overview of the diverse applications demonstrated in the literature. We hope that this 

will empower the broader chemical community to engage with this burgeoning field and foster the 

growing movement of deep learning accelerated chemistry. 
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INTRODUCTION 

 

Deep learning has emerged as a dominant force within machine learning over the last ten years 

through a series of demonstrations of its frequently superhuman predictive power1-7. These initial 

demonstrations have fostered a desire among researchers to harness its abilities to address 

challenges in a diverse range of areas. Chemistry stands as one of these areas, with a variety of 

immensely complex problems such as retrosynthesis, reaction optimization, and drug design. 

Historically, these have presented fierce opposition to computational approaches based on hand 

coded heuristics and rules, with these approaches being met with skepticism by chemists8-11. There 

are strong analogies between these problems and those which deep learning has come to dominate, 

such as computer vision and natural language processing12. As a result of this, chemistry has seen 

a steady increase in the deployment of these technologies, with many demonstrating significant 

improvements in predictive accuracy and ability to replicate human decision making13-24.  

With the prevalence deep learning is likely to achieve within chemistry, it is important that 

chemical researchers not familiar with the minutiae of deep learning become comfortable with 

how these techniques function. There have been a number of reviews covering subfields of deep 

learning in chemistry. Goh et al.’s14 review serves as an excellent overview for theoretical chemists 

and has accessible explanations of the core deep learning concepts. While not strictly a review, 

Wu, Ramsundar et al.’s13 paper on MoleculeNet provides an extensive summary of the available 

descriptors and datasets as well as model comparisons. In addition to this there are a number of 

broader reviews covering machine learning for drug design25-26, synthesis planning11, materials 

science27, quantum mechanical calculations28, and cheminformatics29. This paper seeks to adopt a 

central stance on deep learning in chemistry, explaining the core ideas in the broadest possible 

sense, without emphasis on mathematical detail, and with reference to chemical applications. This 
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understanding will then be used to provide a broad overview of the influences deep learning has 

so far had across applied and theoretical chemistry. 

 

THE BIG PICTURE 

Machine learning is an extremely broad sub-field of artificial intelligence that aims to solve the 

problem of computers learning from data. Representation learning is a subset of machine learning 

in which computational models learn internal representations of objects that inform the decisions 

or predictions that they make. Finally, deep learning is a subset of representation learning in which 

multiple layers of internal representations, initially of simple shapes such as edges, are combined 

to form increasingly complex objects, like faces30. Chemistry stands as an exemplar of this 

phenomenon, with the behavior of molecules determined not simply by atoms, but their immediate 

grouping into functional groups, followed by interactions between these groups at increasing 

ranges. Ostensibly, this makes chemistry an ideal candidate for these methods. Unfortunately, 

molecules also supply a set of challenging problems including sampling sufficiently diverse 

molecules and their accompanying conformational space, effectively representing molecules, and 

obtaining suitably large datasets.  

Understanding how these problems are being addressed requires an introduction to the methods 

of deep learning. Machine learning, and thus deep learning, at its core contains three components: 

the data (and its associated representation), the model that will learn to interpret the data, and a 

prediction space from which we draw utility. The model in deep learning (as well as other 

methodologies) represents an optimization cycle of three sub-components: the learner, evaluation, 

and optimization. These ideas are summarized in Figure 1. Understanding chemical deep learning 

requires familiarity with each of these ideas and the unique challenges chemistry presents in each. 

The first section of this review seeks to disambiguate these topics, beginning with an exploration 
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of data and how molecules are represented. This leads into a discussion of three of the dominant 

model architectures in chemical deep learning. The prediction space will then be examined, to 

explain how chemical problems must be phrased in order to make them amenable to deep learning. 

This section will conclude with a brief overview of terms that are frequently referenced in the 

literature. 

 

Figure 1 - The Big Picture of Deep Learning. The learner shown in this image is a deep 

feedforward network, however this same procedure applies to a plethora of learners. The ∆P term 

indicates the change to the parameters in each network layer after the input layer. The data in this 

image is fictitious and thus labelled simply as property. 

The Data. Learning cannot happen without data, and in the case of supervised learning, this data 

must be labelled. These labels indicate the ground truth associated with the data point, such as 

associating a label of ‘truck’ with an image of a truck. In a chemical sense, the data can be a 

representation of a molecule with its free energy of solvation labelled or any other property. This 

creates one of the first big challenges of deep learning, how can enough data be obtained? The 

most dominant demonstrations of deep learning’s potential are in fields where data is abundant, 

typically where millions, if not billions, of data points can be obtained through distributed 
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collection via social networks or even more broadly, the internet1, 31. In the case of science, the 

requisite volume of data only exists in certain applications. In chemistry, all levels of data are 

present, with extensive data available for successful reactions or ground state energies, a moderate 

amount of data for specific properties such as ionization energies, through to relatively small 

databases for properties such as free energies of solvation32-34. As a result of this need for data, 

chemical deep learning has formed a strong link with computational chemistry due to the latter’s 

capacity to generate huge volumes of data significantly faster than it could be obtained in a 

laboratory33, 35. This presents challenges however, due to the poorer accuracy of these calculations 

relative to experimentally obtained results. Lab-derived datasets are available, and are the gold 

standard, but aside from reaction databases, the number of data points they contain is not usually 

on the same order of magnitude36.  

Additionally, effective assessment of deep learning models requires that the data undergoes 

subsequent splitting. Assessing a model on the data it was trained on leads to significant overfitting 

in which the model learns to reproduce that specific set of data but not the trends underlying it. To 

stop this ‘memorization’ of data, it is common to test the models on data that they have not yet 

seen. This is typically done by dividing the data into three separate sets: the training, validation, 

and test sets. The training set (typically 60-80% of the data) is given to the network in its entirety 

and its labels are used to adjust the network’s parameters in supervised learning. The validation 

set (typically 10-20% of the data) is used to ensure that the model is not overfitting by providing 

a constant estimate of its performance on unseen examples. In addition to this, when training 

multiple models validation data is used to identify the best performing model. Finally, the third 

dataset, the test set, is used as the final performance evaluation of the chosen model on the 

remainder of the withheld data. In order to remove any bias in the partitioning of the data into these 
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sets, k-fold cross validation is used, in which the data partitioning process is randomized k times37. 

Any model is highly dependent on the way in which the data is represented. Due to this, deep 

learning has a strong interest in the long-standing cheminformatics problem of how best to 

represent chemical structures for a computer. 

There are three key invariances that must be captured, two of which are intuitively captured by the 

human visual processing. Formally, these are: 

• Permutation invariance – the representation must be unaltered by a change in the 

specified order of the atoms. 

• Translational invariance – the representation must not be changed by a translation in 

space. 

• Rotational invariance – the representation must be unchanged by a rotation operation. 

Familiar examples of these variances are shown in Figure 2 below. An additional requirement 

for some models is a fixed size input. This is typically achieved by padding the representation with 

zeros for smaller molecules.  
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Figure 2: Three key variances in common molecular descriptors that much be overcome for 

deep learning. The top two invariance grids show acetone undergoing rotation and translation in 

a fixed reference grid.  Permutation invariance shows two equivalent acetone representations as 

atom connectivity matrices introduced by Spialter38. The atom connectivity matrix has nuclear 

charges listed along the diagonal, with off diagonal elements representing bonds of associated 

bond order between the diagonally located atoms that they link. To facilitate the following 

discussion of model architectures, a brief exploration of the most widely used molecular 

representations is required.  

A molecular graph is a set of vertices (atoms) that are connected by edges (bonds). This can be 

expressed in matrix form, with an example shown in Figure 2. Originally, deep learning models 

utilized extended connectivity fingerprints (ECFP). These involve assigning an integer identifier 

to each atom and updating it to include information from neighboring atoms by expanding a 

circular radius that analyzed the atoms contained within. Within this circle, the atoms were sorted 

to achieve permutation invariance and, by compressing spatial information into integer identifiers, 

the two spatial invariances were also satisfied. Each of these integer identifiers were passed 
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through a hashing function to produce a number, which, combined with modulo arithmetic, 

allowed a particular index within a fixed vector to be switched to a one39. This vector has a fixed 

size, achieves the three invariances, but contains only zeroes and ones and is thus referred to as a 

bit vector. This is the basic methodology that inspired the molecular graph-based models that will 

be described below. The idea of gathering information about an atom’s local environment while 

preserving their invariances was retained, but critically, they encode the molecular information in 

a real valued vector allowing for significantly richer information to be embedded.  

The Simplified Molecular Input Line Entry System (SMILES) is a classic cheminformatics 

representation that uses a set of ordered rules and specialized syntax to encode three dimensional 

chemical structures as strings of text40-41. An additional procedure can be applied on top of this to 

create permutation invariance, a process known as canonicalization. The other frequently used 

text-based identifier, the international chemical identifier (InChI), is not regularly used in deep 

learning due to multiple studies finding that its more complex and numeric formulations lead to 

deterioration in predictive performance42-43. A reaction variant of SMILES, which contains 

specialized grammar to describe chemical transformations is also frequently used in machine 

learning for models that operate on reaction datasets44-45. 

Graph inputs currently dominate due to their ability to extract higher-level features, and the 

increase in predictive performance that comes with this. It must also be noted that there are 

additional representations such as point clouds46 and Coulomb matrices47 that are also used. 

Finally, regardless of representation, molecules must be entered into datasets order to be 

transformed into a model input. To digitize the enormous number of structures in the literary 

corpus, deep learning has been used to automate the digitization of these structures48.  
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The Model. In any given deep learning framework, the model is the component that transforms 

the data into a prediction, classification, or action. The model relies on an interplay between its 

learner, evaluation, and optimization. The learner contains a set of parameters which define how 

each input point is converted into an output. This prediction is then quantitatively compared to the 

desired output via an evaluation or cost function. Finally, optimization alters the parameters of the 

model to decrease the difference between the predicted and the desired output for each data point. 

This cycle of the model making predictions, which are then evaluated, and finally used to optimize 

the model’s parameters is bundled into a single training cycle. These ideas are summarized visually 

in Figure 1. 

Deep learning is named for to the computational depth of its learner, i.e. how many sequential 

layers of calculations are required. The learner is thus the defining feature of deep learning 

methods, with an intimate link being formed with the field of connectionism. Connectionism is 

focused on the development of artificial neural networks (ANNs) and their many variants. These 

learners are neurologically inspired systems of interconnected virtual neurons (an example 

network is shown as the learner in Figure 1). Due to their prominence in deep learning methods, 

the remainder of the model discussion will focus on variants of ANNs. A mathematical discussion 

is not the intent of this review, however much of this discussion is inspired by Deep Learning by 

Goodfellow et al.30 which contains an extensive and rigorous treatment of deep learning methods. 

 

Despite the enormous diversity in the learner architecture, the evaluation and optimization 

procedures are dominated by a few methods. In the case of neural networks, the evaluation step is 

typically a simple function that assesses the learner’s performance across batches, or all, of the 

data; two common examples are the root mean squared deviation (RMSD) or the cross-entropy 
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cost function. The optimization typically employed for neural networks is the powerful 

backpropagation algorithm49. This method propagates the gradients backwards from the outputs 

through to the inputs, and using the information contained within these, alters the parameters of 

each non-input node in a manner that lowers to deviation between the predicted and true values49. 

To highlight what makes the learner networks so different, three of the dominant architectures will 

now be discussed.  

A deep neural network (DNN) is the prototypical deep learning architecture. DNNs contains 

three separate layer types, input, hidden and output. Each layer is comprised of a set of neurons 

and in fully connected systems, each hidden layer neuron connects to all neurons in the previous 

and following layers. The ‘wiring’ of the network (how many layers there are and how they are 

connected), as well as what function each neuron performs is typically referred to as the network’s 

topology, and the performance of the network is highly dependent on the chosen topology.  

Each neuron in the input layer receives a single, real number from each data point and is thus 

represented as a fixed size vector. DNNs were frequently used with ECFP representations, in 

which a one indicates the presence of a particular substructural feature which may or may not 

correspond to a recognizable function group, and a zero its absence39.  

The neurons within the hidden and output layers have two types of trainable parameters. Every 

incoming connection has a scalar weight associated with it, that is expressed within a matrix, and 

then each neuron has its own scalar term called a bias, collected into a vector for each layer. The 

forward data pass is computed by multiplying the input vector with the weight matrix, to produce 

an output vector. The bias is then added to this output vector, and it is then passed through an 

activation function. This function is critical as it allows the network to model nonlinear 

phenomena. One of the simplest and most widely used activation functions is the rectified linear 
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unit (ReLU)50, which simply maps any non-positive number to zero and returns any positive 

number unchanged. This vector now becomes the input for the next layer of the network and the 

process continues until the output layer is reached. 

The output layer is typically either a single real number, indicating that the network is built for 

regression (i.e for predicting a property such as the enthalpy of combustion), or a vector that 

contains the likelihood of the input being classified as certain objects, and thus a classification 

network. In the case of classification tasks, the softmax activation function is commonly used; it 

converts a vector of real numbers into a probability distribution where the sum of all terms is one 

and all terms are between zero and one. This allows the network to produce a distribution over the 

classes, indicating which is most likely. The utilization of matrix operations allows these models 

to leverage graphical processing units (GPUs) to massively accelerate the computation51. A 

summary of this matrix multiplication process is given in Figure 3.  

 

Figure 3: Matrix view of a typical neural network forward pass:  The input molecule was 

chosen at random, and the bit vector is a simple structural representation that can roughly be 

viewed as ones indicating the presence of certain substructural feature, and zeros representing the 
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absence. The bold T’s above the vectors indicate that the transpose is used in the multiplication in 

order to make the operation defined. 

Learning in these networks involves the backpropagation algorithm, which applies the 

multivariate chain rule from calculus to efficiently calculate the gradients of each trainable 

parameter in the network, and then uses these to alter the parameters in a way that lowers the cost 

function.  DNNs have been effective at addressing chemical problems. However, other deep 

learning architectures that evolved in two of AI’s largest research areas, computer vision (CV) and 

natural language processing (NLP), have largely superseded them.  

 

Graph convolutional neural networks (GCNN). Computer vision is the field of research that 

aims to use computers to see in a manner similar to humans. Convolutional neural networks 

(CNNs) are networks specialized for interacting with grid like data, such as a 2D image. As 

molecules are typically not represented as 2D grids, chemists have focused on a variant of this 

approach: graph convolutional neural networks (GCNN) on molecular graphs.  

Molecular graphs confer key advantages: they bypass the conformational challenge of using 3D 

representations while maintaining invariance to rotation and translation due to their pairwise 

definition.  A wide variety of molecular graph implementations have developed in recent years18, 

22-23, 52-55 and the MoleculeNet paper by Wu, Ramsundar et al.13 offers a concise conceptual 

comparison of six major variants. To facilitate the following explanation, the framework of neural 

message passing networks put forth by Gilmer et al53. will be used.   

Neural message passing networks are a chemically motivated system to understand and compare 

these GCNN systems. Fundamentally this approach utilizes a convolutional layer, simply a matrix 

of scalar weights, to exchange information between atoms or bonds within a molecule and produce 
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a fixed length, real-valued vector that embeds the molecular information. To begin, they generate 

or compute a feature vector for each atom within the molecule; this can contain information such 

as how many hydrogens are attached to the atom, its hybridization, whether or not it is aromatic 

or in a ring, etc. These feature vectors are then collected into a matrix. Additionally, they generate 

a graph topology matrix that specifies the connectivity of the graph, similar to Figure 2 although 

often without bond order or atomic number along the diagonal. In a forward convolutional pass, 

these three matrices are multiplied together. This allows information to be exchanged between the 

feature vectors of each atom with its immediate neighbors, in accordance with the connectivity 

specified by the topology matrix. This updates each atom’s feature vector to include information 

about its local environment. This updated feature vector matrix is then passed through an activation 

function (i.e. ReLU) and can then be iteratively updated by using it as the feature matrix in another 

convolutional pass. This propagates information throughout the molecule. Finally, these atom 

feature vectors are either summed or concatenated to give a unique, learned representation of the 

molecule as a real valued vector (see Figure 4). Alternative approaches to generating this learned 

representation have been put forth, such as using traditional computer vision CNNs on 2D grid 

images56 of molecules. However, molecular graphs remain the dominant paradigm. 

The learned representation in vector form is referred to as a representation in latent space, and 

is then used as the input for a traditional fully connected DNN to finally make the classification or 

prediction. This process of learning its own molecular representation is the cause of it being in the 

broader class of representation learning methods. Backpropagation is once again used to train these 

networks by propagating gradients backwards and determining how to change the convolution 

matrix weights and the parameters in the DNN. 
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Recurrent neural networks (RNNs), introduced by Hopfield57 in 1982, are specialized for 

dealing with sequences of arbitrary length. This makes them ideally suited to handling textual 

representation of chemical information, such as SMILES40. The critical difference is that in the 

previous architectures each data input is distinct, while in an RNN each input will influence the 

next one. An illustrative example is viewing any particular input, such as a SMILES string, as time 

series data. The presence of a carbon atom at one moment in time influences what the next 

character is likely to be. This is expressed in the architecture by feeding the output of the hidden 

layer for that carbon into the hidden layer of the next atom. As a more complex illustration, this 

process can be used to model reactions by utilizing the SMILES reaction strings to encode the 

information, and train the network to predict the product (See Figure 4). The feeding of one hidden 

state into the next gives the system a recursive relationship within the hidden layer, but it can be 

viewed as directional by ‘unfolding’ the network to form of an unfolded, acyclic network graph. 

By doing this, it maintains a history of all previous inputs, and they influence its prediction at a 

later time. The network can then be trained using a recursive form of backpropagation58. This is 

the simplest RNN but more sophisticated and powerful variants such as neural Turing machines59 

and long-short term memory networks (LSTM)60 that incorporate memory into the network are the 

current leaders. This ability to use previous information has led to their dominance in sequence-

based tasks such as machine translation, as previous words define the context and thus, what the 

next word is likely to be. 
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Figure 4: Illustration of the GCNN and RNN architecture for chemical applications. Colored 

arrows stemming from the amine group indicate the information transfer from the nitrogen to other 

heavy atoms, with the color corresponding to the convolutional pass. Light grey arrows indicate 

each atom’s feature vector in the matrix, importantly properties such as atomic number (Z) are 

often encoded using one hot vectors, which are binary, but for spatial efficiency the integer is used 

in its place. The RNN model shows a simplified ‘many to many’ recurrent network, with the text 

above and below the dashed lines indicating a stylized reaction prediction system inspired by the 

work of Schwaller et al.61 This system takes in reagent and agent SMILES, and predicts the variable 

length product string, however the LSTM architecture they used is significantly more complex 

than the one shown above. 

The prediction space is the set of all possible outputs for the network. More intuitively, it can be 

thought of as the utility of the network or the question that the network can produce an output for. 

As discussed above, supervised learning requires labelled data that allows the model to iteratively 

improve its predictive performance. This model relies on a quantitative error assessment by the 

evaluation component, and thus each deep learning problem needs to be framed in such a way that 
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it can be quantitively evaluated. This creates a significant challenge in chemistry, as questions such 

as ‘what is the best synthetic route?’ require systematic analysis to produce a question that can be 

numerically evaluated, and thus produce quantitively labelled data. In the broader context of 

artificial intelligence, this means that these systems are weak AI, capable of solving only a single, 

extremely narrow task, and not being capable of meaningfully answering even slight deviations 

from the question it was trained on. 

Commonly Used Terms. Before concluding this section, a brief explanation of commonly used 

ideas and terms will be provided. Each term is linked to seminal papers and, where appropriate, 

accompanied by an example of its application in chemistry. 

• Transfer Learning – Transfer learning involves using a network that has been trained on a 

related task, and then tweaking its parameters to adapt to a new task, often with less data62. 

It has been used to adapt a model trained on DFT to a smaller database of higher fidelity 

calculations by Smith et al.63. 

• Multitask learning – This involves training a model on multiple prediction tasks at the same 

time to decrease the likelihood of overfitting64. It has been demonstrated improvements for 

toxicity or bioactivity prediction65.  

• One Shot Learning – A technique used to overcome applications with extremely limited 

data that uses networks to compress inputs into a continuous latent space and then compares 

the representation in this space to a larger, trained latent space66. It has been used in chemistry 

for low-data drug discovery67. 

• Autoencoders – A network architecture which compresses an input to a real valued vector, 

commonly referred to as the latent space. A decoder network then takes this vector as its 
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input and tries to reproduce the original input data68. It has been used to design molecules by 

training the latent space to reflect a particular property, and then navigating it43. 

• Generative Adversarial Networks (GANs) – GANs utilize two networks in a competitive 

scheme. One network has to generate data, and another has to determine if a particular data 

point is a fake generated by the network, or a real one from the dataset. By competing with 

one another, the generating network learns to create high quality imitations of the dataset69. 

It has been utilized for the inverse molecular design problem70.  

• Data Augmentation – This involves expanding a dataset by creating new training examples 

through reasonable manipulations of the data. One of the simplest demonstrations of this is 

rotating images in a dataset, but maintaining the same label in a way that is obvious to 

humans, i.e., a car is still a car at different angles71. This has been used with SMILES to 

enumerate the different potential orderings and increase the predictive performance72. 

• Reinforcement Learning – When the model learns iteratively through trial and error by 

making its cost function measure its progress towards a particular goal73. It has been used to 

train a model to optimize reactions74. 

• Supervised Learning – Supervised learning involves giving the model a labelled dataset, 

effectively telling it what it needs to learn. While this is currently the dominant learning 

paradigm in machine learning, it is not representative of how humans tend to learn.  

• Unsupervised Learning – Unsupervised learning is learning in which the model is not told 

what to reproduce and instead tries to separate the data into its underlying clusters. 

Algorithms such as k-mean clustering fall into this category and it is much closer to how 

humans learn75. 
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DEEP LEARNING APPLICATIONS 

 

This section reviews the multiple areas of chemistry that deep learning has thus far impacted, 

presenting examples in each that highlight particular achievements. To create a logical narrative, 

this discussion will follow an idealized chemical workflow. To build a molecule with a particular 

property would first require developing methods to accurately correlate any given structure to the 

property. These can then be used to intelligently design a molecule that maximizes the desired 

property. The final step is to design an efficient synthesis from readily available starting materials 

(Figure 5). This creates a closed feedback cycle in which the synthesized molecule can be 

experimentally analyzed, and this information can then improve the models that link molecules to 

properties. Deep learning has influenced every stage of this workflow, beginning with 

understanding molecules. 

 

Figure 5: Deep learning influence on the idealized chemical workflow. Illustrative examples of 

each task are shown in the dialogue boxed with arrows indicating the closed cycle that is contained 
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within the framework. The property values in the blue panel were obtained from the QM9 dataset 

for a randomly chosen molecule33. 

 

Accelerated Computational Models. Computational modelling in chemistry seeks to use 

physics-based calculations to determine the properties and behavior of a given molecular system. 

There are two distinct ways which deep learning can be used within this space. The first is to 

integrate the deep learning method with physics style approaches to alleviate computational 

bottlenecks. The second is directly predicting properties from molecular structures, thereby by-

passing physical laws altogether.  

Integrating deep learning methodologies with physics-based approaches involves training the 

network to predict a key component of the overall calculation. These include using the deep 

learning model to predict potential energy surfaces52, 76-77, force fields78,  add corrections to ab initio 

calculations79 and to bypass expensive stages in both density functional and wavefunction 

methods80-81. There is an excellent review and tutorial on using neural networks for the prediction 

of potential energy surfaces by Behler82-83. Many of these methods adapt a method introduced by 

Behler and Parrinello84 in 2007 that determines the energy of the system by summing the energetic 

contribution of each atom. This method transforms the cartesian coordinates of a molecule using 

radial symmetry functions, which capture the information of each atom’s immediate environment. 

This transformed representation is then passed through a neural network that predicts the 

contribution of this atom to the total energy. This general method of using functions to capture an 

atom’s local environment, then predicting its energy through a network and finally summing these 

contributions has been refined in a variety of ways. Notable work in the field includes that of 

Schutt et al.24  which produced size extensive predictions with an average error of 1 kCal/mol, and 
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the work of Smith et al.52 which produced errors below 1 kCal/mol and generalization to larger 

molecules. Schutt et al.’s85 work has been further refined, and developed into an open source 

software package (SchNetPack) that can be used to predict properties.  

The advantages of this approach are that it is more flexible than mapping a structure to a 

property, and it is more interpretable due to its physical basis. The difficulty is that, as there are 

typically still physics-based calculations involved, such methods cannot achieve the same speed 

as those that map purely from a structure to a particular property. It is important to note that there 

is a large literature base for using kernel ridge regression as the ML method. This approach has 

achieved excellent results but is not a deep learning method, and thus is outside the scope of this 

review. For an overview of these methods the reader is referred to von Lilienfeld’s excellent 

review86.   

 

Quantitative Structure Property/Activity Relationships. The alternative approach to deep 

learning in computational chemistry is training a direct map from a simple representation of the 

molecule through to the desired property. This is a diverse field of research that can broadly be 

captured under the two fields of quantitative structure property relationship (QSPR) and 

quantitative structure activity relationships (QSAR). Broadly speaking, QSPR seeks to predict 

properties of molecular systems, such as thermochemistry, while QSAR seeks to predict the 

activity of that molecule within a broader context, such as toxicity within biological systems. The 

goal of these methods is to maximize accuracy of prediction, with chemical accuracy for QSPR 

commonly being set to 1 kCal/mol or approximately 4 kJ/mol87-88. The properties that can be 

predicted are entirely determined by the available training data, and there are many databases 

available. There are summaries of available databases in both the review by Butler et al.27 and the 
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MoleculeNet paper by Wu, Ramsundar et al.13. Typically for properties that can be readily 

computed, such as ground state energies, ionization energies, or dipole moments, computational 

datasets are the norm. These are typically computed with a DFT method in order to maximize 

speed and allow for as much data as possible to be generated. Some of the most commonly utilized 

are QM933, ANI-135, and the Materials Project89. Properties that are difficult or currently impossible 

to compute accurately, such as toxicity, free energies of solvation, biological activity, or binding 

affinities rely instead on experimental datasets that typically contain significantly fewer entries 

due to the challenge in obtaining them. Frequently used datasets include ChEMBL90, PubChem91, 

and FreeSol34. 

For this type of problem. DNNs were the most widely used network architecture for the first half 

of this decade. They have been used to effectively predict electronic properties19, 87, 92, bioactivity21, 

93-95, toxicity15, 96-97, reactivity92, as well as other physical properties98. Multitask networks are also 

frequently used due to the increase in predictive performance, as well as increased robustness to 

overfitting15, 21, 93-94. RNNs have been more widely used as the generative networks that produce 

novel molecules which will be discussed later. For predictive purposes, however, they have 

utilized both graph type input structures similar to GCNNs to predict aqueous solubility18 and drug 

toxicities99 as well as the more traditional text based inputs of SMILES for general property 

prediction100-101.  

In almost all cases however, GCNNs and their many variants have demonstrably better 

predictive performance than either of the other two classes of methods. Due to the focus on 

improving network architecture, convolutional models are often tested against a variety of 

benchmarks. However, there has been a particular push to improve the predictions of electronic 

properties in order to ease the computational stress imparted by physics-based calculations56, 102-103. 
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In addition to this GCNNs have shown dominance in predicting bioactivity104, polymer property 

predictions105, and physical properties55, 106. Work to increase their predictive abilities is ongoing, 

but errors below 1 kcal/mol are routinely achieved. The accuracy of these methods brings into 

question the validity of the training data, particularly the accuracy of the labels, as well as potential 

bias in the data. DFT is known to have large errors107-108, while the gold standard methods such as 

coupled cluster with singles, doubles, and perturbative triples (CCSD(T)) are currently 

prohibitively expensive for datasets of this size109. In order to overcome this deficit, transfer 

learning has been utilized to fine tune these networks on smaller datasets of calculations performed 

at significantly higher levels of theory, such as CCSD(T)63, 110. Additionally, bias in chemical 

datasets is a well-known problem111-112. While there has been recent work to intelligently design 

them using deep learning113, genetic algorithms114, or techniques such as query by committee115, 

the large datasets required for chemical deep learning are largely restricted to small molecules 

containing only carbon, nitrogen, oxygen, fluorine and hydrogen. As the coverage of chemical 

space expands, it is critical that the datasets are intelligently designed to maximize coverage of the 

rapidly expanding combinatorial space. 

The final topic to address is interpretability. Deep learning has a reputation for being a ‘black 

box’, as it is almost impossible to understand why the network made the decision that it did116. 

Recent work has attempted to overcome this in chemical deep learning by cleverly designing the 

architectures to allow for extraction of chemical insights from its decision making. In recent work 

from Goh et al.117, by changing the information available to the network in their descriptor, they 

were able to infer that the network was learning a different approach to solve different chemical 

prediction challenges. Schutt et al. 102 on the other hand demonstrate not how the network is making 
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decisions, but rather that its predictions align with an understanding of chemical ideas such as 

aromaticity. 

 

Conformational Exploration. Regardless of how deep learning influences chemical property 

mappings, effective exploration of chemical space involves navigating not only the species space, 

but also the conformational space of those species. Conformational screening is an immense 

challenge in chemistry, as with each new atom, multiple additional local minima appear on the 

potential energy surface. The aforementioned neural network potentials offer a rapid way to 

explore the conformational space of a molecule. The leading potential at the moment is the ANI-

1 potential that achieved errors below 1 kCal/mol and is trained using off-equilibrium geometries52. 

The dataset it was trained on contains approximately 20 million energies of ~57,000 molecules in 

different stances35.  

The inverse of conformational screening is to develop a system that can generate equilibrium 

conformers for a given molecule. This challenge has been undertaken by Gebauer et al.118 which 

demonstrated deep learning’s ability to generate equilibrium conformers.  This method is an 

adaption of SchNet architecture developed by Schutt et al. that was able to regenerate molecular 

geometries with a root mean squared deviation of approximately 0.4 Å. Additionally, a novel, but 

not as rigorously tested method was introduced by Thomas et al.46 in which 3D point clouds were 

used to regenerate molecule geometries. This work didn’t place the same emphasis on minima 

structures, but was able to achieve very low errors of approximately 0.15 Å. This field of research 

is still very young but holds immense potential to minimize the conformational screening 

bottleneck. 

 

MOLECULAR DESIGN 
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The second stage of the idealized workflow is the problem of molecular design. This problem, 

sometimes referred to as inverse QSPR has a history of machine learning applications including 

Bayesian optimization119 and genetic algorithms120. Recent years have seen the application of 

generative deep learning models to design molecules. One of the seminal demonstrations of this 

method is the work of Gómez-Bombarelli et al.43 which used an autoencoder with a latent space 

that was optimized by an additional network to reflect a particular property. This ‘landscape’ can 

then be explored to identify candidate molecules that maximize the property. There are many other 

approaches that also use autoencoders121-124, generative adversarial networks (GANs)70, or 

reinforcement learning agents125-128 to navigate chemical space structured around a particular 

property. Finally RNNs have also been used for molecular library generation by an adaptation of 

their text generation capabilities129. An excellent review of molecular design is provided by 

Sanchez-Lengeling and Aspuru-Guzik130.  

General molecular design is seeing a surge of activity, however, there are two special classes of 

molecules that deserve particular attention: materials and drugs. These are arguably the two most 

challenging molecule classes to design and optimize, but also offer the greatest potential benefits. 

Therefore, they have motivated significant research efforts with deep learning. 

 

Materials Design. Many modern technologies such as batteries, aerospace, and renewable 

energy relying of advanced materials. Deep learning has only recently begun to influence the field, 

but there has been a rapid growth in applications in the last few years. The distinction between 

discrete small molecules and crystalline structures has led to a separate set of convolutional 

descriptors that seek to capture the crystalline structure. Crystal graph convolutional neural 

networks (CGCNNs) as introduced by Xie and Grossman131 show much potential in this field. 
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There has been a push, however, to reconcile the representation systems for these two classes of 

molecules. SchNet103 has been demonstrated on both, and MEGNet by Chen, et al.132 has been 

developed for this specific purpose.  

GCNNs, as well as the CGCNN variant have been used to predict the properties of bulk 

materials133, predict thermoelectric properties134, optimize polymer properties135, and to explore 

chemical materials space136. These applications are still young; however, it has moved beyond 

predictive models as demonstrated in work by Li et al.135 in which they successfully used 

reinforcement learning to train an agent to experimentally control polymer weight distributions, 

and thus the polymer’s properties. Additionally, the exploration of chemical materials space by 

Xie and Grossman136 demonstrated the potential of these methods to uncover previously 

undetected pockets of materials space.  Beyond the properties of materials, work has been done to 

optimize their synthesis parameters137 and perform defect detection138. Finally, a deep learning 

method that utilizes tensor networks, similarly to Schutt et al.24, demonstrated generative design 

of chiral metamaterials139. Most of these applications remain theoretical in nature, and effectively 

incorporating them with an experimental workflow, such as in the polymer optimization workflow 

of Li et al.135  is a key next step to determine their efficacy. 

One key subfield of materials design is catalysis design. Machine learning has seen increased 

use in catalytic research140-141, however deep learning has seen limited application in this field due 

to the limited data available, the unique nature of each catalytic process, and the difficulty of 

representing multimolecular systems.  The applications of deep learning within catalyst design 

largely center around using neural network potentials to model the catalytic system. Recent 

examples of this include Shakouri et al’s.142 work to model nitrogen gas on a ruthenium surface 

and the optimization of platinum clusters by Zhai and Alexandrova143. Extending this work beyond 
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using neural network potentials will likely require increased data gathering efforts, as well as the 

development of newer descriptors to describe interacting, multimolecular systems. 

 

Drug Design. Drug design is arguably one of chemistry’s most important applications. 

Fundamentally it involves identifying molecules that achieve a particular biological function with 

maximum efficacy. These can either be obtained from natural sources or built from the ground up. 

In either case the goal typically starts with one, or a set of molecules and the challenge is to 

optimize its properties to improve potency, specificity, decrease side effects, and decrease 

production costs. There are a number of reviews on deep learning’s impact on this field as it is of 

great interest to the community25, 144-145.  

The generative models in drug design follow the same trends as general molecular design, with 

autoencoders146, GANs147, and reinforcement learning148 all being used to try and generate potent 

drug molecules. In addition to these, there are some novel approaches to drug development rather 

than molecules design that include predicting anti-cancer drug synergy149 and developing a 

benchmarking for generative models in drug design150. Drug design approaches struggle from 

limited data, possibly more so than any other fields due to the expense of obtaining it. Work by 

Altae-tran et al.67 utilized one shot learning to address this deficiency and make informed 

predictions about drug candidates with limited data. Finally, while not a molecule optimizing 

generative system, work by Segler et al.151 developed methods to develop focused libraries of drug 

candidates for screening using RNNs. 

 

SYNTHESIS PLANNING 

Synthesis planning is the final stage in this idealized workflow. It can be simplified into three 

separate components. Retrosynthesis, in which the product is known, and is broken down into a 
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series of simpler starting materials from which it can be made. Reaction prediction, in which 

reagents are known, and the dominant product must be determined. Finally, reaction optimization, 

which involves taking a reaction with known reagents and products and trying to maximize the 

yield or efficiency of this process. One important distinction to note here is that reaction 

optimization and reaction prediction both have well established computational approaches, kinetic 

models and quantum calculations respectively. Both of these can however be expensive, and in the 

case of quantum calculations, enormously so.   

Computational retrosynthesis on the other hand has a long and turbulent history.  The original 

retrosynthesis program was Pensak and Corey’s8 work on the LHASA software. From this point 

there have been a multitude of assistive software packages152-154. The beginning of the 21st century 

saw a loss of interest in this field due to a variety of factors, but it is largely attributed to a 

widespread belief that computers could not capture the art of synthesis. This field has had a second 

wind with the advent of deep learning, with the models beginning to challenge the notion of 

computational inferiority in synthesis planning10. 

 

Retrosynthesis. The great challenge of retrosynthesis is the exponential scaling of possible 

moves in synthetic space from any point. This is a property it shares with traditional board games 

such as Chess or Go. Formally, this can be expressed as a tree search, where the branching factor 

is how many possible steps you can take from a particular point. The depth is how many steps it 

takes to reach the desired position. Compared to the aforementioned games, retrosynthesis has a 

significantly greater branching factor, but lower depth155. Retrosynthesis may present a far greater 

challenge due to the immense challenging in knowing a priori whether a reaction will be successful 

and produce the desired material, whereas Chess and Go have a perfectly defined set of possible 
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moves. However, these games represent a good starting point to consider the problem, and 

fortunately, both have succumbed to artificial intelligence approaches. It is not surprising then that 

one of the dominant displays of retrosynthetic AI was heavily inspired by AlphaGo, the seminal 

AI system Deepmind developed to achieve superhuman Go playing ability3. 

Work by Segler et al.16 adapted the AlphaGo methodology (Monte Carlo Tree Search with deep 

neural network policy) to design a state of the art retrosynthetic AI. This system was trained on 

over 12 million reactions from the Reaxys156 database and produced human accepted synthesis 

routes. Assessing synthesis plans is a thorny challenge, and in order to do this, they performed a 

double-blind study in which graduate chemists were shown the machine’s synthetic plan and the 

original, literature plan. There was no statistically significant difference in their preferences, thus 

giving a preliminary indication that its synthetic routes are ‘human level’. It is also possible, 

however, to argue that the graduate chemists’ do not yet have the necessary expertise to distinguish 

the human route. Thus, determining when computers achieve human ability in synthesis planning 

is a decision that can only be made by the entire field. While this method showed great potential, 

there are other avenues of research such as the use of RNNs in an encoder/decoder setup to perform 

retrosynthetic analysis of small molecules157.  

Computational retrosynthesis is making enormous strides; however, many problems persist. 

Firstly, planning a retrosynthesis that looks valid, and experimentally verifying its predictions are 

different challenges and until these methods are rigorously tested it is unknown whether or not 

they are useful to chemists. This challenge would likely benefit from a user-friendly software 

package in order to get chemists’ feedback on the computer-generated syntheses. These are 

beginning to appear with an example being the ASKCOS software developed by the machine 

learning for pharmaceutical discovery and synthesis consortium158. 
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Reaction Prediction. Reaction prediction is the process of taking a set of known reagents and 

conditions and predicting what products will form; as such, it typically requires greater exploration 

into uncharted chemical space. Current methods to perform this, such as quantum calculations are 

exceedingly expensive and thus limited to smaller molecules. Deep learning methods represent an 

opportunity to alleviate this computational expense, and free up time of trained computational 

chemists.  

Reaction prediction exemplifies the challenge of predicting outliers, due to the frequent need to 

predict outside of the training space. As a result of this, the majority of reaction prediction machine 

learning methods either integrate the model with a physics based scheme or apply reaction 

templates159. One of the early works that applied deep learning to reaction prediction involved 

DNNs with molecular fingerprints to predict what product would form44.  Additional work has 

utilized RNN variants61, as well as more specialized architectures such as neural machine 

translation160-161 and Siamese architectures (which take two identical networks given different 

inputs and determine the similarity between them)17. One of the striking challenges for this field is 

the immense literature bias towards successful reactions. Recently Coley et al.45 presented by a 

clever approach to overcome this by recognizing that a successful reaction implicitly defines a 

large number of unsuccessful reactions that can be added to the database. This was performed by 

identifying high yielding reactions, and generating viable alternative products that are thus not 

formed in high yield. These can then be added to the dataset to augment it with negative examples. 

The current state of the art that also stresses interpretability uses a GCNN to predict reaction 

outcomes in a manner similar to human intuition162. 
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Due to deep learning’s relatively new arrival to reaction prediction, there is a history of non-

deep learning methods for reaction prediction that is reviewed by Coley et al.11. Current 

developments are reaching a level that is competitive with humans. With further advancements in 

predictive ability and transitioning it into user friendly software, this is likely to become a key 

addition to the chemical toolset.  

 

Reaction Optimization. Reaction optimization involves tuning the conditions of a reaction to 

increase its efficiency. This is often performed via kinetic models, or experimentally through the 

use of flow chemistry or high throughput combinatorial chemistry. Despite the maturity of these 

methods, there is scope for a system which can rapidly produce idealized synthetic conditions 

given a molecule and reaction type.  Deep learning has the potential fill this niche, and research 

has begun to adapt it to this challenge. 

The potential of this approach was demonstrated by Zhou et al.74 in which an RNN variant 

learned to optimize the conditions of reactions. Their model used an RNN that learned to evolve 

the conditions of a reaction towards an optimized state. It was trained on simulated reactions and 

then outperformed other software-based approaches for multiple experimental reaction setups. It 

is important to acknowledge here that due to limited availability of data, and the need to flexibly 

update the model, deep learning methods may not be the best choice here, instead a method that 

uses alternative machine learning methodologies such as random forests has been demonstrated to 

be a potent alternative163. 

FUTURE DIRECTIONS 

To summarize, deep learning is a subfield of machine learning that uses subsequent layers to 

extract higher level features and use them to learn the patterns present in a dataset so as to predict 

future behavior. Supervised learning requires large volumes of labelled data and a quantitatively 
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assessable goal or question. With this, a model uses an interplay of a predictive learner, evaluation, 

and optimization, in the form of a training cycle to iteratively improve its performance until it 

begins to overfit the training set, at which point training stops and the model is evaluated.  

The last decade has seen explosive growth in the application of these methods across chemistry. 

Through its applications, deep learning shows promise of being a game changer within chemistry. 

This review has demonstrated that deep learning has and will continue to impact every stage of the 

idealized chemistry workflow. Realization of its potential will require a concerted effort to address 

the major challenges deep learning still faces, many of which have been discussed throughout this 

review. The three main challenges that must be addressed to maximize the potential of this 

technique within chemistry are:  

1. Obtaining large amounts of high-quality data 

2. Developing a standardized framework 

3. Effective integration with the broader chemistry community 

The first two challenges will be immensely benefitted by increased collaboration, and in 

particular, continued open sourcing. The push for open sourcing has increased and there is strong 

evidence of it occurring within deep learning particularly through software packages such as 

DeepChem13, TensorMol164, ANI52, SchNetPack85, and chemprop165. Addressing the problem of 

high-quality data also relies on continued advancements in physics based computational chemistry 

and the accompanying software packages166-167. 

The final challenge requires concerted action from specialists and the broader community. Open 

sourcing software packages is a step in the right direction, but the chemical community has a long 

history of resisting assistive software either due to poor usability or unreliable software 

performance. The latter is demonstrably addressed by these powerful methods, but the former 
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requires conscious development of usable software packages with feedback from the community. 

These methods are built to empower chemists first and foremost, and that must be a priority as this 

field matures.  

This review hopes to serve as a gateway to this burgeoning field and encourage chemists, 

regardless of their specialization, to consider how deep learning could be applied to their work. 

The following are a set of guidelines to assist in the initial application of these methods; 

• Python has become the coding language of choice for deep learning and finding someone 

proficient in it is invaluable. 

• Deep learning requires large volumes of data to outperform traditional machine learning 

methods. Unless transfer learning is an option, a few thousand data points is a minimum. 

• To begin with, employ the open source software packages referenced above with default 

settings to get a baseline.  

• From this baseline, adapt the network architecture using techniques presented in the 

literature referenced in this review to try and improve performance. 

• Utilize the wealth of informative online courses and user-friendly software packages168-

169 provided by the deep learning community to aid in learning these techniques.  

Deep learning’s contributions to chemistry to date demonstrate that it has a bright future within 

chemistry, but through effective collaboration between specialists and the broader community, it 

has the potential to offer a revolution.   
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