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ABSTRACT By considering the different cumulant combinations of the 2FSK, 4FSK, 2PSK, 4PSK, 2ASK,

and 4ASK, this paper established new identification parameters to achieve the recognition of those digital

modulations. The deep neural network (DNN) was also employed to improve the recognition rate, which

was designed to classify the signal based on the distinct feature of each signal type that was extracted with

high order cumulants. The extensive simulations demonstrated the exceptional classification performance

for new key features based on high order cumulants. The overall success rate of the proposed algorithm

was over 99% at the signal to noise ratio (SNR) of −5 dB and 100% at the SNR of −2 dB. The results

of the experiments also showed the robustness of the proposed method for a variety of conditions, such as

frequency offset, multi-path, and so on.

INDEX TERMS Modulation recognition, high order cumulants, deep learning, wireless communications.

I. INTRODUCTION

The automatic modulation recognition has become more and

more important as the number and complexity of digital mod-

ulation formats increased. For the poor versatility and high

complexity of the conventional approaches, there is an emerg-

ing need for the quick discrimination of the signal type which

is capable of intelligent modems. In general, the automatic

modulation classification systems are designed based on one

of these two approaches [1]: the decision theoretic (DT)

approaches or the pattern recognition (PR) approaches. The

DT methods use probabilistic hypothesis testing arguments

to formulate the recognition problems. Because of the com-

plex computations and lack of robustness against the model

mismatches, the DT approaches are not efficient for the

recognition of the different types of digital signals. The

PR approaches are easy to implement. And the researchers

should take their focus on the key feature extraction and the

selection of classification criteria. In the feature extraction
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part, the high-order cumulants have been took extensive

attention for its better anti-noise and anti-interference. The

digital modulation recognition algorithm based on high-order

statistics (HOS) proposed by SwamiAwas themost represen-

tative and influential [2], which employed the fourth-order

cumulant of the ideal synchronized and power normalized

signals as the classification feature to classify the BPSK,

QPSK, 4PAM and 16QAM signals. It also discussed the

influence of signal-to-noise ratio (SNR) and sample number

on the recognition performance.

Chen et al. completed BPSK, 4PSK and 8PSK recognition

based on fourth-order cumulant and estimated the unknown

parameters of the signal [3]; Wang et al. realized the classi-

fication of digital modulation signals 2ASK, 4ASK, 8ASK,

4PSK and 8PSK based on the fourth-order, sixth-order cumu-

lant and support vector machine methods [4]. Sun et al. com-

pared the recognition performance of the fourth-order and

sixth-order cumulants to the MPSK signal, and proved that

the anti-interference performance of the sixth-order cumulant

was better than that of forth-order [5]. As the respective

order cumulants are completely equal, the recognition of
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the MFSK signals became hardly. So employing the cyclic

spectrum was introduced to construct the feature parameters

by Fehske et al. they also employed the neural network clas-

sifier to realize the recognition of the modulated signal [27].

However, for the BPSK, QPSK and 16QAM, the identi-

fication was difficult as the cyclic spectrum of that were

similar. Furthermore, there are still other research outcomes

on the modulation recognition [6]–[15]. With the develop-

ment of the machine learning (ML) [16], it is widely applied

to the wireless communication [17]–[26], such as channel

automatic detection and estimation, Nonorthogonal Multiple

Access (NOMA), massive multi-input multi-output (MIMO),

Physical layer and so on. Under this background, some papers

applied the ML into modulation recognition [27]–[31]. Take

the paper [27] for example, it uses the cyclic spectrum to

construct the feature parameters and uses the neural network

classifier to realize the recognition of the modulated sig-

nal. However, the cyclic spectrum characteristics of BPSK,

QPSK, and 16QAM are similar, and identification is diffi-

cult. These modulation recognition methods based on ML

generally use more than two steps to realize the modulation

recognition, whose complexity is too high. This paper pro-

posed a new approach, which only needs one step to realize

the modulation recognition.

Based on the sixth-order cumulant of the extracted signal,

a new feature parameter is constructed to use as the feature

input of the neural network. The simulation results show the

good recognition performance and robustness under low SNR

condition that the effects of frequency offset andmultipath are

considered.

II. DEEP LEARNING FOR MODULATION RECOGNITION

A. HIGH ORDER STATISTICS

1) DEFINITIONS

For a zero-mean complex stationary random process X (t), the

second-order moment can be defined in two different ways

depending on placement of conjugation

C20 = Cum(X ,X ) = M20 (1)

C21 = Cum(X ,X∗) = M21 (2)

Similarly, the forth-order cumulants can be written in three

ways. Thus, forth-order can be defined as

C40 = Cum(X ,X ,X ,X ) = M40 − 3M2
20 (3)

C41 = Cum(X ,X ,X ,X∗) = M41 − 3M20M21 (4)

C42 = Cum(X ,X ,X∗,X∗) = M42 − |M20|2 − 2M2
21 (5)

And the sixth-order defined as

C60 = M60 − 15M40M20 + 30M3
20 (6)

C63 = M63 − 6M41M20 − 9M42M21 + 18M21M
2
20 + 12M3

21

(7)

where Mpq is the pth order mixing moment of the zero-

mean complex stationary random process X (t), expressed as

Mpq = E{X (t)p−qX∗(t)q} and p > q.

2) THEORETICAL VALUES

Here, we consider the theoretical values of each order cumu-

lant for various signal (2ASK, 4ASK, 2PSK, 4PSK, 2FSK

and 4FSK), and assume that the symbols are equiprobable.

When the carrier frequency information is known at the

receiving end and the timing synchronization is reached,

the signal to be identified is down-converted, and the expres-

sion of the k-th sampled complex signal sequence is obtained

as follows,

sk = xk + nk =
√
Pejθcak + nk k = 1, 2, . . . ,N (8)

where P represents average power; θc represents carrier phase

deviation caused by wireless channel; xk represents the trans-

mitted symbol sequence; and nk represents zero-mean and

σ 2 variance additive complex Gaussian white noise sequence

(AWGN).

According to (1) to (8), these theoretical cumulants for

various modulation signals can be derived, which are listed

in the Tab.1, where the 1 = 2σ 4 + 4Pσ 2, 3 = P2 + 3σ 2P,

P′ = P2 + σ 2 and Ŵ = 2P2 + 3σ 2P.

While estimating the C21, the noise power σ 2 can be

estimated at the same time, and then the noise power can be

delimited. Therefore, the Tab.1 can be rewritten as Tab.2.

TABLE 1. Theoretical cumulants using traditional method.

TABLE 2. Theoretical cumulants using modified method.

3) KEY FEATURES EXTRACTION

When extracting the feature parameters to recognize the dig-

ital signal, two mainly rules to be considered as following,

I). phase jittering effecting on the cumulant value, which can

be diminished by using the absolute value of the cumulant
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value; II) signal amplitude effecting on the cumulant value,

which can be removed by using the ratio value.

If these features’ value mentioned are applied in Tab.2,

these sixmodulation formats can’t be classified. The reason is

that the 2ASK and 4ASK have the similar feature value, and

the 2FSK and 4FSK have the same feature value. To classify

these modulation formats, these features need some modifi-

cations. Firstly, modulation signals is processed as following,

⌢
sk = sk − E [sk ] (9)

By using the modified modulation signal of (9) to update

the theoretical cumulants for MASK modulation signals,

which are shown in the Tab.3. From the features’ value,

the 2ASK and 4ASK can be classified by C60 easily.

In order to recognize the 2FSK and 4FSK, modulation

signals sk is modified as following,

⌢
sk = ske

−j·1w·l/(2fs) (10)

By using the modified modulation signal of (10) to update

the theoretical cumulants for MFSK modulation signals,

which are shown in the Tab.4. From the features’ value,

the 2FSK and 4FSK can be classified by C40 easily.

TABLE 3. Theoretical cumulants for MASK.

TABLE 4. Theoretical cumulants for MFSK.

From the knowledge of the Tab.2–4, it can obtain the

flow diagram of modulation format classification as shown

in Fig.1, and the least number of features is five, such

as |C42| (from Tab.2), |C40/C42| (from Tab.2), |C41/C42|
(from Tab.2), |C40/C42| (from Tab.4) and |C60| (from Tab.3).

If the five features are applied in modulation classification,

these modulation types can be classified clearly, as shown

in Fig.2 at high SNR scenario (eg. SNR = 15dB). However,

at the low SNR scenario, the discrimination is not very clear.

Take SNR = −2dB for an example, as shown in Fig.3,

especially, the 4FSK and 2FSK can’t be classified. In order

to solve lower detection precision at the low SNR scenario by

using traditional approach, the next section the DL approach

is proposed for modulation classification.

FIGURE 1. The flow diagram of modulation format classification.

FIGURE 2. The feature for modulation classification (SNR = 15dB).

FIGURE 3. The feature for modulation classification (@SNR = −2dB).

B. BASIC IDEAL OF DEEP LEARNING

Deep Learning (DL) have achieved success in the fields

of image recognition, speech recognition, natural language

processing and so on. A comprehensive introduction to deep

learning and machine learning can be found in [16].
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FIGURE 4. The structure of Deep Neural Network (DNN) model.

FIGURE 5. The architecture of the modulation classification with DL.

The structure of Deep Neural Network (DNN) model is

shown in Fig 4. Generally speaking, the DNN is deeper ver-

sions of a single perceptron by adding the number of hidden

layers and neurons between the input and output layers in

order to improve the ability of representation or recogni-

tion. Each layer of the network consists of multiple neurons,

the weighted sum of neurons of its preceding layer is fed into

an activation function f (·), usually a Sigmoid function or a

Rule function, to obtain an output y. Hence, the output of the

network Z is a cascade of nonlinear transformation of input

data X , mathematically expressed as

Z = f (X ,W ) = f L−1(f L−2(· · ·f 1(X ))) (11)

The data set of the neural network can be expressed as

{(xi, yi)}Ni=1, where N is the number of samples; xi is the

input variable of the ith sample; and yi ∈ {1, 2, . . . ,C} is

the label or output variable of the corresponding sample and

C is the number of the total type. We adopt one-hot label

for the output value, and the corresponding output vectors of

each modulation mode are 2ASK (100000), 4ASK (010000),

2FSK (001000), 4FSK (000100), 2PSK (000010) and 4PSK

(000001).

C. SYSTEM ARCHITECTURE

The architecture of the modulation classification with DL

is illustrated in Fig.5. We consider AWGN channel, then

the received signal can be expressed as equation (8). Our

architecture is divided into two parts: online deployment and

offline deployment. The main work of the offline part is train-

ing and obtains the optimal neural network configuration,

which is used in the online part to classify the real received

data. With the different modulation format, the training data

can be obtained by simulation. Secondly, the high order

cumulant can be extracted from the training data. The input of

DL model is the high order cumulant and the true modulation

format.

III. SIMULATION RESULTS

This paper has conducted several experiments to demonstrate

the performance of the DL methods for modulation classi-

fication. A DNN model is trained based on simulation data

by using offline deployment, and is compared with the tradi-

tional methods and other AI methods in term of recognition

accuracy. In the following experiments, the proposed feature

based on DL is proved to be more robust than the traditional

methods and other AI methods. In the following simulation,

the DNN model is configured four layers: one input layer,

two hidden layers and one output layer. the related parameters

are configured as following: (1) the numbers of neurons

in each layer are 5,13,6,6, respectively; (2) the activation

function used by the two hidden layers is Rule function, and

the activation function used by the output layer is Softmax

function; (3) The cross entropy function is used as the loss

function of the model in classification task. The loss error of

the model is shown in the Fig.6.

FIGURE 6. The training performance of the NN.

In our simulation, six modulation types-2ASK, 4ASK,

2FSK, 4FSK, 2PSK and 4PSK are considered. The results

are presented in Tab.5-7. The results in Tab.5 represent the

performance evaluation for recognition accuracy by using

traditional method-the decision-theoretic approach, and the

results in Tab.6-7 represent the performance by using DNN

with traditional features and modified features, respectively.

It is clear that all modulation types have been correctly

classified with 100% success rate with the proposed fea-

ture and DNN (Tab.7, the confusion matrix of the other
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TABLE 5. Recognition accuracy by using traditional method.

TABLE 6. Recoginition accuracy with features in Table. I.

TABLE 7. Recoginition accuracy with features in TABLE.III-IV (proposed).

SNR is added in the APPENDIX). The results obtained

from the DNN approach are better than those obtained

by the decision-theoretic approach. Therefore, direct com-

parisons of these three approaches can be made. In the

decision-theoretic approach, the overall success rate is about

72.91% at the SNR of −2dB, and the overall success rate is

about 87.58% for the DNN approach with general features

at the SNR of −2dB, while the overall success rate is 100%

for the DNN approach with proposed features at the SNR

of −2dB.

A. PERFORMANCE COMPARISON

As mentioned in [6], direct comparison with other works is

difficult in signal type classification. This is mainly because

there is no single unified data set available. Tab. 8 shows

the comparison among the important previous papers and the

TABLE 8. Comparative study of different works.

TABLE 9. Recognition accuracy (10 PPM FO) with features in TABLE.I.

hybrid proposed system. Since the QAM modulation type

can be acted as hybrid modulation type with PSK and ASK,

this paper did not consider the QAMmodulation set. In com-

parison with other works, the proposed recognizer has many

advantages. This system includes a variety of digital signal

types. It discloses great generalization ability for classifying

the considered digital signal types. The proposed classifier

has a success rate of 100% at the SNR = −2 dB. The

performance of the classifier is higher than 99% for SNR

>−5dB. In addition, this performance has been achievedwith

few samples. Results imply that our chosen features manifest

efficient properties in signal representation.

B. FREQUENCY OFFSET EFFECT

Here, we see how performance is degraded by frequency

offset, whose value is configured as 10 ppm. The results

are presented in Tab. 9-10. Compared with no frequency

offset results shown in Tab.6-7, it is shown that the 10 ppm

frequency offset effects a little performance loss for some cer-

tain modulation type classification. Therefore, our proposed

approach is robust for frequency offset.

C. MULTIPATH EFFECT

If the symbol sequence is passed through a finite-impulse

response with Rayleigh fading channel, the related features

will be changed. And the results are presented in Tab. 11-12

with multi-path channel, which shows that the multi-path

doesn’t degrade the performance of the modulation type clas-

sification.
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TABLE 10. Recognition accuracy (10 PPM FO) with features in TABLE.III-IV.

TABLE 11. Recognition accuracy with features in Table. I.

TABLE 12. Recognition accuracy with features in TABLE.III-IV.

IV. CONCLUSION

Higher order cumulants are less affected by noise and have

better anti-interference, but is unable to fully identify the

digital modulation formats.We use different cumulant combi-

nations to establish new identification parameters to achieve

digital modulation signal recognition that considered 2FSK,

4FSK, 2PSK, 4PSK, 2ASK, 4ASK. In order to improve the

recognition rate better, this paper also combines the DNN

algorithm. Distinct feature of each signal type was extracted

using high order cumulant, and the DNN was designed to

classify signal based on these features. Extensive simulations

demonstrated exceptional classification performance for new

key feature based on high order cumulants. The overall suc-

cess rate in the DNN algorithm is over 99% at the SNR of

−5dB and 100% at the SNR of −2dB.

APPENDIX

The confusion matrixes of the other SNR are listed as

following,
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