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It was only a matter of time before deep neural networks (DNNs) – deep learning
– made their mark in turbulence modelling, or more broadly, in the general area
of high-dimensional, complex dynamical systems. In the last decade, DNNs have
become a dominant data mining tool for big data applications. Although neural
networks have been applied previously to complex fluid flows, the article featured
here (Ling et al., J. Fluid Mech., vol. 807, 2016, pp. 155–166) is the first to apply
a true DNN architecture, specifically to Reynolds averaged Navier Stokes turbulence
models. As one often expects with modern DNNs, performance gains are achieved
over competing state-of-the-art methods, suggesting that DNNs may play a critically
enabling role in the future of modelling complex flows.
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1. Introduction

Neural networks were inspired by the Nobel prize winning work of Hubel and
Wiesel on the primary visual cortex of cats (Hubel & Wiesel 1962). Their seminal
experiments showed that neuronal networks where organized in hierarchical layers
of cells for processing visual stimulus. The first mathematical model of a neural
network, termed the Neocognitron in 1980 (Fukushima 1980), had many of the
characteristic features of today’s deep neural networks (DNNs), which are typically
between 7–10 layers, but more recently have been scaled to hundreds of layers for
certain applications. The recent success of DNNs has been enabled by two critical
components: (i) the continued growth of computational power and (ii) exceptionally
large labelled data sets which take advantage of the power of a multi-layer (deep)
architecture. Indeed, although the theoretical inception of DNNs has an almost
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four-decade history, the analysis and training of a DNN using the ImageNet data set
in 2012 (Krizhevsky et al. 2012) provided a watershed moment for deep learning
(LeCun et al. 2015). DNNs have since transformed the field of computer vision by
dominating the performance metrics in almost every meaningful computer vision task
intended for classification and identification. Remarkably, DNNs were not even listed
as one of the top 10 algorithms of data mining in 2008 (Wu et al. 2008). But in
2016, its growing list of successes on challenge data sets make it perhaps the most
important data mining tool for our emerging generation of scientists and engineers.

Data methods are certainly not new in the fluids community. Computational fluid
dynamics has capitalized on machine learning efforts with dimensionality-reduction
techniques such as proper orthogonal decomposition or dynamic mode decomposition,
which compute interpretable low-rank modes and subspaces that characterize
spatio-temporal flow data (Holmes et al. 1998; Kutz et al. 2016). POD and DMD are
based on the singular value decomposition which is ubiquitous in the dimensionality
reduction of physical systems. When coupled with Galerkin projection, POD reduction
forms the mathematical basis of reduced-order modelling, which provides an enabling
strategy for computing high-dimensional discretizations of complex flows (Benner
et al. 2015).

The success of dimensionality reduction in fluids is enabled by (i) significant
performance gains in computational speed and memory and (ii) the generation
of physically interpretable spatial and/or spatio-temporal modes that dominate the
physics. Thus computations are enabled and critical physical intuition gained. Such
success is tempered by two well-known failings of POD/DMD based reductions:
(i) their inability to capture transient, intermittent and/or multi-scale phenomenon
without significant tuning and (ii) their inability to capture invariances due to
translation, rotation and/or scaling. DNNs are almost diametrically opposed in their
pros and cons. Specifically, DNNs are well suited for extracting multi-scale features
as the DNN decomposition shares many similarities with wavelet decompositions,
which are the computational work horse of multi-resolution analysis. Moreover,
translations, rotations and other invariances are known to be easily handled in
the DNN architecture. These performance gains are tempered by the tremendous
computational cost of building a DNN from a large training set and the inability of
DNN to produce easily interpretable physical modes and/or features.

2. Overview of DNNs in turbulence applications

Turbulent flows generally exhibit multi-scale (spatial and temporal) physics that are
high dimensional with rotational and translational intermittent structures also present.
Such data provide an opportunity for DNN to make an impact in the modelling and
analysis of turbulent flow fields. Ling, Kurzawski & Templeton (2016) have proposed
using DNNs for Reynolds averaged Navier Stokes (RANS) models which are widely
used because of their computational tractability in modelling the rich set of dynamics
induced by turbulent flows. In this highlighted body of work, the specific aim is
to use DNNs to build an improved representation of the Reynolds stress anisotropy
tensor from high-fidelity simulation data. Remarkably, despite the widespread success
of DNNs at providing high-quality predictions in complex problems, there have been
only limited attempts to apply deep learning techniques to turbulence. Thus far, these
attempts have been limited to a couple hidden layers (Zhang & Duraisamy 2015).
Ling et al. (2016) move to DNNs by constructing 8–10 hidden layers, making it
truly a deep network. But this highlighted work does so much more than simply
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build a DNN. Indeed, the authors construct a specialized neural network architecture
which directly embeds Galilean invariance into the neural network predictions. This
neural network is able to predict not only the anisotropy eigenvalues, but the full
anisotropy tensor while preserving Galilean invariance. This invariance preserving
DNN is critical for respecting physical properties in order to provide significant
performance gains in prediction. The DNN is trained and evaluated on a database of
flows for which both RANS and high-fidelity data are available.

The specific DNN architecture used by the authors is referred to as the tensor
basis neural network. This network architecture is capable of embedding rotational
invariance by enforcing that the predicted anisotropy tensor lies on a basis of
isotropic tensors. Rotational invariance signifies that the physics of the fluid flow
does not depend on the orientation of the coordinate frame of the observer. This
is a fundamental physical principle, and it is important that any turbulence closure
obeys it. Otherwise, the machine learning model evaluated on identical flows with
the axes defined in different directions could yield different predictions. Enforcement
of the rotational invariance in this DNN shows substantial improvement over a more
generic feed forward multi-layer perceptron that does not embed Galilean invariance.
Training of their DNN was performed on a database of flows where both high-fidelity
as well as RANS results were available. The flow database represents various flow
configurations, thus the DNN is not simply interpolating or matching to similar flows.
Rather, the DNN extracts information about the underlying flow in a principled
manner.

The authors demonstrated that their DNN configuration was significantly more
accurate than either of two conventional RANS models on two different test cases.
Moreover, on a wavy wall test case which had a different geometry than any of the
training cases, their DNN was able to provide improved predictions, suggesting the
method was doing more than simply interpolating the training data. Additionally, on
a duct flow test, the DNN was capable of improving predictions despite the test set
being at a significantly different Reynolds number. Ultimately, the results suggest
that the physics respecting DNN trained with embedded Galilean invariance can
outperform, often significantly, other RANS turbulence models.

3. The future of DNNs for fluids modelling

DNNs will almost certainly have a transformative impact on modelling high-
dimensional complex systems such as turbulent flows. The successes with many
complex data sets will compel researchers to utilize this rapidly emerging data
analysis tool for improving predictive capabilities. DNNs represent a paradigm
shift for the community. Whereas many innovations have often been inspired from
expert-in-the-loop intuition and physically interpretable models, DNNs have challenged
these traditional notions by building prediction engines that simply outperform
competing methods without providing clear evidence of why they are doing so.
To some extent, the application of DNNs to turbulent flows will bring awareness
to the fluids community of the two cultures of statistics and data science (Breiman
2001). These two outlooks are centred around the concepts of machine learning
and statistical learning. The former focuses on prediction (DNNs) while the latter is
concerned with inference of interpretable models from data (POD/DMD reductions).
Although both methodologies have achieved significant success across many areas of
big data analytics, the physical and engineering sciences have primarily focused on
interpretable methods.
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Despite its successes, significant challenges remain for DNNs. Simple questions
remain wide open: (i) How many layers are necessary for a given data set? (ii) How
many nodes at each layer are needed? (iii) How big must my data set be to properly
train the network? (iv) What guarantees exist that the mathematical architecture can
produce a good predictor of the data? (v) What is my uncertainty and/or statistical
confidence in the DNN output? (vi) Can I actually predict data well outside of my
training data? (vii) Can I guarantee that I am not overfitting my data with such a
large network? The list goes on. These questions remain central to addressing the
long-term viability of DNNs. The good news is that such topics are currently being
intensely investigated by academic researchers and industry (Google, Facebook, etc.)
alike. Undoubtedly, the next decade will witness significant progress in addressing
these issues. From a practical standpoint, the work of Ling et al. (2016) determine
the number of layers and nodes based upon prediction success, i.e. more layers and
more nodes do not improve performance. Additionally, cross-validation is imperative
to suppress overfitting. As a general rule, one should never trust results of a DNN
unless rigorous cross-validation has been performed. Cross-validation plays the same
critical role as a convergence study of a numerical scheme.

Given the computational maturity of DNNs and how readily available they are
(see Google’s open source software called TensorFlow: tensorflow.org), it is perhaps
time for part of the turbulence modelling community to adopt what has become an
important and highly successful part of the machine learning culture: challenge data
sets. Donoho argues (Donoho 2015), and I am in complete agreement, that challenge
data sets allow researchers a fair comparison of their DNN innovations on training
data (publicly available to all) and test data (not publicly available, but accessible
with your algorithm). Importantly, this would give the fluids community their own
ImageNet data sets to help generate reproducible and validated performance gains on
DNNs for applications on complex flows. Perhaps Ling, Kurzawski and Templeton
can help push the community forward in this way.
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