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Deep learning in holography and coherent
imaging
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Abstract

Recent advances in deep learning have given rise to a new paradigm of holographic image reconstruction and phase

recovery techniques with real-time performance. Through data-driven approaches, these emerging techniques have

overcome some of the challenges associated with existing holographic image reconstruction methods while also

minimizing the hardware requirements of holography. These recent advances open up a myriad of new opportunities

for the use of coherent imaging systems in biomedical and engineering research and related applications.

Introduction

Exponential advancements in computational resources

and algorithms have given rise to new paradigms in

microscopic imaging modalities that rely on computation

to digitally reconstruct and enhance images, surpassing

the capabilities of conventional microscopes. Among

these computational microscopy modalities, digital holo-

graphic microscopy (DHM) provides several unique

opportunities by encoding a complex 3D optical field into

intensity modulations through the interference of scat-

tered sample waves and a reference wave, which forms a

hologram of the sample. Some important advantages of

holography include label-free imaging of samples at a low-

radiation dose, inference of the objects’ phase distribution

(especially useful for the imaging of, e.g., live cells and

other biological specimens within a liquid environ-

ment)1,2, and numerical 3D refocusing throughout the

sample volume by processing a single hologram, i.e.,

without any mechanical scanning. Despite these impor-

tant advantages, digital holographic microscopy systems

are not as widely used as other microscopy modalities,

such as brightfield or fluorescence microscopes. The wide

applicability of digital holographic microscopes is partially

bottlenecked by some challenges: the “missing phase

problem” in holography requires phase recovery, which is

often implemented using iterative methods that demand

the acquisition of additional measurements using rela-

tively complex and alignment-sensitive imaging set-ups;

furthermore, even after the phase recovery step,

coherence-related artifacts appear in the reconstructed

images in the form of, e.g., speckle noise and multiple-

reflection interference, which altogether degrade the

image contrast compared to, e.g., brightfield or fluores-

cence microscopy.

Recent developments in the field of deep learning have

opened up exciting avenues for significantly advancing

holography and coherent imaging systems by cir-

cumventing some of these challenges of coherent imaging

systems while taking full advantage of their inherent

benefits. We believe that this emerging body of exciting

work on deep learning in holography will be the key to the

wider-scale dissemination and adoption of holographic

imaging and sensing systems in the life sciences, biome-

dicine and engineering fields at large, and it has already

been applied to various important tasks in coherent

imaging, such as phase recovery3–6, super-resolution7,

phase unwrapping8,9 and label-free sensing10–12. These

methods are generally enabled by the supervised optimi-

zation of deep convolutional neural networks (CNNs)

using accurately registered image data (Fig. 1a). CNNs

typically contain tens to hundreds of layers of convolution

kernels (filters), bias terms, and nonlinear activation
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functions, inspired by biological neural processing.

Through the process of training (which is a one-time

effort), the weights of these filters and biases of the neural

network are adjusted in a way that minimizes the error

between the network output image and the “gold stan-

dard” target labels in terms of a user-defined cost or loss

function (for example, mean squared error loss13 (Fig.

1b)). This trained network can subsequently be used to

perform a predefined image reconstruction task with a

single forward-pass through the network, yielding its

inference. This reconstruction process typically takes only

a fraction of a second (using, e.g., a standard graphics

processing unit, GPU) without the need for any iterations,

manual tuning of any hyperparameters or refinement of

the physical assumptions made regarding the image

reconstruction model. In fact, this noniterative single

forward-pass reconstruction capability forms one of the

major advantages of deep-learning-based solutions to

inverse problems in imaging. In the following subsections,

we review some of these emerging deep-learning-enabled

holographic image reconstruction tasks and exemplify the

key opportunities that deep learning brings to the holo-

graphy and coherent imaging fields.

Phase recovery and hologram reconstruction

One of the most important tasks in holography is phase

recovery, as an opto-electronic sensor is only sensitive to

the intensity of impinging light. The specifics of the phase

recovery process depend on the holographic encoding

strategy used, one of which is in-line holography, where

the sample wave and the reference wave copropagate in

the same direction. As an alternative encoding method, in

off-axis holography, there is an angle between the sample

and the reference wave directions14. In-line holography is

generally desirable in various microscopy applications

because of its simpler imaging configuration and higher

space-bandwidth product (permitting higher resolution

over larger fields of view) compared with off-axis holo-

graphy. For in-line holography, many optical and/or

numerical methods have been proposed to retrieve the

missing phase information analytically or iteratively15,

using, e.g., additional hardware to acquire measurements

at different axial distances, illumination angles, wave-

lengths, or polarization states, among other degrees of

freedom, where these additional measurements are used

as physical constraints for an analytical and/or iterative

reconstruction algorithm to converge to a solution.

Because multiple measurements are needed for the same

object, these systems are generally limited to quasi-static

objects. Furthermore, these algorithms are often time-

consuming and require tedious tuning of user-defined

parameters for convergence to a satisfactory complex-

valued image. In contrast to these physics-driven holo-

gram reconstruction approaches, emerging data-driven

alternatives based on deep learning have recently

demonstrated rapid and robust holographic image

reconstruction from a single hologram. These data-driven

approaches use accurately registered and labeled image

data to train a CNN; these high-quality image labels, used

as the ground truth for the training phase, can be obtained

from, e.g., known sample structures4 (Fig. 2a) or by using

a physics-based iterative reconstruction method3 (Fig. 2b).

After its training, the network can blindly transform a

distorted, low-quality image obtained from a single

hologram intensity into the desired high-quality label/

image3,4 (Fig. 2). In general, a better reconstruction

quality can be achieved through physics-based learning

approaches, for example, by first refocusing the hologram
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a
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Fig. 1 Training a deep neural network for coherent image reconstruction. a Training workflow of an image reconstruction deep neural network,

including data acquisition, physics-based constraints, image registration, and training. b Typical network training and testing procedure, where the

network learns to match the input image to a target label (ground-truth image) using a given loss/cost function
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(without phase recovery) onto the object plane and then

using deep-learning-based inference (see, e.g., Fig. 2b, d).

It should be noted that the trained deep network can

output solutions that deviate from physics-based recon-

structions as the network is charged with a certain

transformation that cleans twin-image artifacts (defo-

cused replica of the object’s image that overlaps with the

real image due to the missing phase information) as well

as other interference-related artifacts such as multiple

reflection interference or out-of-focus fringes that are

present at the network input image (see, e.g., Fig. 2b, c).

As an example, a trained network, in its inference, rejec-

ted dust particles that were outside the sample plane3,

although those particles were physical objects imaged in

the recorded hologram. Stated differently, the network

interpreted these objects as out-of-focus noise, which is a

major advantage, as it cleans up the unwanted inter-

ference artifacts that are normally present in holographic

images due to coherence. As another major advantage,

these deep-learning-based hologram reconstruction

methods also demonstrate a 4-fold to 30-fold increase in

the reconstruction speed compared with the state-of-the-

art iterative hologram reconstruction algorithms5,6. In

fact, these deep-learning-based hologram reconstruction

approaches have already been used to empower different

computational imaging and sensing devices, such as field-

portable and cost-effective imaging flow cytometers11,

enabling label-free and high-throughput screening of

large volumes of liquid samples in field settings.

Depth-of-field enhancement and autofocusing

A recent work5 further demonstrated the ability of a

trained deep neural network to perform simultaneously

autofocusing and phase recovery to generate an extended

depth-of-field image from a single hologram measure-

ment. This result could not be obtained by standard

iterative hologram reconstruction methods that are based

on wave propagation (Fig. 2c). In this deep-learning-based

framework, which is termed Holographic Imaging using

Deep Learning for Extended Focus (HIDEF), the network

is trained using pairs of randomly defocused (back-

propagated) holograms and their corresponding in-focus,

phase-recovered images. HIDEF significantly decreases

the time complexity of holographic image reconstruction
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Fig. 2 Deep-learning-based hologram reconstruction. a An end-to-end CNN was trained to transform a hologram directly to a phase image4.

Adapted with permission from ref. 4. b The raw hologram (i.e., without phase information) was numerically focused onto the sample plane and was

used as an input for the network to match the phase-recovered image3. The sample is a Pap smear specimen. Adapted with permission from ref. 3. c

The raw hologram was propagated to an approximate distance within a sample volume, and the deep network generated an extended depth-of-

field reconstruction of the whole sample volume, also performing autofocusing5. The specimen is a 3D distributed aerosol sample. Adapted with

permission from ref. 5. d Similar to (b) but implemented on holograms under low-photon and poor-SNR conditions6. Adapted with permission from

ref. 6. e A CNN was trained to transform a low-resolution holographic reconstruction (created using iterative multiheight phase recovery) to an

equivalent high-resolution image of the same sample FOV7. The sample is a Pap smear specimen. Adapted with permission from ref. 7
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in 3D through simultaneous refocusing and phase

recovery of 3D distributed sample points, which are per-

formed in parallel. HIDEF can be especially useful for

wide-field, holographic imaging applications by digitally

bringing a large sample volume into focus in real time. For

instance, this deep-learning-based reconstruction method

was used to characterize particle aggregation-based bio-

sensors over a wide imaging field of view (FOV) greater

than 20mm2 and achieved high throughput and the rapid

detection of viruses12. In another example, a portable and

cost-effective device that senses bioaerosols in the field

was developed, which used HIDEF to rapidly reconstruct

the microscopic images of captured bioaerosols for their

automatic detection and label-free classification, achiev-

ing an accuracy of >94% for different types of pollen and

mold spores10.

Resolution and SNR (signal-to-noise-ratio) enhancement

In addition to the reconstruction of holograms, deep

learning has also been used to perform resolution

enhancement in coherent imaging systems in two differ-

ent ways7: (1) to surpass the pixel pitch sampling limit in

lensless holography systems (Fig. 2e) and (2) to enhance

the resolution in diffraction-limited, lens-based holo-

graphy systems. In the former case, since modern image

sensors have a pixel pitch of ~1–2 µm, the resolution of a

lensless microscopy system is limited, especially for on-

chip holography due to its unit magnification. Con-

ventionally, to surpass this limit, multiple images of the

same sample with subpixel shifts are taken to digitally

synthesize a high-resolution holographic image, which is

known as pixel super-resolution15. In ref. 7, a neural

network was trained to transform lower-resolution images

synthesized from fewer numbers (e.g., 1 or 4) of subpixel-

shifted measurements to match higher-resolution images

synthesized from more (e.g., 36) subpixel shifted mea-

surements, which significantly reduced both the number

of hologram measurements and the reconstruction com-

putation time. In the latter case of lens-based coherent

imaging, the resolution and FOV are coupled to each

other by the space-bandwidth product of the objective

lens, where a higher-resolution image can be obtained

through a higher magnification and higher NA objective

lens at the cost of a smaller FOV. In ref. 7, another neural

network was trained to transform lower-resolution

(lower-NA) holographic reconstructions into higher-NA

equivalent complex-valued images, which improved the

image resolution beyond the diffraction limit defined by

the NA of the objective lens and increased the overall

space-bandwidth-product of the lens-based holographic

system while also enabling quantitative phase imaging

with better resolution and higher throughput (i.e., wider

FOV). In both of these cases, through experimental data,

with well-controlled imaging conditions and sample sets,

the deep neural networks learned to robustly perform

frequency extrapolation to infer higher-frequency features

without generating artifacts7. In addition to in-line holo-

graphy, another beneficiary of deep-learning-based super

resolution in coherent imaging can be off-axis holography,

which has a smaller space-bandwidth product in com-

parison with that of in-line holography while offering a

superior overall sensitivity16.

Deep learning has also been used to perform denoising

of object images reconstructed from their holograms to

substantially increase the SNR of the output images6,17

(Fig. 2d). In one of these approaches17, the network was

trained using high-SNR images as the labels, along with

computationally simulated input images that had lower

SNRs. The trained network was then used to blindly

perform robust speckle noise reduction in experimentally

obtained image data. A similar framework6 was also used

to successfully retrieve the shape of an object from its

photon-starved hologram with an SNR that is close to one.

Brightfield holography

One of the landmark attributes of holography is its

ability to encode the 3D information of the sample

volume using a snapshot 2D interference pattern, that is,

the hologram. However, a reconstructed hologram tradi-

tionally falls short in terms of its image contrast and axial

sectioning capability, which is compromised not only by

the twin image, self-interference and speckle artifacts but

also by the defocused object features within the sample

volume due to the large spatial and temporal coherence.

As a result, the digital refocusing of the volumetric sample

hologram onto different axial planes results in both in-

focus structures and out-of-focus spatial crosstalk from

other planes. Overall, the limited contrast generated in

holographic reconstruction might be considered one of

the significant drawbacks of 3D coherent imaging com-

pared with, for example, the images acquired by a high-

NA brightfield scanning microscope.

Recently, deep learning has also been used to close this

contrast gap between holographic microscopy and

brightfield incoherent microscopy18 (Fig. 3b). In this

deep-learning-based method, termed “Brightfield Holo-

graphy”, the neural network learns the cross-modality

image transformation from numerically propagated

complex-valued images of a snapshot hologram intensity

to equivalent images at the corresponding axial plane

obtained by a high-NA scanning brightfield microscope,

matching the image contrast and the axial sectioning

capability of the latter. In other words, this brightfield

holography method achieves the image quality and the

contrast expected from a brightfield microscope but

without any mechanical volumetric axial scan, taking

advantage of the best of both imaging modalities, that is,

holography and brightfield microscopy. This brightfield
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holography concept and the underlying cross-modality

image transformation framework enabled by image

data19,20 have the potential to facilitate next-generation

high-throughput volumetric imaging systems powered by

holography, providing enhanced imaging speed,

throughput, contrast and 3D sectioning capability using

much simpler imaging hardware. In fact, we highlight in

the next subsection another exciting opportunity created

by the same cross-modality image transformation frame-

work for the holographic color imaging of label-free

(unstained) tissue samples.

Bringing color to holographic images of unstained

samples using cross-modality transformations

Unstained/label-free biological specimens, such as cells

and thin tissue sections, exhibit low contrast under a

standard brightfield microscope, making it impossible to

create a meaningful diagnostic image. To generate a high-

contrast image under incoherent illumination, a plethora

of labeling/staining techniques have been developed. One

of the most well-known and widely used techniques is

histochemical staining, which is considered to be the gold

standard in histopathology. In comparison to brightfield
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miroscopy, coherent imaging systems, such as quantita-

tive phase microscopy, provide an efficient contrast

mechanism for label-free specimens through the phase

information channel. However, this phase contrast

mechanism is not compatible with standard diagnostic

and sample analysis procedures that rely on more than

150 years of accumulated experience, trained experts/

professionals, and image processing algorithms. To

address this challenge, a virtual histology staining frame-

work based on cross-modality image transformation has

been demonstrated20,21. As shown in Fig. 3b, through its

training, a deep neural network learns to transform the

quantitative phase image (QPI) of a label-free tissue

sample imaged using a holographic microscope into an

equivalent image of the same tissue section imaged by a

brightfield microscope after its histochemical staining. As

holography offers wide-field and high-throughput QPI

over a large FOV (e.g., >20–30 mm2 per snapshot), this

virtual staining method using the phase contrast gener-

ated by the refractive index modulation of label-free tissue

samples has the potential to profoundly impact histo-

pathology by eliminating the need for histological stain-

ing. This will significantly reduce costs and the amount of

expert (histotechnologist) time and chemical reagents

required; additionally, this will preserve the tissue section

to be reused for further molecular analysis, as needed.

Virtual staining of the same tissue sample with multiple

types of stains, all in parallel, is also possible with this

approach, which is currently impossible to achieve with

standard histology methods.

Imaging through scattering media and diffraction

tomography

The applications of deep learning in coherent imaging

systems are not limited to holography, which is based on

the assumption of a single-scattering event. Using accu-

rately labeled and cross-registered datasets of input

−output image pairs, a deep neural network can also be

trained to digitally reverse multiple-scattering events and

reconstruct a sample’s image even through scattering

media. For example, a deep neural network was success-

fully trained for image reconstruction through glass dif-

fusers under coherent illumination22,23 (Fig. 4a). A related

method was also demonstrated to reconstruct and classify

handwritten digits from input images of speckle patterns

obtained through multimode fiber propagation over a

distance of up to 1 km 24 (Fig. 4b).

Deep learning has also been applied to optical diffrac-

tion tomography. In one of the earlier studies in this field,

Kamilov et al. demonstrated that a trained, fully con-

nected neural network can form an inverse model to

reconstruct the 3D refractive index distribution of cells

from diffraction tomography recordings25 (Fig. 4c).

Recently, it has also been demonstrated that a CNN can
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be trained and used for an ill-conditioned inverse imaging

problem, providing tomographic reconstruction of den-

sely layered objects from limited angle intensity projection

recordings26. Another recent work has successfully uti-

lized a generative adversarial network (GAN) for reducing

dynamic speckle noise in diffraction tomography images

(Fig. 4d), using unregistered pairs of input and label

images during the training process27.

Outlook

Deep-learning-based holographic phase recovery, image

enhancement/reconstruction, and cross-modality image

transformations have profound and broad implications in

the field of digital holography and coherent imaging sys-

tems, with numerous applications in biomedical imaging,

environmental sensing, and materials science, among

others. These data-driven image reconstruction methods

that are based on deep learning could also be useful for

different parts of the electromagnetic spectrum where

radiation is harmful to specimens, for example, in X-ray

or electron microscopy for probing material properties at

the nanoscale. Beyond phase recovery and image recon-

struction in a QPI, super-resolution through a deep neural

network can further enhance the space-bandwidth pro-

duct of emerging coherent imaging modalities and might

especially be impactful for parts of the spectrum that lack

high-pixel-count imagers, such as the infrared (IR) and

terahertz (THz) bands. Resolution enhancement could

also lead to more extensive uses of holography and

coherent imaging in high-resolution and high-throughput

microscopy applications, especially those involving por-

table devices for use in resource-limited settings. In

addition, deep-learning-based holography methods bypass

the classical trade-off between depth-of-field and axial

resolution by enabling high-resolution snapshot volu-

metric image reconstruction with a significantly extended

depth-of-field, which opens up new avenues for high-

throughput volumetric imaging applications such as the

rapid 3D imaging of cleared organs or tissue samples28.

Recent developments such as brightfield holography18

and phase staining21 digitally introduce alternative con-

trast mechanisms to digital holography, which were not

possible before the deep-learning-based data-driven

approaches were developed. These advances demon-

strate the powerful potential of coherent imaging systems

that are combined with deep-learning-based statistical

image transformations to modify standard image forma-

tion, reconstruction and analysis workflows employed in a

QPI. We envision that these latest developments will

serve as a catalyst to accelerate the translation and wide-

scale adoption of holography and coherent imaging

techniques in biomedical and clinical applications.

Regarding life-science-related applications, live cells can

be imaged label-free with low phototoxicity at higher

frame rates by using these emerging deep-learning-

powered methods and then digitally postprocessed to

provide multimodal transformations to other contrast

mechanisms for visualization and/or automatic classifi-

cation or segmentation.

One limitation of the presented deep learning approa-

ches is the need for the creation of accurately registered

and matching image datasets to train the networks.

However, for various applications, the microscopy field

provides an ideal framework for the acquisition of these

training image data thanks to the highly repeatable and

precise imaging instrumentation and alignment stages

that very well control the illumination light properties,

sample distances and orientation, which are quite differ-

ent from, e.g., macroscale imaging under ambient light

conditions with traditional camera systems that do not

have the same level of control and repeatability as routi-

nely possessed by microscopic imaging systems and

instrumentation. This makes the microscopy field a

unique and powerful test bed for utilizing the full

potential of deep-learning-enabled image reconstructions

and transformations at the micro- and nanoscale. Having

emphasized this unique advantage of microscopy instru-

mentation for training neural networks, we also note that

a precise registration between the input and label images

is not an absolute necessity for deep learning microscopy,

and it should be considered as a practical recommenda-

tion for the training phase rather than a requirement. In

fact, there are various emerging implementations of deep

learning toward end-to-end trainable networks that aim

to solve inverse problems with no closed-form or iterative

solution29. In this regard, physical constraints, a priori

information or image alignment that feeds into the

training image dataset can help us regularize the con-

vergence of a neural network for a given microscopic

imaging task and avoid potential hallucinations at the

network output (which is especially crucial for biomedical

applications). This, however, is not the only means of

achieving such competitive generalization performance,

and some of the emerging unsupervised learning

approaches might bring fundamentally new insights to

future uses of deep learning in microscopy.

Despite the advantages brought by the precision of

microscopy instrumentation, the transferability of a

learned model from one instrument to another remains

an issue to be addressed. To use a network model that was

trained using one microscopy instrument on a new

microscope (which was not part of the training process),

the concept of transfer learning30 can potentially be used.

In this process, a much smaller set of matched input and

ground-truth training image pairs can be used to rapidly

readjust the formerly trained neural network to work with

the new imaging hardware. This process is a one-time

effort and can be considered as an initial calibration step
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for applications of deep learning in microscopy. In fact,

during the assembly of each new microscopy instrument,

similar calibration and quality control measures are phy-

sically implemented to guarantee that each new micro-

scopy instrument performs nominally the same.

In summary, we are experiencing a true renaissance in

the holography and coherent imaging fields in general,

enabled by a new wave of powerful statistical tools

stemming from neural networks and data-driven learning

approaches. We believe this is just the beginning of a set

of transformative advances that this field will go through,

which will not only fundamentally change our imaging

instruments and how they work but also open up a ple-

thora of new applications that are not possible with

today’s imaging systems.
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