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Deep Learning in Label-free Cell 
Classification
Claire Lifan Chen1,2, Ata Mahjoubfar1,2, Li-Chia Tai2, Ian K. Blaby3,†, Allen Huang1, 

Kayvan Reza Niazi2,4,5 & Bahram Jalali1,2,5,6

Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development 
as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, 
currently available label-free cell assays mostly rely only on a single feature and lack sufficient 
differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. 
Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging 
enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our 
system captures quantitative optical phase and intensity images and extracts multiple biophysical 
features of individual cells. These biophysical measurements form a hyperdimensional feature 
space in which supervised learning is performed for cell classification. We compare various learning 
algorithms including artificial neural network, support vector machine, logistic regression, and a novel 
deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a 
validation of the enhanced sensitivity and specificity of our system, we show classification of white 
blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. 
This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the 
heterogeneous gene expressions in cells.

Deep learning extracts patterns and knowledge from rich multidimenstional datasets. While it is extensively 
used for image recognition and speech processing, its application to label-free classi�cation of cells has not been 
exploited. Flow cytometry is a powerful tool for large-scale cell analysis due to its ability to measure anisotropic 
elastic light scattering of millions of individual cells as well as emission of �uorescent labels conjugated to cells1,2. 
However, each cell is represented with single values per detection channels (forward scatter, side scatter, and 
emission bands) and o�en requires labeling with speci�c biomarkers for acceptable classi�cation accuracy1,3. 
Imaging �ow cytometry4,5 on the other hand captures images of cells, revealing signi�cantly more information 
about the cells. For example, it can distinguish clusters and debris that would otherwise result in false positive 
identi�cation in a conventional �ow cytometer based on light scattering6.

In addition to classi�cation accuracy, the throughput is another critical speci�cation of a �ow cytometer. 
Indeed high throughput, typically 100,000 cells per second, is needed to screen a large enough cell population 
to �nd rare abnormal cells that are indicative of early stage diseases. However there is a fundamental trade-o� 
between throughput and accuracy in any measurement system7,8. For example, imaging �ow cytometers face a 
throughput limit imposed by the speed of the CCD or the CMOS cameras, a number that is approximately 2000 
cells/s for present systems9. Higher �ow rates lead to blurred cell images due to the �nite camera shutter speed. 
Many applications of �ow analyzers such as cancer diagnostics, drug discovery, biofuel development, and emul-
sion characterization require classi�cation of large sample sizes with a high-degree of statistical accuracy10. �is 
has fueled research into alternative optical diagnostic techniques for characterization of cells and particles in �ow.

Recently, our group has developed a label-free imaging �ow-cytometry technique based on coherent optical 
implementation of the photonic time stretch concept11. �is instrument overcomes the trade-o� between sensitiv-
ity and speed by using Ampli�ed Time-stretch Dispersive Fourier Transform12–15. In time stretched imaging16, the 
object’s spatial information is encoded in the spectrum of laser pulses within a pulse duration of sub-nanoseconds 
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(Fig. 1). Each pulse representing one frame of the camera is then stretched in time so that it can be digitized in 
real-time by an electronic analog-to-digital converter (ADC). �e ultra-fast pulse illumination freezes the motion 
of high-speed cells or particles in �ow to achieve blur-free imaging. Detection sensitivity is challenged by the low 
number of photons collected during the ultra-short shutter time (optical pulse width) and the drop in the peak 
optical power resulting from the time stretch. �ese issues are solved in time stretch imaging by implementing 
a low noise-�gure Raman ampli�er within the dispersive device that performs time stretching8,11,16. Moreover, 
warped stretch transform17,18 can be used in time stretch imaging to achieve optical image compression and 
nonuniform spatial resolution over the �eld-of-view19. In the coherent version of the instrument, the time stretch 
imaging is combined with spectral interferometry to measure quantitative phase and intensity images in real-time 
and at high throughput20. Integrated with a micro�uidic channel, coherent time stretch imaging system in this 
work measures both quantitative optical phase shi� and loss of individual cells as a high-speed imaging �ow 
cytometer, capturing 36 million images per second in �ow rates as high as 10 meters per second, reaching up to 
100,000 cells per second throughput.

On another note, surface markers used to label cells, such as EpCAM21, are unavailable in some applica-
tions; for example, melanoma or pancreatic circulating tumor cells (CTCs) as well as some cancer stem cells 
are EpCAM-negative and will escape EpCAM-based detection platforms22. Furthermore, large-population cell 
sorting opens the doors to downstream operations, where the negative impacts of labels on cellular behavior 
and viability are o�en unacceptable23. Cell labels may cause activating/inhibitory signal transduction, altering 
the behavior of the desired cellular subtypes, potentially leading to errors in downstream analysis, such as DNA 
sequencing and subpopulation regrowth. In this way, quantitative phase imaging (QPI) methods24–27 that catego-
rize unlabeled living cells with high accuracy are needed. Coherent time stretch imaging is a method that enables 
quantitative phase imaging at ultrahigh throughput for non-invasive label-free screening of large number of cells.

Figure 1. Time stretch quantitative phase imaging (TS-QPI) and analytics system; A mode-locked 
laser followed by a nonlinear �ber, an erbium doped �ber ampli�er (EDFA), and a wavelength-division 
multiplexing (WDM) �lter generate and shape a train of broadband optical pulses. Box 1: �e pulse train 
is spatially dispersed into a train of rainbow �ashes illuminating the target as line scans. �e spatial features of 
the target are encoded into the spectrum of the broadband optical pulses, each representing a one-dimensional 
frame. �e ultra-short optical pulse illumination freezes the motion of cells during high speed �ow to achieve 
blur-free imaging with a throughput of 100,000 cells/s. �e phase shi� and intensity loss at each location within 
the �eld of view are embedded into the spectral interference patterns using a Michelson interferometer. Box 2: 
�e interferogram pulses were then stretched in time so that spatial information could be mapped into time 
through time-stretch dispersive Fourier transform (TS-DFT), and then captured by a single pixel photodetector 
and an analog-to-digital converter (ADC). �e loss of sensitivity at high shutter speed is compensated by 
stimulated Raman ampli�cation during time stretch. Box 3: (a) Pulse synchronization; the time-domain signal 
carrying serially captured rainbow pulses is transformed into a series of one-dimensional spatial maps, which 
are used for forming line images. (b) �e biomass density of a cell leads to a spatially varying optical phase shi�. 
When a rainbow �ash passes through the cells, the changes in refractive index at di�erent locations will cause 
phase walk-o� at interrogation wavelengths. Hilbert transformation and phase unwrapping are used to extract 
the spatial phase shi�. (c) Decoding the phase shi� in each pulse at each wavelength and remapping it into a 
pixel reveals the protein concentration distribution within cells. �e optical loss induced by the cells, embedded 
in the pulse intensity variations, is obtained from the amplitude of the slowly varying envelope of the spectral 
interferograms. �us, quantitative optical phase shi� and intensity loss images are captured simultaneously. 
Both images are calibrated based on the regions where the cells are absent. Cell features describing morphology, 
granularity, biomass, etc are extracted from the images. (d) �ese biophysical features are used in a machine 
learning algorithm for high-accuracy label-free classi�cation of the cells.
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In this work, the information of quantitative optical loss and phase images are fused into expert designed 
features, leading to a record label-free classi�cation accuracy when combined with deep learning. Image min-
ing techniques are applied, for the �rst time, to time stretch quantitative phase imaging to measure biophysical 
attributes including protein concentration, optical loss, and morphological features of single cells at an ultrahigh 
�ow rate and in a label-free fashion. �ese attributes di�er widely28–31 among cells and their variations re�ect 
important information of genotypes and physiological stimuli32. �e multiplexed biophysical features thus lead 
to information-rich hyper-dimensional representation of the cells for label-free classi�cation with high statistical 
precision.

We further improved the accuracy, repeatability, and the balance between sensitivity and speci�city of our 
label-free cell classi�cation by a novel machine learning pipeline, which harnesses the advantages of multivariate 
supervised learning, as well as unique training by evolutionary global optimization of receiver operating charac-
teristics (ROC). To demonstrate sensitivity, speci�city, and accuracy of multi-feature label-free �ow cytometry 
using our technique, we classi�ed (1) OT-II hybridoma T-lymphocytes and SW-480 colon cancer epithelial cells, 
and (2) Chlamydomonas reinhardtii algal cells (herein referred to as Chlamydomonas) based on their lipid con-
tent, which is related to the yield in biofuel production. Our preliminary results show that compared to classi�-
cation by individual biophysical parameters, our label-free hyperdimensional technique improves the detection 
accuracy from 77.8% to 95.5%, or in other words, reduces the classi�cation inaccuracy by about �ve times.

Results
Time Stretch Quantitative Phase Imaging. �e application of time stretch quantitative phase imaging 
(TS-QPI) to imaging �ow cytometry has been recently demonstrated in our group11. Broadband optical pulses 
from a mode-locked laser were �rstly conditioned in �ber optics and then spatially dispersed in free-space optics 
with a pair of re�ection di�raction gratings creating 1-D “rainbow �ashes” (Fig. 1). Each of the rainbow �ashes 
was composed of all the wavelength components distributed laterally over the �eld of view. �ese �ashes illumi-
nated the target as in traditional photography, but in addition, rainbow �ashes targeted di�erent spatial points 
with distinct colors of light, resulting in space-to-spectrum encoding. Rainbow pulses were then split into the two 
arms of a Michelson interferometer. Di�erent wavelength components of the rainbow �ash traveled parallel to 
each other but individually focused on the mirror in the reference arm or on the re�ective substrate of a micro-
�uidic device in the sample arm. In the sample arm, the cells in the micro�uidic channel were hydrodynamically 
focused33,34 into the rainbow’s �eld of view and �owed perpendicular to the rainbow �ash. Re�ected pulses from 
the micro�uidic device and the reference arm were recombined and coupled back into the �ber, optically ampli-
�ed and linearly chirped through Raman-ampli�ed time-stretch dispersive Fourier transform (TS-DFT) system. 
An ampli�ed time-stretch system that utilizes a low-noise distributed Raman ampli�er within dispersive �ber 
with a net optical gain of approximately 15 dB enables high-sensitivity detection at high speeds. An ultrafast 
single-pixel photodetector transformed instantaneous optical power into an electrical signal and subsequently, 
an analog-to-digital converter (ADC) samples and quantizes the signal. Acquired data are passed down to pro-
cessing stages for big data analytics. �e interference between time-shi�ed linearly chirped pulses create a beat 
(fringe) frequency, which can be adjusted via the interferometer arm length mismatch. Details of the demonstra-
tion system can be found in Methods: Time Stretch Quantitative Phase Imaging (TS-QPI) System.

�e photodetected time-stretched pulses, each representing one line scan, are converted to analytic signals 
using Hilbert transformation35 and the intensity and phase components are extracted. �e phase component is a 
fast oscillating fringe (carrier frequency), caused by the interference of the linearly chirped pulses arriving from 
the reference and sample arms in the Michelson interferometer. Acting as a radio-frequency (RF) carrier whose 
frequency is set by the user adjusted arm length mismatch, the fringe frequency is modulated when the optical 
path length in the sample arm is changed by the arrival of a cell. �is frequency shi� and the accompanying phase 
change are used to measure the optical path length of the cell (see Section Methods: Coherent Detection and 
Phase Extraction). Since the phase varies over a wide range (much larger than 2π radians), an unwrapping algo-
rithm is used to obtain the continuous phase pro�le. �e phase pro�le contains the phase shi� induced by the cell 
and an increasing term with time, corresponding to the fringe (beat) frequency. By eliminating the background 
phase component, the cell-induced phase shi� is extracted. �e second component in the waveform is a lower 
frequency envelope corresponding to temporal shape of the optical pulse. �e amplitude of this envelope pro-
vides information about optical loss caused by transparency, surface roughness, and inner organelle complexity 
(Section Methods: Cell Transmittance Extraction).

Feature Extraction. �e decomposed components of sequential line scans form pairs of spatial maps, 
namely, optical phase and loss images as shown in Fig. 2 (see Section Methods: Image Reconstruction). �ese 
images are used to obtain biophysical �ngerprints of the cells8,36. With domain expertise, raw images are fused 
and transformed into a suitable set of biophysical features, listed in Table 1, which the deep learning model fur-
ther converts into learned features for improved classi�cation.

�e feature extraction operates on optical phase and loss images simultaneously, including object detection, 
segmentation, and feature measurement, as well as clump identi�cation, noise suppression, etc. As an example 
of the expert designed features, the average refractive index, used as a measure of protein concentration37, is 
obtained by dividing the integral of the optical path length by the cell volume. Since cells in suspension relax to 
a spherical shape (due to surface tension)38,39, an independent measure of cell diameter can be obtained from its 
lateral dimension for volume estimation.

In feature extraction, one of the most important advantages of optical loss and phase fusion, is its robustness 
and insensitivity to axial defocusing40 caused by the limited depth-of-focus of the objective lens and variations of 
the cell alignment in micro�uidic channel. Di�racted photons have little chance to be in�uential in phase images. 
�is makes the size measurements in optical phase images relatively accurate and consistent, more suitable than 
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direct size measurements in optical loss images for extraction of scattering and absorption features. Among di�er-
ent features, size measurement is particularly important as it is used by itself in many technologies31,41–43.

�e large data set captured by TS-QPI provides su�cient statistical characteristics for cell analysis based on 
biophysical features. Since cells from even the same line or tissue exhibit variations in size, structure, and protein 
expression levels44–46, high accuracy classi�cation can only be achieved by a model tolerant to these intrinsic var-
iations. On the other hand, the feature extractor must re�ect the intricate and tangled characteristics caused by 
extrinsic variations, eg. drug treatment32, cell cycles, rare cell types, labeling, and transcription rate47. 

A total of 16 features are chosen among the features extracted from fusion of optical phase and loss images 
of each cell. Features that are highly correlated do not provide unique information. Pairwise correlation matrix 
among these features is shown as a heat map in Fig. 3a. Diagonal elements of the matrix are correlation of each 
feature with itself, i.e. the autocorrelation. �e subset of the features in Box 1 shows high correlation among mor-
phological features. Also, the subset features in Box 2 and 3 are correlated as they are mainly related to optical 
phase shi� and optical loss, respectively.

Feature Name Description Category

Diameter-RB
Diameter along the interrogation rainbow. It is insensitive to 
�ow rate �uctuation. For higher accuracy, it is calibrated by 
the spatial nonuniform distribution of rainbow wavelengths.

Morphology

Diameter-FL
Diameter along the �ow direction. It is sensitive to �ow rate 
�uctuation, but can be a candidate parameter for monitoring 
�ow speed and channel condition.

Morphology

Tight Area
Total number of pixels in the segmented region in the phase 
image.

Morphology

Perimeter
Total number of pixels around the boundary of each 
segmented region.

Morphology

Circularity 4π (Tight Area)/Perimeter2 Morphology

Major Axis
Considering the cell as elliptical in lateral imaging plane, 
the length of the major axis of the ellipse with a normalized 
second central moment same as the cell.

Morphology

Orientation
Angle between the �ow direction and the major axis of the 
cell elliptical shape.

Morphology

Loose Area
Total number of pixels in the expanded segmented region for 
measurement of the pixel intensities.

Morphology

Median Radius
�e median distance of any pixel in the object to the closest 
pixel outside of the object.

Morphology

OPD-1

Integrated optical path length di�erence within the entire 
segmented area (cell), calibrated by the power distribution 
within di�erent wavelength components of the incident laser 
pulses.

Optical Phase

OPD-2

Integrated optical path length di�erence within the entire 
segmented area (cell). In addition to the calibration of OPD-
1, it is calibrated by the pulse-to-pulse �uctuations within a 
1µs detection window.

Optical Phase

Refractive index

�e mean refractive index di�erence between the object 
and the surrounding liquid (bu�er solution), which is 
calculated based on OPD-2 and size measurement (see detail 
in Section Methods). Refractive index di�erence for cells is 
proportional to their protein concentration.

Optical Phase

Absorption-1

Mean absorption coe�cient within the entire segmented 
area (cell). It is calibrated by the power distribution within 
di�erent wavelength components of the incident laser pulses 
and by the pulse-to-pulse �uctuations within a 1µs detection 
window. �is parameter corresponds to an absorption-
dominant model for the cell.

Optical Loss

Absorption-2

Mean absolute absorption coe�cient within the entire 
segmented area (cell). It is calibrated by the power 
distribution within di�erent wavelength components of the 
incident laser pulses and by the pulse-to-pulse �uctuations 
within a 1µs detection window. �is parameter corresponds 
to an absorption-dominant model for the cell.

Optical Loss

Scattering-1

Mean optical loss within the entire segmented area (cell). 
It is calibrated by the power distribution within di�erent 
wavelength components of the incident laser pulses and by 
the pulse-to-pulse �uctuations within a 1 detection window. 
�is parameter corresponds to a scattering-dominant model 
for the cell.

Optical Loss

Scattering-2

Mean absolute optical loss within the entire segmented 
area (cell). It is calibrated by the power distribution within 
di�erent wavelength components of the incident laser pulses 
and by the pulse-to-pulse �uctuations within a 1µs detection 
window. �is parameter corresponds to a scattering-
dominant model for the cell.

Optical Loss

Table 1.  List of extracted features.
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As a representation of our biophysical features in classi�cation, Fig. 3b shows classi�cation accuracy based on 
each single feature arranged in descending order. �e features are color coded into three categories: morphology, 
optical phase, and optical loss, to describe the main type of information provided by each. �e �gure provides 
valuable insight into the relative importance of each category of cell features and suggests that morphological fea-
tures carry the most information about cells, but at the same time, signi�cant additional information is contained 
in optical phase and loss measurements.

Machine Learning. Neural networks are a �exible and powerful bioinspired learning model, which perform 
layers of nonlinear feature transformations, learned from the training data48–50. �e transformations morph the 
input data with weighted sums and nonlinear activation functions into feature spaces more suitable for classi�ca-
tion. Shown in Fig. 4 is a unique feedforward neural network learning model that is globally trained by the objec-
tive of improving receiver operating characteristic (ROC). �e learning algorithm introduced here maximizes 
the area under ROC curve (AUC), which is a global indicator of the classi�er performance on the entire training 
dataset51–53. �e global training of the neural network, although computationally costly, results in a classi�er more 
robust, repeatable, and insensitive to imbalance among classes. For the purpose of end-to-end supervised learn-
ing with AUC whose gradient is not well-behaved, we employed the heuristic genetic algorithm (GA), which is 
resilient to discontinuities of the cost function and being trapped in local minima during optimization.

�e network is composed of multiple hidden layers, which automatically learn representations of the data at 
di�erent levels of abstraction, and thus, is considered a form of deep learning54,55. Each layer performs a linear 
combination on its inputs from the previous layer and operates a nonlinear function on the weighted sums. �e 

output of the node j in layer +l 1, denoted by ( + )z j
l 1  is generated from inputs x1
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l 1  is the linear combination of inputs, and ω( )ji

l  are the weights of the linear combination. �e summation runs 

over N l, the total number of nodes in the layer l, and L is the total number of hidden layers. ( )x l
0 , is the bias node in layer 

l, whose value is conventionally 1. Some popular choices for the nonlinear activation function (⋅)h  include logistic 
sigmoid function ( ) = /( + (− ))a ah 1 1 exp , hyperbolic tangent function tanh(a), and commonly used in deep 
learning, recti�ed linear unit (ReLU) ( ) = ( , )a ah max 0 . In our learning model, we use ReLU, which typically speeds 
up the supervised learning process of deep neural network by inducing sparsity and preventing gradient vanishing 
problem. �e only exception is the output node, where we use the logistic sigmoid function as the activation function. 
�e deep neural networks in our experiments have 3 hidden layers with 48 ReLUs in each.

For a trained classi�er in hyperspace, receiver operating characteristics (ROC) curve describes the sensitivity 
and speci�city of a classi�er collection that includes nonlinear classi�ers scaled in the direction of their normal 
vector �eld. In a deep learning network, this is equivalent to shi�ing the weight of the bias node in the last hidden 
layer. ROC highlights the trade-o� between sensitivity and speci�city (Fig. 4), and the area under ROC (AUC) 
provides a quantitative robust measure of classi�er performance56–59. Choosing a large value for the weight of the 
bias node results in high sensitivity, but this sacri�ces the speci�city, leading to large number of false positives. As 
a way to visualize the impact of the threshold on classi�cation accuracy, a classi�er that accurately separates the 
classes will have an ROC curve that approaches the upper le� corner. Conversely, a random guess, corresponding 
to balanced accuracy of 50% in binary classi�cation will have an ROC that is a diagonal line. �e AUC parameter 

Figure 2. Quantitative optical phase and loss images of OT-II (green box) and SW-480 (red box) cells.  �e 
optical loss images of the cells are a�ected by the attenuation of multiplexed wavelength components passing 
through the cells. �e attenuation itself is governed by the absorption of the light in cells as well as the scattering 
from the surface of the cells and from the internal cell organelles. �e optical loss image is derived from the low 
frequency component of the pulse interferograms. �e optical phase image is extracted from the analytic form 
of the high frequency component of the pulse interferograms using Hilbert Transformation, followed by a phase 
unwrapping algorithm. Details of these derivations can be found in Section Methods. Also, supplementary 
Videos 1 and 2 show measurements of cell-induced optical path length di�erence by TS-QPI at four di�erent 
points along the rainbow for OT-II and SW-480, respectively.
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serves as an e�ective analysis metric for �nding the best classi�er collection and has been proven to be advanta-
geous over the mean square error for evaluating learning algorithms60.

To prevent over�tting in our deep learning model, we added a regularization term to the AUC-based cost 
function. Our regularization term is de�ned as mean square of all the network weights, excluding the weight of 
the bias nodes. �erefore, the overall cost function, ω( )cost , that is minimized by the genetic algorithm is

ω ω

ω

( ) = ( − ( )) + λ
∑ ∑ ∑ ( )

∑ ∑ ∑ ( )

= = =
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+
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where λ  is the regularization parameter, which controls the trade-o� between over�tting (variance) and under-
�tting (bias).

Demonstration in Classification of Cancerous Cells. In comparison with single-feature approaches22,31,42, 
our label-free cell classi�cation enabled by TS-QPI and multivariate analysis, o�ers considerable improvements in 
detection sensitivity and accuracy for cancer diagnosis. To demonstrate the application in circulating tumor cell 
(CTC) detection, we used OT-II hybridoma T cells as a model for normal white blood cells and SW-480 epithelial 
colon cancer cells. �e features described in Table 1 were measured by our TS-QPI system for the aforementioned 
cells. Figure 5 shows three of these features in a three-dimensional (3D) scatter plot, attributed to size, protein con-
centration, and attenuation. �e 2D projections on the three orthogonal planes are also shown. It is clear that addi-
tional dimensions improve distinguishment among di�erent cell types compared to individual features.

A 5-fold cross-validation methodology is applied on the dataset to split data points into training, validation, 
and test subsets (details in supplementary material). Figure 6a shows progress in label-free classi�cation depicted 
by balanced accuracy as the learning model evolves over GA generations. Blue curves show the classi�cation 
balanced accuracy of the test dataset using all sixteen biophysical features extracted from the TS-QPI images. To 
highlight the improvement by hyperdimensional feature space of TS-QPI, we also show the balanced accuracy 
curves based on several single features: cell diameter for morphology, integral of cell’s optical path di�erence for 
optical phase information, and cellular absorption for optical loss in near-infrared window. Although these three 
biophysical features individually perform the highest accuracy among morphology, optical phase, and optical loss 
groups respectively, as previously shown in Fig. 3b, our multivariate deep learning classi�er outperforms them. 

Figure 3. Biophysical features formed by image fusion. (a) Pairwise correlation matrix visualized as a heat 
map. �e map depicts the correlation between all major 16 features extracted from the quantitative images. 
Diagonal elements of the matrix represent correlation of each parameter with itself, i.e. the autocorrelation. �e 
subsets in box 1, box 2, and box 3 show high correlation because they are mainly related to morphological, optical 
phase, and optical loss feature categories, respectively. (b) Ranking of biophysical features based on their AUCs 
in single-feature classi�cation. Blue bars show performance of the morphological parameters, which includes 
diameter along the interrogation rainbow, diameter along the �ow direction, tight cell area, loose cell area, 
perimeter, circularity, major axis length, orientation, and median radius. As expected, morphology contains most 
information, but other biophysical features can contribute to improved performance of label-free cell classi�cation. 
Orange bars show optical phase shi� features i.e. optical path length di�erences and refractive index di�erence. 
Green bars show optical loss features representing scattering and absorption by the cell. �e best performed 
feature in these three categories are marked in red.
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In addition, receiver operating characteristic (ROC) curves for each fold are generated based on the test subsets 
(Fig. 6b), and reveal the superior sensitivity and speci�city of multivariate classi�er. Also, the small variations of 
the ROC curves among di�erent folds show the consistency of the classi�cation performance for di�erent test 
datasets. To visualize the hyperspace decision boundary, OT-II and SW-480 data points are shown in �rst and 
second principal components analysis (PCA) components (Fig. 6c).

Demonstration in Algal Lipid Content Classification. Microalgae are considered one of the most 
promising feedstock for biofuels61. �e productivity of these photosynthetic microorganisms in converting car-
bon dioxide into useful carbon-rich lipids greatly exceeds that of agricultural crops. Worldwide, research and 
demonstration programs are being carried out to develop the technology needed to expand algal lipid production 
as a major industrial process. Selecting high-yield microalgae with fast growth factors are essential in biofuel pro-
duction industry. Because algae di�er greatly in size and structure, cell size alone provides insu�cient information 
for cell classi�cation. Here we show that adding optical phase and loss data, obtained by the phase contrast time 
stretch imaging �ow cytometer, to size data enables algal cells to be distinguished on the basis of lipid content.

To test our apparatus for its ability to separate algal cells with high and low-lipid content, we exploited the 
starch-null sta6 strain of Chlamydomonas reinhardtii. This strain is deleted for sta662 (encoding the small subu-
nit of ADP-glucose-pyrophosphorylase), and when nitrogen-deprived accumulates more lipid than wild-type63–66. 
Comparison of the two strains therefore provides an ideal setup to test our ability to distinguish lipid-content phenotypes.

Figure 7a shows the 3D scatter plot showing the three principal biophysical features for the two algal popu-
lations. Here, the optical loss category of the features plays a dominant role in label-free classi�cation. In Fig. 7b, 
we show ROC curves for binary classi�cation of these populations. Blue curves show the classi�er performance 
using all 16 biophysical features extracted from the TS-QPI images. Red, green, and orange curves show the clas-
si�er decisions made using only the three major biophysical features: diameter for morphology (Diameter-RB 
in Table 1), optical path length di�erence for optical phase (OPD-1 in Table 1), and absorption for optical loss 
(Absorption-2 in Table 1). Our multivariate deep learning using TS-QPI is far more accurate than individual 
biophysical characteristics for selection of algal strains.

Discussion
To show the e�ect of the training dataset size in the performance of the learning model, the learning curves for the 
training and test datasets of the tumor cell detection are analyzed (Fig. 8a). �e test learning curve shows that as 
the number of training data points increases, the test error reduces and the model performance improves. On the 
other hand, the training error contrastingly increases for a larger number of training examples because it is more 
di�cult for the learning model to �t many training data points than a few. �e discrepancy of the training and test 
errors is the generalization error of the learning model48. Notice that beyond ≅N 850 the generalization error do 
not decrease, and the learning curves converge to their ultimate performances. In other words, ≅N 850 training 
data points are required to accomplish target achievable performance for the deep learning model used here.

Multiple machine learning techniques for multivariate label-free cell classi�cation are compared using our TS-QPI 
tumor cell detection dataset (Fig. 8b). �e mean accuracies of all learning models are beyond 85%, re�ecting the advan-
tages of simultaneous hyperdimensional biophysical features that TS-QPI provides for label-free cell classi�cation. 
Furthermore, the interquartile range of the balanced accuracy (shown with box plot) is the smallest for the regularized 
AUC-based deep learning model, which con�rms its consistency and repeatability are the best among learning methods.

Figure 4. Machine learning pipeline. Information of quantitative optical phase and loss images are fused to 
extract multivariate biophysical features of each cell, which are fed into a fully-connected neural network. 
�e neural network maps input features by a chain of weighted sum and nonlinear activation functions into 
learned feature space, convenient for classi�cation. �is deep neural network is globally trained via area under 
the curve (AUC) of the receiver operating characteristics (ROC). Each ROC curve corresponds to a set of 
weights for connections to an output node, generated by scanning the weight of the bias node. �e training 
process maximizes AUC, pushing the ROC curve toward the upper le� corner, which means improved 
sensitivity and speci�city in classi�cation.
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Conclusion
Time-stretch quantitative phase imaging (TS-QPI) is capable of capturing images of �owing cells with minimal 
motion distortion at unprecedented rates of 100,000 cells/s. TS-QPI relies on spectral multiplexing to capture 
simultaneously both phase and intensity quantitative images in a single measurement, generating a wealth of 
information of each individual cell and eliminating the need for labeling with biomarkers. Here, we summarized 
the information content of these images in a set of 16 features for each cell, and performed classi�cation in the 
hyperdimensional space composed of these features. We demonstrated application of various learning algorithms 
including deep neural networks, support vector machine, logistic regression, naive Bayes, as well as a new training 
method based on area under the ROC curve. �e results from two experimental demonstrations, one on detection 
of cancerous cells among white blood cells, and another one on identi�cation of lipid-rich algae, show that clas-
si�cation accuracy by using the TS-QPI hyperdimensional space is more than 17% better than the conventional 
size-based techniques. Our system paves the way to cellular phenotypic analysis as well as data-driven diagnostics, 
and thus, is a valuable tool for high-throughput label-free cell screening in medical, biotechnological, and research 
applications.

Methods
Time Stretch Quantitative Phase Imaging (TS-QPI) System. Broadband optical pulses from a 
mode-locked laser (center wavelength =  1565 nm, repetition rate =  36.6 MHz, pulse width ≈100 fs) are broadened 
using a highly nonlinear �ber to approximately 100 nm bandwidth with a spectral range up to 1605 nm. �ese 
broadband pulses are then linearly chirped to nanosecond pulse width by a short dispersion compensating �ber 
(DCF) of 60 ps/nm, so that an erbium doped �ber ampli�er (EDFA) can amplify them with minimal distortion. 
A coarse wavelength division multiplexer (WDM) �lters the pulses from 1581 nm to 1601 nm, where the spec-
trum is reasonably �at. �erefore, the total bandwidth of the pulses interrogating the cells in our setup is less than 
20 nm centered at 1591 nm, giving a negligible fractional bandwidth of 1.3%. �ese �ltered pulses then pass 
through an optical circulator and are coupled to free-space with a �ber collimator.

Free-space laser pulses were linearly polarized with quarter- and half-wave plates, and then spatially dispersed 
with a pair of re�ection di�raction gratings, so that each wavelength component of the collimated beam was 
positioned at a di�erent lateral point similar to a line �ash rainbow. A beam reducer shrank the rainbow beam 
6 times with a pair of 90 degree o�-axis parabolic gold-coated mirrors with re�ected focal lengths of 152.4 mm 
and 25.4 mm, respectively. Next, a 15 degree o�-axis parabolic gold-coated mirror with 635 mm re�ected focal 
length and a long working-distance objective lens with 0.4 numerical aperture further shrank the rainbow to 
about 130 in width, i.e. �eld of view. Re�ective optics with parabolic gold-coated mirrors is used in our experi-
mental demonstration to minimize loss, aberration, and polarization sensitivity. �e rainbow �ashes were then 
split into the two arms of a Michelson interferometer by a beam splitter. In the sample arm, the rainbow pulses 
pass through the cells and are re�ected by the re�ective substrate of the micro�uidic device. In the reference arm, 
a dielectric mirror re�ected the rainbow with a length mismatch with the sample arm causing spectral inter-
ference fringes (Fig. S1a). Cells are hydrodynamically focused at the center of the channel �ow at a velocity of 
1.3 m/s. �e re�ected pulses from reference and sample arms were recombined at the beam splitter, compressed 
by the two di�raction gratings and coupled back into the �ber. �ese return pulses were spectrally encoded by 

Figure 5. �ree-dimensional scatter plot based on size, protein concentration, and attenuation of OT-II 
and SW-480 cells measured by TS-QPI. �e green and blue dots are two-dimensional (2-D) projections of cell 
data points on the planes containing only two of the biophysical features. �e cell diameter along the rainbow 
(Diameter-RB) is used as a size indicator. �e cell protein concentration corresponds to the mean refractive 
index di�erence of the cell (Refractive index feature in Table 1). �e attenuation is a feature describing the 
optical intensity loss caused by cell absorption (Absorption-1 feature in Table 1). Comparison of 3-D and 2-D 
scatter plots reveals that additional biophysical features serve to classify the cell types more accurately.
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Figure 6. Classi�cation of white blood cells (OT-II) and cancer cells (SW-480) by TS-QPI label-free features.  
(a) Training process of the neural network leads to improvement of classi�cation accuracy over generations of 
genetic algorithm. In addition to multivariate analysis using all 16 biophysical features extracted from the TS-
QPI quantitative images (blue curves), we also show training process by three single features. Red, green, and 
orange curves represent the best biophysical feature in each category, respectively: morphology (Diameter-RB 
in Table 1), optical phase (OPD-1 in Table 1), and optical loss (Absorption-2 in Table 1). �e values represent 
average balanced accuracy among training datasets at the end of optimization. Clearly, the �nal achievable 
accuracy by multivariate classi�cation is considerably higher than that of single features. (b) For each case, 
we show 5 ROC curves for di�erent test datasets. �e gray diagonal line shows results of random guess 
classi�cation. Multivariate analysis based on TS-QPI images (blue curves) shows signi�cant improvement in 
classi�cation sensitivity and speci�city. �e fact that the classi�ers remain almost unchanged during the �ve 
iterations of cross validation shows consistency and robustness of the classi�ers. (c) To visualize the multivariate 
classi�cation results, data points are depicted in the space of the �rst two PCA components.

Figure 7. Classi�cation of algal cells (Chlamydomonas reinhardtii) based on their lipid content by TS-QPI. 
(a) �ree-dimensional scatter plot based on size, protein concentration, and attenuation of the cells measured 
by TS-QPI, with 2D projections for every combination of two features. Inset: Conventional label-free �ow 
cytometry using forward scattering and side scattering is not enough to distinguish the di�erence between 
high-lipid content and low-lipid content algal cells. TS-QPI is much more e�ective in separating the two algae 
populations. (b) ROC curves for binary classi�cation of normal and lipid-rich algae species using ten-fold cross 
validation; blue curves show the classi�er performance using all 16 biophysical features extracted from the TS-
QPI quantitative images. Red, green, and orange curves show the classi�er decision performance using only 
the best biophysical feature in each category: morphology (Diameter-RB in Table 1), optical phase (OPD-1 in 
Table 1), and optical loss (Absorption-2 in Table 1). �e label-free selection of algal strains improves as more 
biophysical features are employed.
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the spatial information of the interrogation �eld of view. �en they were redirected by the optical circulator to a 
Raman-ampli�ed time-stretch dispersive Fourier Transform (TS-DFT) system followed by a 10 Gb/s photodetec-
tor (Discovery Semiconductors DSC-402APD). An analog-to-digital converter (Tektronix DPO72004C) with a 
sampling rate of 50 GS/s and 20 GHz bandwidth is used to acquire the output signal of the photodetector, which 
is a series of spectral interferograms mapped into time (Fig. S1b).

Coherent Detection and Phase Extraction. Unlike conventional heterodyne detection, which uses a 
narrowband continuous-wave signal as the local oscillator or reference, the coherent detection in our time stretch 
system uses an unmodulated copy of the original optical input, which is a broadband optical pulse train67,68.

Since the spectrum is mapped into space by di�raction gratings, the complex �eld at any speci�c spatial loca-
tion within the �eld of view is a narrowband optical wave. As the envelope of the optical wave varies slowly in 
time compared to the period of the optical electromagnetic wave and the time mismatch between the reference 
arm and the sample arm, we employ slowly varying envelope approximation in our analysis. �e complex enve-
lope of the input electric �eld, ω( , )E tin p , is split into two arms of the Michelson interferometer at the beam 
splitter. Here, ω is the optical frequency of the input signal, which corresponds to the spatial location x being 
interrogated by the optical wave at this frequency (i.e. spectral encoding of the object image). tp speci�es the time 
when each rainbow �ash reaches the beam splitter, corresponding to the p-th incoming pulse. Note that ω( , )E tin p  
can be simpli�ed as ω( )Ein  when pulse shape is stable from pulse to pulse. �e light split into the two arms of the 
Michelson interferometer can be expressed as

Into the sample arm:

ω ω( , ) = ( , ) ( ) E t T E t 3s p b in p

Into the reference arm:

ω ω( , ) = − ( , ) E t i T E t1r p b in p

where T b is the power transmission ratio of the beam-splitter. Optical intensity in the sample arm will be altered 
by the absorption and scattering of imaged cells, as well as that of the micro�uidic channel and bu�er solution. 
Not only the electric �eld amplitude a�er passing through semitransparent objects will be modulated by the opti-
cal attenuation in the sample arm, but also the optical path length di�erence will lead to a phase shi�, ϕ∆ ( , )x tc p , 

induced by refractive index change caused by the object along the interrogation beam. �us, the complex �elds of 

the light waves coming back to the beam splitter become

Figure 8. Learning curves and performance of various classi�cation algorithms.  (a) �e learning curves of 
the training and test datasets in the tumor cell detection. Larger number of training data points decreases the 
cross entropy of the test dataset, which means the classi�er is performing more accurately. However, the trend is 
opposite for the training dataset because the �tting error accumulates with a larger number of training data 
points. �e discrepancy of the training and test errors, i.e. generalization error, decreases up to ≅N 850, which 
is the necessary training data size for achieving �nal performance in our TS-QPI demonstration with deep 
learning neural network. (b) Comparison of multiple machine learning classi�cation techniques based on the 
biophysical features extracted from the label-free cell images captured by TS-QPI. Our AUC-based deep 
learning model (DNN +  AUC) has both the highest accuracy and consistency against support vector machine 
(SVM) with Gaussian kernel, logistic regression (LR), naive Bayes, and conventional deep neural network 
trained by cross entropy and backpropagation (DNN).
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where L is the length of reference arm, and ∆L is the arm length mismatch between two arms. ω( )Rm  is the 
wavelength-dependent re�ectance of the re�ective substrate of the micro�uidic channel and the dielectric mirror 
in the reference arm. td is the time delay during which rainbow �ash travels from the beam splitter to the sample 
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0 . ω( )T s  is power transmittance of the surrounding bu�er solution and micro�uidic channel, and 

( , + )T x t tc p d  is spatial power transmittance of cells at location x along the rainbow when being illuminated at 
time +t tp d. Both ω( )T s  and ( , + )T x t tc p d  a�ect the optical �eld twice as each rainbow �ash passes through 

the cell twice. Since the td is much smaller than the time scale of the envelope variations caused by the cell �ow, we 
can approximate ( , + )T x t tc p d  to be ( , )T x tc p  without sacri�cing accuracy.
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Based on the spectral encoding setup, we know spatial information has been encoded into spectrum,
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During time stretch, each frequency component ω, or wavelength λ  will be one-to-one mapped into time 
domain. We de�ne the relative time delay of λ  compared to the central wavelength, λc, as ti, which is usually 
called intra-pulse time delay. Written in terms of λ , Eq. 8 can be simpli�ed as
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where (λ, )I tb p  is the background or baseband intensity envelope, and ( )λ,I ti p  is the interference or intermedi-
ate intensity envelope:

(λ, ) = − (λ) + (λ) (λ, ) (λ)

⋅ (λ)| (λ, )| ( )
I t T T T t T

R E t

{[1 ] }

10

b p b b c p s

m in p

2 2 2 2

2



www.nature.com/scientificreports/

1 2Scientific RepoRts | 6:21471 | DOI: 10.1038/srep21471

(λ, ) = − − (λ) (λ, ) (λ) (λ)

⋅ (λ)| (λ, )| ( )
I t T T t T R

T E t

2[1 ]

11

i p b c p b m

s in p
2

�e linear time stretch maps frequency domain into time domain by

= (λ − λ ) . ( )t D L 12i c f

Here λc is the central wavelength and L f  the length of the dispersive �ber. D is the group velocity dispersion, 
that is, the temporal pulse spreading, ∆ti, per unit bandwidth, per unit distance traveled. �us the temporal sam-
ples of the energy �ux absorbed at the photodetector are the intra-pulse concatenation of spectral samples fol-
lowed by inter-pulse concatenation of pulse waveforms:
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where cat  and ↓cat  mean horizontal and vertical concatenations, respectively. Each ( , )( ) ( )I t to i
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nth spectral (spatial) pixel at the mth pulse (line image). Applying Eq. 12 to Eq. 9,
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�erefore, the time stretched temporal waveform corresponding to each line scan image consists of two fea-
tures20. One is ( , )( ) ( )I t tb i

n
p
m , a temporal envelope of the time-stretched optical pulse at baseband frequencies. �e 

amplitude of this envelope corresponds to the temporal shape of the optical pulse and its deviations caused by the 
object transmission as in bright�eld microscopy. It provides information about optical loss, i.e. light absorption 
and scattering caused by surface roughness, granularity, and inner cell organelle complexity.

�e second term in Eq. 14 (with cosine component) is a fast oscillating fringe, caused by the spectral interfer-
ence of the recombined pulses from the sample and the reference arms in the Michelson interferometer. �is term 
can be separated by a bandpass �lter, and its envelope can be derived by a nonlinear envelope detection technique. 
Here we used a moving minimum/maximum �lter to extract the envelope. A�er normalization to the envelope, 
the cosine component
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is used for calculation of the object phase shi�, ϕ∆ ( , )x tc p . �e �rst term in cosine causes the interferogram 
fringe pattern. Since λt D Li c f , it can be approximated as
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As seen in Fig. S1b, the fringe frequency, f
i
, in our setup is about 4.7 GHz determined by the optical path length 

mismatch between the interferometer arms.
�e instantaneous phase of ( , )( ) ( )I t tc i

n
p
m  can be readily retrieved from its analytic representation given by 

Hilbert transform, :
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here arg means the argument of a complex number. A one-dimensional phase unwrapping algorithm followed by 
background phase removal gives the object phase shi�,

ϕ∆ = ∠ − ∠t t I t t I t t( , ) unwrap{ ( , )} unwrap{ ( , )} (19)c i
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where ( )tp
empty  corresponds to an empty pulse when no cell is in the �eld of view, i.e. background phase. �e 

unwrapping algorithm used in our processing acts when the absolute phase di�erence between two consecutive 
samples of the signal is greater than or equal to π radians, and adds multiples of 2π to the following samples in 
order to bring the consecutive sample phase di�erences in the acceptable range of − π to π.

To perform combined quantitative phase and loss imaging, the phase derived by Hilbert transformation 
should be corrected to eliminate the artifacts caused by the intensity variations induced by the passing cells. Most 
cells of interest in clinical or industrial applications have a diameter 3–40 µ m, when suspended in �uid. Given 
the �eld of view and the period of the interrogation rainbow pulses are 130 µ m and 27 ns, respectively, the time 
duration of the instantaneous intensity change induced by the single cells in each laser pulse is about 0.6–8.3 ns, 
which will generate baseband frequency components up to about 1.6 GHz. Compared to the higher frequency 
components at 4.7 GHz corresponding to the interference fringes, the frequency of intensity variations is small 
(< 1.6 GHz), and in this scenario, our method remains robust to separate the two electrical spectral components 
for optical loss and phase.

Cell Transmittance Extraction. One of the advantages of TS-QPI is its ability to extract the cell transmit-
tance, Tc(λ)without prior knowledge of the transmittance of the solution, (λ)T s , that of the beam-splitter, (λ)T b , 
and the re�ectance of substrate of the micro�uidic channel, (λ)Rm . During measurements when there is no cell in 
the �eld of view (empty frames), Eq. 11 becomes

(λ, ) = − − (λ) (λ) (λ)

⋅ (λ)| (λ, )| ( )

( )

( )

I t T T R

T E t

2[1 ]

20

i p
empty

b b m

s in p
empty 2

In addition, the signal from only the reference arm can be recorded by blocking the sample arm:

(λ, ) = − (λ) (λ) | (λ, )| ( )I t T R E t[1 ] 21r p b m in p
2 2

Combining Eqs 10, 20, and 21, and assuming that the input electric �eld pulse shape, | (λ, )|E tin p , is invariant to t p, 
the cell transmittance can be derived as

= λ =
− λ ⋅ λ − λ

λ
T T

I t I t I t

I t
(x) ( )

2 ( , ) ( ( , ) ( , ))

( , ) (22)
c c

r p b p r p

i p
empty( )

Please note that the values of (λ, )I tr p , (λ, )I tb p , and (λ, )( )I ti p
empty  are directly measured by TS-QPI, and no 

prior knowledge of (λ)T b , (λ)T s , (λ)Rm , and | (λ, )|E tin p  is needed to calculate the cell transmittance.

Image Reconstruction. We reconstruct both quantitative bright�eld and phase-contrast images simultane-
ously from single-shot frequency-multiplexed interferometric measurements. �e envelope and phase of the 
time-domain signal ( , )( ) ( )I t to i

n
p
m  was �rstly mapped into series of spatial information ( , )( ) ( )I x to

n
p
m , forming 

linescan bright-�eld and phase-contrast images, illuminated by the optical pulse at time tp. �is is because within 

each optical pulse, the spatial information is mapped one-to-one into spectral domain, → λ( )x n
n, and spectrum 

is stretched in time, λ → ( )tn i
n , where ( )ti

n  is the relative group delay time of each frequency component within a 
pulse with respect to the central wavelength. �ese line-scan images based on ( , )( )I x to p

1 , ( , )( )I x to p
2 , ( , )( )I x to p

3 , … 
were then cascaded into a two dimensional image corresponding to ( , )I x yo , where the second dimension y is the 
spatial mapping of time lapse based on object �ow speed.

�e optical path length di�erence image can be calculated by the phase shi� line scans as

π
ϕ( , ) =

λ( , )
∆ ( , )

( )
( ) ( )

( ) ( )
( ) ( )OPD x y

t t
t t

2 23
n m i

n
p
m

c i
n

p
m

On the other hand, if the axial thickness of the cell at reconstructed image pixel ( , )x y  is t x y( , ),

= − ⋅OPD x y n x y n x y t x y( , ) 2[ ( , ) ( , )] ( , ) (24)cell solution

in which ncell and nsolution are the refractive indices of the cell and the surrounding bu�er solution, respectively. �e 
factor 2 is to account for the fact that each wavelength component passes the cell twice in Michelson 
interferometer.



www.nature.com/scientificreports/

1 4Scientific RepoRts | 6:21471 | DOI: 10.1038/srep21471

If we integrate Eq. 24 over the area of the cell, we can derive an average refractive index contrast for the cell, 
which corresponds to the average protein concentration of the cell:

∆ = − =
( , )

( , ) ( )

∬

∬
n n n

OPD x y dxdy

t x y dxdy2 25
cell cell solution

cell

cell

where ( , )∬ t x y dxdy
cell

 is the volume of the cell obtained from its lateral diameter, d, as π≈ /V d 63 .

�e relative net change of intensity envelope variations induced by the cell is obtained from the amplitude of 
the baseband intensity envelope of the interferogram as

∆ (λ, ) =
(λ) (λ)( − (λ, ))

− (λ) + (λ) (λ) ( )
I t

T T T t

T T T

1

[1 ] 26
b p

b s c p

b b s

2 2 2

2 2 2

It gives the temporal and spatial information of the combined e�ects from absorption and scattering:

( , ) = ∆ (λ , ) ( )
( ) ( ) ( )I x y I t 27loss
n m

b n p
m

Big Data Analytics Pipeline. �e high-content image analysis and cell screening pipeline is implemented 
by combining multiple informatics tools, namely CellPro�ler for image processing6,68, MySQL/MangoDB for 
database, Matlab for machine learning, and Javascript for interactive visualization. First of all, image noise reduc-
tion and smoothing have been performed, which can remove artifacts that are smaller than optical resolution 
limit. For object segmentation, we use the Otsu’s thresholding method. Once objects are identi�ed in the image, 
morphology of each single cell can be described by area, diameter, uniformity, aspect ratio, perimeter, number of 
surrounding clumped cells, etc.

�e capability to identify clumped cells from single large cells greatly reduces the misclassi�cation rate in 
imaging �ow cytometry compared to traditional �ow cytometry. Intensity peaks of pixel brightness within each 
object are used to distinguish clumped objects. �e object centers are de�ned as local intensity maxima in the 
smoothed image. Retaining outlines of the identi�ed objects helps validate and visualize the algorithm. In the 
next step, we discard the objects touching the borders of the image, i.e., the edges of the �eld of view and data 
acquisition time window. However, the chance of cells showing up at the edges is very low due to hydrodynamic 
focusing. We are also capable of excluding dust, noise, and debris by neglecting the objects that are too small or 
have extreme aspect ratios.

To calibrate the imaging system and image processing pipelines for size measurement, 5 µ m polystyrene beads 
(from Polysciences, Inc.) with National Institute of Standards and Technology (NIST) traceable particle size 
standards were analyzed. Size measurement of the polystyrene beads had a distribution with 5.06 µ m expected 
mean and 0.5 µ m standard deviation. �e broadened standard deviation was within the range of optical resolu-
tion limit and was caused mainly by performing object recognition on resolution limited images. Due to limited 
optical resolution of the setup, the edges of bead or cell are blurred, generating distribution of point spread func-
tions in optical phase and loss images outside of the cell boundaries. In order to maximize the accuracy in mor-
phological, phase, and loss measurements, a�er object segmentation we expanded the object boundaries by 2.5 
µ m (optical resolution of the setup measured by knife-edge method), which serve as loose boundaries, indicating 
the area within which the pixel intensities are measured and integrated in phase and loss images.

Data Cleaning. Data cleaning includes two steps. Firstly, Hotelling’s T-squared distribution is calculated and 
the top 2% of the extreme data was set as outliers due to experimental or object recognition errors. Secondly, 
debris discrimination is performed; any data point with negative phase shi� was considered as either air bubble, 
�ow turbulence, or object recognition errors.
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