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INTRODUCTION

Machine learning (ML) is defined as a set of methods 

that automatically detect patterns in data, and then utilize 

the uncovered patterns to predict future data or enable 

decision making under uncertain conditions (1). ML is a 

subset of “artificial intelligence” (AI). In general, there 

are three approaches to AI: symbolism (rule based, such 
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as IBM Watson), connectionism (network and connection 

based, such as deep learning or artificial neural net), and 

Bayesian (based on the Bayesian theorem). The most 

representative characteristic of ML is that it is driven 

by data, and the decision process is accomplished with 

minimum interventions by a human. The program can learn 

by analyzing training data, and then make a prediction 

when new data is put in.
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Deep learning is a part of ML and a special type of 

artificial neural network (ANN) that resembles the 

multilayered human cognition system. Deep learning is 

currently gaining a lot of attention for its utilization with 

big healthcare data. Even though ANN was introduced 

in 1950, there were severe limitations in its application 

to solve real dilemmas, due to vanishing gradient and 

overfitting problems, which hindered the training in deep 

architecture, lack of computing power, and primarily the 

absence of sufficient data to train the computer system. 

However, many limitations have now been resolved, given 

the current availability of big data, enhanced computing 

power with graphics processing units (GPU), and new 

algorithms to train a deep neural network (DNN). These 

deep learning approaches have exhibited impressive 

performances in mimicking humans in various fields, 

including medical imaging. One of the typical tasks in 

radiology practice is detecting structural abnormalities and 

classifying them into disease categories. Since the 1980s, 

numerous ML algorithms with different implementations, 

mathematical bases, and logical theories have been 

executed to perform such classification tasks. Accordingly, 

several computer-aided detection (CAD) systems were 

developed and introduced in the clinical workflow in the 

early 2000s. However, adverse impacts of these systems 

have been reported in clinical studies (2, 3). In particular, 

CAD systems were found to generate more false positives 

than human readers, which led to a greater assessment time 

and additional biopsies (2). Thus, the net benefit gained by 

using CAD was unclear (3). It is expected that current deep 

learning technology may help overcome the limitations of 

previous CAD systems, achieve greater detection accuracy, 

and help make human readers more productive by allowing 

them to shift humdrum, repetitive radiology tasks to AI.

Deep learning is well suited to medical big data, and 

can be used to extract useful knowledge from it. This 

new AI technology has a potential to perform automatic 

lesion detection, suggest differential diagnoses, and 

compose preliminary radiology reports. In fact, the 

globally integrated enterprise IBM is already developing 

the radiology applications of Dr. Watson. This system 

includes all the above-mentioned functions, including 

automatic detection and quantitative feature analysis 

of the lesion in medical imaging. The rapid rise in AI 

technology requires radiologists to have knowledge about 

the technology, in order to understand the ability of AI and 

how it might change and influence radiologic practice in 

the near future. We believe that eventually, the adoption 

of these ML-based analytic tools in radiology practice will 

happen. However, we also believe that it does not mean a 

replacement of radiologists, although some specific human 

tasks will be replaced. These “replacements” will not really 

be an ultimate replacement, but an overall augmentation 

of the entire radiology practice, as it will complement 

irreplaceable and remarkable human skills. In this review, 

we introduce the history and describe the general, medical, 

and radiological applications of deep learning.

From Traditional Machine Learning Methods to 
Deep Learning

For training the algorithm, the ML learning methods 

are classified as supervised learning and unsupervised 

learning. Supervised learning generates a function that 

reproduces output by inferring from training data. For this 

method, training data is prepared with numerical or nominal 

vectors that represent the characteristics of input data 

and the corresponding output data. When the output data 

has a continuous value, the training process is generally 

referred to as regression. However, if the output data has a 

categorized value, the process is referred to as classification. 

In contrast to supervised learning, unsupervised learning 

does not involve the consideration of output data, but 

instead infers a function to describe hidden structures from 

unlabeled input data. Since the examples are unlabeled, 

there is no objective evaluation of the accuracy. Though 

unsupervised learning encompasses many other solutions 

involving summarizing and explaining key features of the 

data, unsupervised learning is similar to a cluster analysis in 

statistics, and focuses on the manner which composes the 

vector space representing the hidden structure, including 

dimensionality reduction and clustering (Fig. 1).

A naïve Bayesian model that focuses on the probability 

distribution of input data is a typical classification 

algorithm. The algorithm is relatively simple, but shows 

best performance in specific areas such as rRNA sequence 

assignment (4). The support vector machine (SVM) is the 

most popular classification algorithm, and typically exhibits 

the highest performance ranks for most classification 

problems, given its advantages of regularization and convex 

optimization (5, 6). Recently, ensemble learning, combined 

with the diverse classification algorithm for precise 

prediction, is commonly being used for more advanced 

classifications (7).



572

Lee et al.

Korean J Radiol 18(4), Jul/Aug 2017 kjronline.org

With regard to regression, the linear and logistic 

regression systems are widely used due to their simple 

architecture. The parameters of linear regression are 

estimated to ensure the best fit of the straight line in the 

data space. Logistic regression employs the logistic function 

to differentiate binomial distribution, and is usually used 

as a classifier. Support vector regression (SVR) and ANN are 

being increasingly used in recent years, and have shown 

better performances in the regression of certain problems. 

SVR is a version of SVM for regression (8), and has shown 

reliable performance in forecasting weather and financial 

data (9, 10). ANN is a popular regression and classification 

algorithm for ML, modeling the computational units of 

multiple layers by imitating signal transmission, and by 

learning the architecture of neurons and synapses in the 

human brain.

Figure 2 shows the concept of neural networks derived 

through biological inspiration. A single neuron consists 

of dendrites, axon, cell body, and synapse. The simple cell 

neuron integrates the various input signals and transmits 
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Fig. 1. Categories of machine learning, including classification, regression, clustering, and dimensionality reduction. Adapted from 

http://scikit-learn.org/stable/tutorial/machine_learning_map/ (101). GMM = Gaussian mixture model, LLE = locally-linear embedding, PCA = 

principal component analysis, SGD = stochastic gradient descent, SVC = support vector classification, SVR = support vector regression, VBGMM = 

variational Bayesian Gaussian mixture model

Fig. 2. Conceptual analogy between real neurons (A) and artificial neurons (B).
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them to other neurons (Fig. 2A). The ANN is composed of 

interconnected artificial neurons. Each artificial neuron 

implements a simple classifier model that outputs a 

decision signal based on the weighted sum of evidences 

(Fig. 2B). Hundreds of these basic computing units are 

assembled together to establish the ANN. The weights of 

the network are trained by a learning algorithm, such as 

back propagation, where pairs of input signals and desired 

output decisions are presented, mimicking the condition 

where the brain relies on external sensory stimuli to learn 

to achieve specific tasks (11).

Numerical or nominal values used as input data are 

generally referred to as features in ML. Defining meaningful 

and powerful features was an important process in previous 

ML studies. Many domain experts and data scientists 

sought to discover and generate handcrafted features after 

applying diverse evaluation approaches, including statistical 

analysis and performance tests of ML. To enhance this 

process and achieve training models with higher accuracy, 

various data cleaning and feature selection methods have 

been developed to obtain significant improvements in 

performance. After defining and selecting good handcrafted 

features, ML algorithms are applied for modeling regression, 

classification, or unsupervised analysis.

Previous studies show that ANN has remarkable 

performance in various fields, but had limitations such as 

a decrease in the local minimum during optimization, and 

over-training for given values (overfitting). Researchers 

therefore attempted to use deep architecture to determine 

solutions, but its complex operation and heavy training 

costs limited the ability to generate successful models. 

DNN consists of a series of stacked layers (Fig. 3A). The 

first layer (input) represents the observed values based 

on which a prediction is made. The last layer (output) 

produces a value or class prediction. The layers between 

the input and output layers are called hidden layers, since 

their state does not correspond to observable data (input or 

output). The tiered structure of the neural networks allows 

them to produce much more complex decisions, based on a 

combination of simpler decisions. For example, starting with 

simple localized interpretation of each part of an input, 

deeper hidden layers can model more complicated networks 

in the data, thus enabling the classification of a tumor from 

pixel to curve to shape and to feature. Each edge requires 

optimized weights for specific training samples. These 

weights used by DNNs can sum up to billions of parameters, 

and are randomly initialized and progressively configured 

by an optimization algorithm such as gradient descent, to 

find a local minimum of a function by steps proportional to 

the negative of the gradient of the function at the current 

point (12). After applying training samples to the network, 

a loss function between the prediction and the target class 

or regression value, is quantitatively evaluated. All the 

parameters are then slightly updated in the direction that 

will favor the minimization of the loss function.

Based on these neural networks, there are different 

categories of deep learning with different approaches. DNN 

extends the depth of layers as compared to traditional 

ANN, and has shown better performance in prediction and 

recognition studies, when the layers become complex (13).

Recently, ML researchers have developed technical 

solutions for implementing deeper architecture (Fig. 
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Fig. 3. Comparison between shallow learning and deep learning in neural network. 
A. Typical deep learning neural network with 3 deep layers between input and output layers. B. Typical artificial neural network with 1 layer 

between input and output layers.
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3A), as compared to the traditional ANN (Fig. 3B). Using 

the unsupervised restricted Boltzmann machine (Fig. 4) 

proposed by Hinton et al. (14), the layers of deep neural 

architecture were trained separately in an unsupervised 

manner. As a result, the limitations of DNN, such as local 

minimum optimization and overfitting, were overcome. As 

the model could learn from data with deep architecture in 

an unsupervised manner, it could generate features from 

raw data. The learning process of this DNN architecture can 

be observed from the external web based application (15).

The development of hardware technology, such as 

general-purpose computing on a GPU, has enabled 

complex operations in shorter computation time for 

training DNN. Thus, deep learning models now generate 

meaningful and powerful features after analyzing a large 

amount of uncategorized data and training the model 

for accurate prediction by using these features. This 

process is surprisingly similar to the process of obtaining 

knowledge in humans with regard to self-organization. 

These breakthroughs have led to innovative improvements 

in performances in various research fields, such as speech 

recognition, image classification, and face recognition. 

There are several currently available open source deep 

learning libraries, like Caffe (16), Microsoft Cognitive Toolkit 

(CNTK) (17), Tensorflow (18), Theano (19), and Torch (20).

Convolutional Neural Net 

The convolutional neural network (CNN), which 

consists of multiple layers of neuron-like computational 

connections with step-by-step minimal processing, has 

achieved significant improvements in the computer 

vision research area. The overall learning process of CNN 

simulates the organization of the animal visual cortex (21), 

and a successfully trained CNN can compose hierarchical 

information during pre-processing, such as an edge-shape-

component-object structure in image classification.

The architecture of CNN is composed of convolutional, 

pooling layers and fully connected layers (Fig. 5). The 

primary purpose of a convolutional layer is to detect 

distinctive local motif-like edges, lines, and other visual 

elements. The parameters of specialized filter operators, 

termed as convolutions, are learned. This mathematical 

operation describes the multiplication of local neighbors of 

a given pixel by a small array of learned parameters called 

a kernel (Fig. 6A). By learning meaningful kernels, this 

operation mimics the extraction of visual features, such as 

edges and colors, similar to that noted for the visual cortex. 
Fig. 4. Two breakthrough algorithms in deep learning, 
including unsupervised pre-training and dropout.
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This process can be performed by using filter banks. Each 

filter is a square-shaped object that travels over the given 

image. The image values on this moving grid are summed 

using the weights of the filter. The convolutional layer 

applies multiple filters and generates multiple feature maps. 

Convolutions are a key component of CNN, and are vital for 

success in image processing tasks such as segmentation and 

classification.

To capture an increasingly larger field of view, feature 

maps are progressively and spatially reduced by pooling 

the pixels together (Fig. 6B). By propagating only the 

maximum or average activation through a layer of max or 

average pooling, convolutional layers subsequently become 

less sensitive to small shifts or distortions of the target 

object in extracted feature maps. The pooling layer is used 

to effectively reduce the dimensions of feature maps, and 

remain robust to the shape and position of the detected 

semantic features within the image. In most cases, the 

max pooling in a feature map is empirically used. These 

convolutional and pooling layers are repeated several times. 

The fully connected layers are incorporated to integrate all 

the feature responses from the entire image and provide 

the final results. This CNN architecture can be further 

understood from the external resource (22).

By using deep CNN architecture to mimic the natural 

neuromorphic multi-layer network, deep learning 

can automatically and adaptively learn a hierarchical 

representation of patterns, from low- to high-level features, 

and subsequently identify the most significant features for 

a given task (Fig. 5) (23). CNN has the best performance 

for image classification of a large image repository, such as 

ImageNet (23).

Because deep CNN architecture generally involves many 

layers in the neural network, there may be millions of 

weight parameters to estimate, thus requiring a lot of 

data samples for model training and parameter tuning. In 

general, the minimum requirement of data size depends on 

application of radiologic images. For example, more than 

1000 cases per class are needed to train deep learning 

architecture from scratch in classification. However, there 

are alternate methods to get around the data size criteria. 

One is data augmentation, and the other is reuse of the pre-

trained network. By using these methods, around 100 cases 

per class could provide a reasonable outcome.

Recurrent Neural Network

Recurrent neural network (RNN) is a class of ANN 

specialized for temporal data including speech and 

handwriting, where connections between units form a 

cycle with a one way direction. This creates an internal 

state of the network which allows it to exhibit dynamic 

temporal behavior. In contrast to typical neural networks 

that have structures for a feed-forward network, RNNs can 

use the temporal memory of networks and yield significant 

performance improvements in natural language processing, 

recognition, handwriting recognition, speech recognition 

and generation tasks (24, 25).

Non-Medical Applications

Use of deep learning has rapidly evolved the field of 

object recognition in an image. Since the introduction 

of CNN during the early 2000s, this network has been 

A B

Input image

Convolution
kernel

Output pixel

Max pooling

Average pooling

Fig. 6. Illustration of convolution and pooling methods. 
A. Convolution method. B. Max and average pooling methods.
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successfully used for various applications such as traffic 

sign recognition (26), biological image segmentation (27), 

and face recognition (28). However, these successes were 

not well publicized in research and the industry, until the 

ImageNet open competition in 2012, which contained 

1.2 million training images with labels, and 150000 

exclusive photographs for validation and testing. The labels 

represented categories with 1000 distinct objects (29). 

The challenge involved the development of an efficient ML 

algorithm to classify images into 1000 object labels. This 

open competition had an enormous effect and created a 

new field, wherein researchers compete and collaborate, 

without having to collect a large-scale labeled dataset. To 

improve the results of this competition, technical advances 

such as rectified linear units, a new regularization technique 

called dropout (30), and a new image augmentation skill 

(23), were introduced. Moreover, major companies such as 

Google, Facebook, and Microsoft started to consider deep 

learning-based image recognition as an important research 

field. In fact, deep learning techniques achieved a 16% 

top-5 error rate in 2012 (31), which decreased to below 3% 

in 2016 (32), and thus surpassed human performance in an 

object classification task.

The innovations of object classification have been 

transferred to object localization (33) and semantic 

segmentation (28, 34). The CNN-based image recognition 

framework and RNN-based language model were integrated 

to establish an image captioning (35), and visual 

questioning and answering system (36).

Speech recognition is another important area wherein 

knowledge and research in linguistics, computer science, 

electrical engineering, and health care, including radiology, 

can be incorporated. Many researchers (37-40) have 

developed technologies that enable the recognition 

and translation of the spoken language into text by 

computerized devices, including smart technologies and 

robotics. In recent years, the field of speech recognition 

has made considerable progress due to advances in deep 

learning and big data. This is evident by the various papers 

published in the research field, and the currently available 

speech recognition systems of many corporations, such as 

Google, Apple, and Microsoft.

Radiologic Applications

Image Segmentation and Registration

Deep learning techniques have recently been introduced 

for medical image analysis, with promising results in 

various applications such as segmentation and registration. 

Considerable interest has been given to DNNs, particularly 

CNNs, to resolve the problems associated with medical 

imaging segmentation. These include approaches for the 

segmentation of the lungs (41), tumors and other structures 

in the brain (42, 43), biological cells and membranes (27, 

44), tibial cartilage (45), bone tissue (46), and cell mitosis 

(47). All these applications are mostly use two-dimensional 

(2D) CNN techniques, which take intensity patches as 

inputs; occasionally, spatial consistency is enforced at 

a second stage through post-processing computations, 

such as probabilistic graphical models. However, the time 

required to train patch-based methods may make the 

approach infeasible, especially especially with a large size 

and number of patches.

Recently, different CNN architectures (34, 48-50) 

have been proposed that feed through entire images; 

this obviates the need to select representative patches, 

and eliminates redundant calculations where patches 

overlap, thus facilitating scale up of such models more 

efficiently, with better image resolution. Kang and Wang 

(48) introduced the fully CNN (fCNN) for the segmentation 

of crowds in surveillance videos. However, fCNNs produce 

segmentations of lower resolution as compared to input 

images, due to the successive use of convolutional and 

pooling layers, both of which reduce the dimensionality. To 

predict segmentations of the same resolution as the input 

images, Brosch et al. (50, 51) recently proposed the use of a 

3-layer convolutional encoder network for multiple sclerosis 

lesion segmentation. The combination of convolutional 

(52) and deconvolutional (53) layers allows the network to 

produce segments that are of the same resolution as the 

input images. This fCNN architecture can also be applied 

for lesion localization and semantic segmentation. Figure 7 

shows the preliminary results of semantic segmentation of 

knee magnetic resonance (MR) images. In this fCNN based 

semantic segmentation, a highly accurate lesion probability 

map can be obtained in fully convolutional layers, even 

though it is of low resolution. This low resolution map 

interpolates to achieve the same resolution as that of the 

input MR image. The weight parameters in this interpolation 

were further optimized in the training process.

A few studies have assessed the problems associated 

with medical image registration. In recent years, promising 

results for object matching in computer vision tasks have 

been reported via ML methods (54–57). Although these 
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methods can reliably recover the object’s location and/or 

position for computer vision tasks, they are unable to meet 

the accuracy requirement of 2D/three-dimensional (3D) 

registration tasks in medical imaging, which often target 

for very high accuracy (i.e., sub-millimeter) for diagnosis 

and surgery guidance purposes. Shun Miao et al. (58) 

proposed a CNN regression approach, referred to as Pose 

Estimation via Hierarchical Learning (PEHL), to achieve 

real-time 2D/3D registration, with a large capture range and 

high accuracy. To capture large and complex deformation in 

image registration, Zhao and Jia (59) proposed a two-layer-

deep adaptive registration framework that first accurately 

classified the rotation parameter through multilayer CNNs, 

and then separately identified the scale and translation 

parameters.

Automatic Labeling and Captioning 

Many advances have also been made in the automatic 

generation of image captions, to describe contents in an 

image. Although the applications of previous studies on 

image caption generation (60-68) were limited to natural 

image caption datasets, such as Flickr8k (69), Flickr30k (70), 

or Microsoft Common Objects in Context (MS COCO) (71) in 

the medical field, continuous effort and progress has been 

ensured for the automatic recognition and localization of 

specific diseases and organs, primarily with datasets where 

the target objects are explicitly annotated (72-77).

Inspired by early research on image caption generation 

(78-80), studies have recently introduced the use of CNNs 

and RNNs (60-68) to combine recent advances in computer 

vision and machine translation, and thus automatically 

annotate chest radiographs with diseases and descriptions 

of the context of a disease (e.g., the location, severity, 

and the affected organs) (81). Thus, authors employ a 

publicly available radiology dataset of chest radiographs 

and their reports, and use its image annotations to mine 

disease names to train the CNNs. To circumvent the large 

Fig. 7. Example of semantic segmentation in knee MR image.
A. Input MR knee image. B. Feature response maps on layers with different depth in fCNN. C. Output result from fCNN. fCNN = fully convolutional 

neural network
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bias between normal vs. diseased, various regularization 

techniques are adapted to CNNs. RNNs are then trained to 

describe the context of a detected disease, based on the 

deep CNN features. 

Figure 8 shows the preliminary results of lesion detection 

on chest radiographs by using faster regional-CNN 

architecture (33). In this architecture, multiple regions 

of interest are proposed. The test results of nodule and 

consolidation cases are presented.

Computer-Aided Detection and Diagnosis 

Many different types of CAD systems have been 

recently implemented as part of picture archiving and 

communication system (PACS) solutions (82-85). This 

seamless integration of CAD into PACS increases the reader 

sensitivity, without significantly increasing image reading 

time and, thus, improving the efficiency of daily radiology 

practice.

Briefly speaking, current CAD systems consist of two 

different parts: detection and false-positivity reduction. 

Typically speaking, detection is primarily based on 

algorithms specific to the detection task, resulting in 

many candidate lesions. The latter part is commonly 

based on traditional ML to reduce the false positive 

lesions. Unfortunately, even with these complicated and 

sophisticated programs, the general performance of current 

CAD systems is not good, thus hampering their widespread 

usage in routine clinical practice. Another important 

limitation of the current CAD systems is susceptibility to 

Fig. 8. Preliminary results of lesion detection on chest radiographs, by using faster R-CNN architecture. Each result set is composed 

of 3 rows. First row shows faster R-CNN results, and ground truth lesion mask is delineated by radiologists in second row. Automatic description 

is provided in third row.

A. Faster R-SNN architecture. B. Proposed regions of interest. C. Multiple lesion detection results. R-CNN = regional-convolutional neural network
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the imaging protocols and noise. With its known flexibility 

to image noise and variation of imaging protocols, deep 

learning has a potential to improve the performance of 

current CAD to the level useful in daily practice. In contrast 

to the current CAD system, deep learning method may 

provide us a single step solution of CAD. In addition, the 

unique nature of transfer learning may accelerate the 

development of the CAD system for various diseases and 

different modalities. 

Early reports of deep learning based CAD systems for 

breast cancer (86), lung cancer (87, 88) and Alzheimer’s 

disease (AD) (89-91) show promising results regarding their 

performance in detecting and staging the diseases. Deep 

learning has been applied for the identification, detection, 

and diagnosis and risk analysis of breast cancer (86, 92, 93).

Several deep learning based studies have assessed the 

implementation of lung cancer screening CAD systems (87-

99), and show the potential for predicting lung cancer and 

classifying lung nodules (92, 94).

The early detection and diagnosis of AD is also important 

for patient treatment. Single photon emission computed 

tomography and positron emission tomography are 

commonly used by physicians for diagnosis of AD. Few 

studies have incorporated deep learning based approaches 

for AD diagnosis and in these systems, wherein the diseases 

can be assessed from multi-modal brain data due to the 

effective features generated from deep learning (89-91).

Reading Assistant and Automatic Dictation 

Speech recognition applications include voice user 

interfaces, such as voice dialing, natural language 

processing, and speech-to-text for radiologic reporting 

(which has been proven to be a natural interaction 

modality and effective technology for medical reporting), 

particularly in the field of radiology. An automatic 

radiological dictation system was previously used in the 

radiology field (37). However, at present, the DragonTM 

(Nuance Communications, Burlington, MA, USA), which 

is well-known for the development of the Siri voice 

recognizer, is used for automatic voice dictation and 

in the reading assistant system in the United States of 

America and Europe. It is particularly useful for automatic 

transcription with the devices, and without the need for 

typing of dictation content from radiologists. SpeechRiteTM 

(Capterra, Arlington, VA, USA) (95) is one of the medical 

radiologic applications based on the cloud computing 

architecture that has minimal resource requirements for 

deployment, and enables remote accessibility by users, thus 

facilitating the delivery of highly accurate drafts. Moreover, 

2AscribeTM (2Ascribe Inc., Toronto, Canada) (96) offers 

quality medical transcription for all radiology modalities via 

speech recognition. The radiologist can train the system 

and edit their own documents, or the ‘raw’ documents can 

be edited by qualified medical transcriptionists before 

being returned. In addition, a specialized microphone, the 

PowerScribe360® (Nuance Communications) for dictating 

radiology reports (97), is used for automatic radiological 

dictation in the medical field. These systems have been 

used by an increasing number of institutions and physicians 

with varying degrees of success. In Korea, the development 

of speech recognition software is more difficult, as the 

radiologists use a mixture of Korean and English for 

recording. However, several companies have succeeded in 

achieving promising initial performance with DNN and RNN.

Integration with Healthcare Big Data: Towards 
Precision Imaging 

The original concept of precision medicine involves 

the prevention and treatment strategies that consider 

individual variability (98) by assessing large sets of data, 

including patient information, medical imaging, and 

genomic sequences. The success of precision medicine is 

largely dependent on robust quantitative biomarkers. In 

general, deep learning can be used to explore and create 

quantitative biomarkers from medical big data obtained 

through internet of things, genetics and genomics, 

Fig. 9. Precision medicine based on medical big data, including 
internet of things, genetics and genomics, medicinal imaging, 
and mobile monitoring.

Internet of things

Medical big data based precision
medicine

Mobile monitoring

Medical imaging

Genetics and genomics
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medicinal imaging, and mobile monitoring sources (Fig. 

9). In particular, imaging is non-invasively and routinely 

performed for clinical practice, and can be used to compute 

quantitative imaging biomarkers. Many radiomic studies 

have correlated imaging biomarkers with the genomic 

expression or clinical outcome (99, 100). Deep learning 

techniques can be used to generate more reliable imaging 

biomarkers for precision medicine.

Limitations and Considerations in Applying 
Deep Learning Method in Radiology

Even with many promising results from early research 

studies, there are multiple issues to be resolved before 

the introduction of deep learning methods in radiological 

practice, some of which are listed as follows: 

Firstly, the high dependency on the quality and amount 

of training data, and the tendency of overfitting, should 

be considered. Considering the differences in disease 

prevalence, imaging machines, and imaging protocols in 

hospitals all across the worlds, how can we confirm that 

the developed methods are generally useful? The evaluation 

methods to test the performance of each technique 

therefore requires development.

Secondly, the black box nature of the current deep 

learning technique should be considered. Even when the 

deep learning based method shows excellent results, in 

many occasions, it is difficult or mostly impossible to 

explain the technical and logical bases of the system. Is it 

acceptable to us to use the system, in this era of ‘evidence 

based radiology’? Is there any chance for the system failure 

in rare disease condition? 

Thirdly, there could be legal and ethical issues regarding 

the use of clinical imaging data for the commercial 

development of deep learning based system, since the 

performance of the system will be highly dependent on the 

quality of the data. 

Additionally, the legal liability issues would be raised if 

we were to adopt a deep learning system in certain process 

of radiological practice, independent from the supervision of 

a radiologist. As we expect, any system cannot be perfect. 

Who or what should take the responsibility in case of an 

error and misinformation that leads to patient harm?

CONCLUSION

At present, radiologists experience an increasing number 

of complex imaging tests. This makes it difficult to finish 

reading in time and provide accurate reports. However, 

the new technology of deep learning is expected to 

help radiologists provide a more accurate diagnosis, by 

delivering quantitative analysis of suspicious lesions, and 

may also enable a shorter time for reading due to automatic 

report generation and voice recognition, both of which are 

benefits that AI can provide in the clinical workflow. 

In this review, we introduced deep learning from a 

radiology perspective. Deep learning has already shown 

superior performance than humans in some audio 

recognition and computer vision tasks. This has enabled 

the development of digital assistants such as Apple’s 

Siri, Amazon’s Echo, and Google’s Home, along with 

numerous innovations in computer vision technologies for 

autonomous driving. Technology giants such as Google, 

Facebook, Microsoft, and Baidu have begun research on 

the applications of deep learning in medical imaging. 

Although it is always difficult to predict the future, 

these technological changes make it reasonable to think 

that there might be some major changes in radiology 

practices in a few decades due to AI. However, when we 

consider the use of AI in medical imaging, we anticipate 

this technological innovation to serve as a collaborative 

medium in decreasing the burden and distraction from 

many repetitive and humdrum tasks, rather than replacing 

radiologists.

The use of deep learning and AI in radiology is currently 

in the stages of infancy. One of the most important factors 

for the development of AI and its proper clinical adoption 

in radiology would be a good mutual understanding of the 

technology, and the most appropriate form of radiology 

practice and workflow by both radiologists and computer 

scientists/engineers. With the recent technological 

innovations by ImageNet, large and fully annotated 

databases are needed for advancing AI development in 

medical imaging. This will be vital for training the deep 

learning network, and also for its evaluation. The active 

involvement of many radiologists is also essential for 

establishing a large medical imaging database. Furthermore, 

there are various other issues and technical problems to 

solve and overcome. Finally, ethical, regulatory, and legal 

issues raised in the use of patient clinical image data for 

the development of AI should be carefully considered. 

This is another important topic that needs to be discussed 

among radiologists, scientists/engineers, and law and ethics 

experts altogether.
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