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Deep Learning in Mobile and Wireless Networking:
A Survey

Chaoyun Zhang, Paul Patras, Senior Member, IEEE, and Hamed Haddadi

Abstract—The rapid uptake of mobile devices and the rising
popularity of mobile applications and services pose unprece-
dented demands on mobile and wireless networking infrastruc-
ture. Upcoming 5G systems are evolving to support exploding
mobile traffic volumes, real-time extraction of fine-grained an-
alytics, and agile management of network resources, so as to
maximize user experience. Fulfilling these tasks is challenging,
as mobile environments are increasingly complex, heterogeneous,
and evolving. One potential solution is to resort to advanced
machine learning techniques, in order to help manage the rise
in data volumes and algorithm-driven applications. The recent
success of deep learning underpins new and powerful tools that
tackle problems in this space.

In this paper we bridge the gap between deep learning
and mobile and wireless networking research, by presenting a
comprehensive survey of the crossovers between the two areas.
We first briefly introduce essential background and state-of-the-
art in deep learning techniques with potential applications to
networking. We then discuss several techniques and platforms
that facilitate the efficient deployment of deep learning onto
mobile systems. Subsequently, we provide an encyclopedic review
of mobile and wireless networking research based on deep
learning, which we categorize by different domains. Drawing
from our experience, we discuss how to tailor deep learning to
mobile environments. We complete this survey by pinpointing
current challenges and open future directions for research.

Index Terms—Deep Learning, Machine Learning, Mobile Net-
working, Wireless Networking, Mobile Big Data, 5G Systems,
Network Management.

I. INTRODUCTION

I
NTERNET connected mobile devices are penetrating every

aspect of individuals’ life, work, and entertainment. The

increasing number of smartphones and the emergence of ever-

more diverse applications trigger a surge in mobile data traffic.

Indeed, the latest industry forecasts indicate that the annual

worldwide IP traffic consumption will reach 3.3 zettabytes

(1015 MB) by 2021, with smartphone traffic exceeding PC

traffic by the same year [1]. Given the shift in user preference

towards wireless connectivity, current mobile infrastructure

faces great capacity demands. In response to this increasing de-

mand, early efforts propose to agilely provision resources [2]

and tackle mobility management distributively [3]. In the

long run, however, Internet Service Providers (ISPs) must de-

velop intelligent heterogeneous architectures and tools that can
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spawn the 5th generation of mobile systems (5G) and gradually

meet more stringent end-user application requirements [4], [5].

The growing diversity and complexity of mobile network

architectures has made monitoring and managing the multi-

tude of network elements intractable. Therefore, embedding

versatile machine intelligence into future mobile networks is

drawing unparalleled research interest [6], [7]. This trend is

reflected in machine learning (ML) based solutions to prob-

lems ranging from radio access technology (RAT) selection [8]

to malware detection [9], as well as the development of

networked systems that support machine learning practices

(e.g. [10], [11]). ML enables systematic mining of valuable

information from traffic data and automatically uncover corre-

lations that would otherwise have been too complex to extract

by human experts [12]. As the flagship of machine learning,

deep learning has achieved remarkable performance in areas

such as computer vision [13] and natural language processing

(NLP) [14]. Networking researchers are also beginning to

recognize the power and importance of deep learning, and are

exploring its potential to solve problems specific to the mobile

networking domain [15], [16].

Embedding deep learning into the 5G mobile and wireless

networks is well justified. In particular, data generated by

mobile environments are increasingly heterogeneous, as these

are usually collected from various sources, have different

formats, and exhibit complex correlations [17]. As a conse-

quence, a range of specific problems become too difficult or

impractical for traditional machine learning tools (e.g., shallow

neural networks). This is because (i) their performance does

not improve if provided with more data [18] and (ii) they

cannot handle highly dimensional state/action spaces in control

problems [19]. In contrast, big data fuels the performance

of deep learning, as it eliminates domain expertise and in-

stead employs hierarchical feature extraction. In essence this

means information can be distilled efficiently and increasingly

abstract correlations can be obtained from the data, while

reducing the pre-processing effort. Graphics Processing Unit

(GPU)-based parallel computing further enables deep learn-

ing to make inferences within milliseconds. This facilitates

network analysis and management with high accuracy and

in a timely manner, overcoming the run-time limitations of

traditional mathematical techniques (e.g. convex optimization,

game theory, meta heuristics).

Despite growing interest in deep learning in the mobile

networking domain, existing contributions are scattered across

different research areas and a comprehensive survey is lacking.

This article fills this gap between deep learning and mobile

and wireless networking, by presenting an up-to-date survey of
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research that lies at the intersection between these two fields.

Beyond reviewing the most relevant literature, we discuss

the key pros and cons of various deep learning architec-

tures, and outline deep learning model selection strategies,

in view of solving mobile networking problems. We further

investigate methods that tailor deep learning to individual

mobile networking tasks, to achieve the best performance in

complex environments. We wrap up this paper by pinpointing

future research directions and important problems that remain

unsolved and are worth pursing with deep neural networks.

Our ultimate goal is to provide a definite guide for networking

researchers and practitioners, who intend to employ deep

learning to solve problems of interest.

Survey Organization: We structure this article in a top-down

manner, as shown in Figure 1. We begin by discussing work

that gives a high-level overview of deep learning, future mobile

networks, and networking applications built using deep learn-

ing, which help define the scope and contributions of this paper

(Section II). Since deep learning techniques are relatively new

in the mobile networking community, we provide a basic deep

learning background in Section III, highlighting immediate

advantages in addressing mobile networking problems. There

exist many factors that enable implementing deep learning

for mobile networking applications (including dedicated deep

learning libraries, optimization algorithms, etc.). We discuss

these enablers in Section IV, aiming to help mobile network

researchers and engineers in choosing the right software and

hardware platforms for their deep learning deployments.

In Section V, we introduce and compare state-of-the-art

deep learning models and provide guidelines for model se-

lection toward solving networking problems. In Section VI

we review recent deep learning applications to mobile and

wireless networking, which we group by different scenarios

ranging from mobile traffic analytics to security, and emerging

applications. We then discuss how to tailor deep learning

models to mobile networking problems (Section VII) and

conclude this article with a brief discussion of open challenges,

with a view to future research directions (Section VIII).1

II. RELATED HIGH-LEVEL ARTICLES AND

THE SCOPE OF THIS SURVEY

Mobile networking and deep learning problems have been

researched mostly independently. Only recently crossovers be-

tween the two areas have emerged. Several notable works paint

a comprehensives picture of the deep learning and/or mobile

networking research landscape. We categorize these works into

(i) pure overviews of deep learning techniques, (ii) reviews

of analyses and management techniques in modern mobile

networks, and (iii) reviews of works at the intersection between

deep learning and computer networking. We summarize these

earlier efforts in Table II and in this section discuss the most

representative publications in each class.

A. Overviews of Deep Learning and its Applications

The era of big data is triggering wide interest in deep

learning across different research disciplines [28]–[31] and a

1We list the abbreviations used throughout this paper in Table I.

TABLE I: List of abbreviations in alphabetical order.

Acronym Explanation

5G 5th Generation mobile networks

A3C Asynchronous Advantage Actor-Critic

AdaNet Adaptive learning of neural Network

AE Auto-Encoder

AI Artificial Intelligence

AMP Approximate Message Passing

ANN Artificial Neural Network

ASR Automatic Speech Recognition

BSC Base Station Controller

BP Back-Propagation

CDR Call Detail Record

CNN or ConvNet Convolutional Neural Network

ConvLSTM Convolutional Long Short-Term Memory

CPU Central Processing Unit

CSI Channel State Information

CUDA Compute Unified Device Architecture

cuDNN CUDA Deep Neural Network library

D2D Device to Device communication

DAE Denoising Auto-Encoder

DBN Deep Belief Network

OFDM Orthogonal Frequency-Division Multiplexing

DPPO Distributed Proximal Policy Optimization

DQN Deep Q-Network

DRL Deep Reinforcement Learning

DT Decision Tree

ELM Extreme Learning Machine

GAN Generative Adversarial Network

GP Gaussian Process

GPS Global Positioning System

GPU Graphics Processing Unit

GRU Gate Recurrent Unit

HMM Hidden Markov Model

HTTP HyperText Transfer Protocol

IDS Intrusion Detection System

IoT Internet of Things

IoV Internet of Vehicle

ISP Internet Service Provider

LAN Local Area Network

LTE Long-Term Evolution

LSTM Long Short-Term Memory

LSVRC Large Scale Visual Recognition Challenge

MAC Media Access Control

MDP Markov Decision Process

MEC Mobile Edge Computing

ML Machine Learning

MLP Multilayer Perceptron

MIMO Multi-Input Multi-Output

MTSR Mobile Traffic Super-Resolution

NFL No Free Lunch theorem

NLP Natural Language Processing

NMT Neural Machine Translation

NPU Neural Processing Unit

PCA Principal Components Analysis

PIR Passive Infra-Red

QoE Quality of Experience

RBM Restricted Boltzmann Machine

ReLU Rectified Linear Unit

RFID Radio Frequency Identification

RNC Radio Network Controller

RNN Recurrent Neural Network

SARSA State-Action-Reward-State-Action

SELU Scaled Exponential Linear Unit

SGD Stochastic Gradient Descent

SON Self-Organising Network

SNR Signal-to-Noise Ratio

SVM Support Vector Machine

TPU Tensor Processing Unit

VAE Variational Auto-Encoder

VR Virtual Reality

WGAN Wasserstein Generative Adversarial Network

WSN Wireless Sensor Network
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Fig. 1: Diagramatic view of the organization of this survey.

growing number of surveys and tutorials are emerging (e.g.

[23], [24]). LeCun et al. give a milestone overview of deep

learning, introduce several popular models, and look ahead

at the potential of deep neural networks [20]. Schmidhuber

undertakes an encyclopedic survey of deep learning, likely

the most comprehensive thus far, covering the evolution,

methods, applications, and open research issues [21]. Liu et al.

summarize the underlying principles of several deep learning

models, and review deep learning developments in selected

applications, such as speech processing, pattern recognition,

and computer vision [22].

Arulkumaran et al. present several architectures and core

algorithms for deep reinforcement learning, including deep Q-

networks, trust region policy optimization, and asynchronous

advantage actor-critic [26]. Their survey highlights the re-

markable performance of deep neural networks in different

control problem (e.g., video gaming, Go board game play,

etc.). Similarly, deep reinforcement learning has also been

surveyed in [78], where the authors shed more light on ap-

plications. Zhang et al. survey developments in deep learning

for recommender systems [32], which have potential to play

an important role in mobile advertising. As deep learning

becomes increasingly popular, Goodfellow et al. provide a

comprehensive tutorial of deep learning in a book that covers

prerequisite knowledge, underlying principles, and popular

applications [18].

B. Surveys on Future Mobile Networks

The emerging 5G mobile networks incorporate a host of

new techniques to overcome the performance limitations of

current deployments and meet new application requirements.

Progress to date in this space has been summarized through
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TABLE II: Summary of existing surveys, magazine papers, and books related to deep learning and mobile networking. The

symbol X indicates a publication is in the scope of a domain; ✗ marks papers that do not directly cover that area, but from

which readers may retrieve some related insights. Publications related to both deep learning and mobile networks are shaded.

Publication One-sentence summary

Scope

Machine learning Mobile networking

Deep
learning

Other ML
methods

Mobile
big data

5G tech-
nology

LeCun et al. [20] A milestone overview of deep learning. X

Schmidhuber [21] A comprehensive deep learning survey. X

Liu et al. [22] A survey on deep learning and its applications. X

Deng et al. [23] An overview of deep learning methods and applications. X

Deng [24] A tutorial on deep learning. X

Goodfellow et al. [18] An essential deep learning textbook. X ✗

Pouyanfar et al. [25] A recent survey on deep learning. X X

Arulkumaran et al. [26] A survey of deep reinforcement learning. X ✗

Hussein et al. [27] A survey of imitation learning. X X

Chen et al. [28] An introduction to deep learning for big data. X ✗ ✗

Najafabadi [29] An overview of deep learning applications for big data analytics. X ✗ ✗

Hordri et al. [30] A brief of survey of deep learning for big data applications. X ✗ ✗

Gheisari et al. [31] A high-level literature review on deep learning for big data analytics. X ✗

Zhang et al. [32] A survey and outlook of deep learning for recommender systems. X ✗ ✗

Yu et al. [33] A survey on networking big data. X

Alsheikh et al. [34] A survey on machine learning in wireless sensor networks. X X

Tsai et al. [35] A survey on data mining in IoT. X X

Cheng et al. [36] An introductions mobile big data its applications. X ✗

Bkassiny et al. [37] A survey on machine learning in cognitive radios. X ✗ ✗

Andrews et al. [38] An introduction and outlook of 5G networks. X

Gupta et al. [5] A survey of 5G architecture and technologies. X

Agiwal et al. [4] A survey of 5G mobile networking techniques. X

Panwar et al. [39] A survey of 5G networks features, research progress and open issues. X

Elijah et al. [40] A survey of 5G MIMO systems. X

Buzzi et al. [41] A survey of 5G energy-efficient techniques. X

Peng et al. [42] An overview of radio access networks in 5G. ✗ X

Niu et al. [43] A survey of 5G millimeter wave communications. X

Wang et al. [2] 5G backhauling techniques and radio resource management. X

Giust et al. [3] An overview of 5G distributed mobility management. X

Foukas et al. [44] A survey and insights on network slicing in 5G. X

Taleb et al. [45] A survey on 5G edge architecture and orchestration. X

Mach and Becvar [46] A survey on MEC. X

Mao et al. [47] A survey on mobile edge computing. X X

Wang et al. [48] An architecture for personalized QoE management in 5G. X X

Han et al. [49] Insights to mobile cloud sensing, big data, and 5G. X X

Singh et al. [50] A survey on social networks over 5G. ✗ X X

Chen et al. [51] An introduction to 5G cognitive systems for healthcare. ✗ ✗ ✗ X

Chen et al. [52] Machine learning for traffic offloading in cellular network X X

Wu et al. [53] Big data toward green cellular networks X X X

Buda et al. [54] Machine learning aided use cases and scenarios in 5G. X X X

Imran et al. [55] An introductions to big data analysis for self-organizing networks (SON) in 5G. X X X

Keshavamurthy et al. [56] Machine learning perspectives on SON in 5G. X X X

Klaine et al. [57] A survey of machine learning applications in SON. ✗ X X X

Jiang et al. [7] Machine learning paradigms for 5G. ✗ X X X

Li et al. [58] Insights into intelligent 5G. ✗ X X X

Bui et al. [59] A survey of future mobile networks analysis and optimization. ✗ X X X

Atat et al. [60] A survey of big data application in cyber-physical systems. ✗ X X X

Cheng et al. [61] A tutorial of mobile big data analysis X X X

Kasnesis et al. [62] Insights into employing deep learning for mobile data analysis. X X

Alsheikh et al. [17] Applying deep learning and Apache Spark for mobile data analytics. X X

Cheng et al. [63] Survey of mobile big data analysis and outlook. X X X ✗

Wang and Jones [64] A survey of deep learning-driven network intrusion detection. X X X ✗

Kato et al. [65] Proof-of-concept deep learning for network traffic control. X X

Zorzi et al. [66] An introduction to machine learning driven network optimization. X X X

Fadlullah et al. [67] A comprehensive survey of deep learning for network traffic control. X X X ✗

Zheng et al. [6] An introduction to big data-driven 5G optimization. X X X X

Mohammadi et al. [68] A survey of deep learning in IoT data analytics. X X X
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TABLE III: Continued from Table II

Publication One-sentence summary

Scope

Machine learning Mobile networking

Deep
learning

Other ML
methods

Mobile
big data

5G tech-
nology

Ahad et al. [69] A survey of neural networks in wireless networks. X ✗ ✗ X

Mao et al. [70] A survey of deep learning for wireless networks. X X X

Luong et al. [71] A survey of deep reinforcement learning for networking. X X X

Zhou et al. [72] A survey of ML and cognitive wireless communications. X X X X

Chen et al. [73] A tutorial on neural networks for wireless networks. X X X X

Gharaibeh et al. [74] A survey of smart cities. X X X X

Lane et al. [75] An overview and introduction of deep learning-driven mobile sensing. X X X

Ota et al. [76] A survey of deep learning for mobile multimedia. X X X

Mishra et al. [77] A survey machine learning driven intrusion detection. X X X X

Our work A comprehensive survey of deep learning for mobile and wireless network. X X X X

surveys, tutorials, and magazine papers (e.g. [4], [5], [38],

[39], [47]). Andrews et al. highlight the differences between

5G and prior mobile network architectures, conduct a com-

prehensive review of 5G techniques, and discuss research

challenges facing future developments [38]. Agiwal et al.

review new architectures for 5G networks, survey emerging

wireless technologies, and point out research problems that

remain unsolved [4]. Gupta et al. also review existing work

on 5G cellular network architectures, subsequently proposing

a framework that incorporates networking ingredients such as

Device-to-Device (D2D) communication, small cells, cloud

computing, and the IoT [5].

Intelligent mobile networking is becoming a popular re-

search area and related work has been reviewed in the literature

(e.g. [7], [34], [37], [54], [56]–[59]). Jiang et al. discuss

the potential of applying machine learning to 5G network

applications including massive MIMO and smart grids [7].

This work further identifies several research gaps between ML

and 5G that remain unexplored. Li et al. discuss opportunities

and challenges of incorporating artificial intelligence (AI) into

future network architectures and highlight the significance of

AI in the 5G era [58]. Klaine et al. present several successful

ML practices in Self-Organizing Networks (SONs), discuss

the pros and cons of different algorithms, and identify future

research directions in this area [57]. Potential exists to apply

AI and exploit big data for energy efficiency purposes [53].

Chen et al. survey traffic offloading approaches in wireless

networks, and propose a novel reinforcement learning based

solution [52]. This opens a new research direction toward em-

bedding machine learning towards greening cellular networks.

C. Deep Learning Driven Networking Applications

A growing number of papers survey recent works that

bring deep learning into the computer networking domain.

Alsheikh et al. identify benefits and challenges of using big

data for mobile analytics and propose a Spark based deep

learning framework for this purpose [17]. Wang and Jones

discuss evaluation criteria, data streaming and deep learning

practices for network intrusion detection, pointing out research

challenges inherent to such applications [64]. Zheng et al.

put forward a big data-driven mobile network optimization

framework in 5G networks, to enhance QoE performance [6].

More recently, Fadlullah et al. deliver a survey on the progress

of deep learning in a board range of areas, highlighting its

potential application to network traffic control systems [67].

Their work also highlights several unsolved research issues

worthy of future study.

Ahad et al. introduce techniques, applications, and guide-

lines on applying neural networks to wireless networking

problems [69]. Despite several limitations of neural networks

identified, this article focuses largely on old neural networks

models, ignoring recent progress in deep learning and suc-

cessful applications in current mobile networks. Lane et al.

investigate the suitability and benefits of employing deep

learning in mobile sensing, and emphasize on the potential

for accurate inference on mobile devices [75]. Ota et al.

report novel deep learning applications in mobile multimedia.

Their survey covers state-of-the-art deep learning practices in

mobile health and wellbeing, mobile security, mobile ambi-

ent intelligence, language translation, and speech recognition.

Mohammadi et al. survey recent deep learning techniques for

Internet of Things (IoT) data analytics [68]. They overview

comprehensively existing efforts that incorporate deep learning

into the IoT domain and shed light on current research

challenges and future directions. Mao et al. focus on deep

learning in wireless networking [70]. Their work surveys state-

of-the-art deep learning applications in wireless networks, and

discusses research challenges to be solved in the future.

D. Our Scope

The objective of this survey is to provide a comprehensive

view on state-of-the-art deep learning practices in the mobile

networking area. By this we aim to answer the following key

questions:

1) Why is deep learning promising for solving mobile

networking problems?

2) What are the cutting-edge deep learning models relevant

to mobile and wireless networking?

3) What are the most recent successful deep learning appli-

cations in the mobile networking domain?

4) How can researchers tailor deep learning to specific

mobile networking problems?

5) Which are the most important and promising directions

worthy of further study?
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The research papers and books we mentioned previously

only partially answer these questions. This article goes beyond

these previous works and specifically focuses on the crossovers

between deep learning and mobile networking. We cover a

range of neural network (NN) structures that are increasingly

important and have not been explicitly discussed in earlier

tutorials, e.g., [79]. This includes auto-encoders and Genera-

tive Adversarial Networks. Unlike such existing tutorials, we

also review open-source libraries for deploying and training

neural networks, a range of optimization algorithms, and the

parallelization of neural networks models and training across

large numbers of mobile devices. We also review applications

not looked at in other related surveys, including traffic/user

analytics, security and privacy, mobile health, etc.

While our main scope remains the mobile networking

domain, for completeness we also discuss deep learning appli-

cations to wireless networks, and identify emerging application

domains intimately connected to these areas. We differentiate

between mobile networking, which refers to scenarios where

devices are portable, battery powered, potentially wearable,

and routinely connected to cellular infrastructure, and wireless

networking, where devices are mostly fixed, and part of a

distributed infrastructure (including WLANs and WSNs), and

serve a single application. Overall, our paper distinguishes

itself from earlier surveys from the following perspectives:

(i) We particularly focus on deep learning applications for

mobile network analysis and management, instead of

broadly discussing deep learning methods (as, e.g., in

[20], [21]) or centering on a single application domain,

e.g. mobile big data analysis with a specific platform [17].

(ii) We discuss cutting-edge deep learning techniques from

the perspective of mobile networks (e.g., [80], [81]),

focusing on their applicability to this area, whilst giving

less attention to conventional deep learning models that

may be out-of-date.

(iii) We analyze similarities between existing non-networking

problems and those specific to mobile networks; based

on this analysis we provide insights into both best deep

learning architecture selection strategies and adaptation

approaches, so as to exploit the characteristics of mobile

networks for analysis and management tasks.

To the best of our knowledge, this is the first time

that mobile network analysis and management are jointly

reviewed from a deep learning angle. We also provide for

the first time insights into how to tailor deep learning to

mobile networking problems.

III. DEEP LEARNING 101

We begin with a brief introduction to deep learning, high-

lighting the basic principles behind computation techniques in

this field, as well as key advantages that lead to their success.

Deep learning is essentially a sub-branch of ML, which

essentially enables an algorithm to make predictions, classifi-

cations, or decisions based on data, without being explicitly

programmed. Classic examples include linear regression, the

k-nearest neighbors classifier, and Q-learning. In contrast to

traditional ML tools that rely heavily on features defined

by domain experts, deep learning algorithms hierarchically

extract knowledge from raw data through multiple layers of

nonlinear processing units, in order to make predictions or

take actions according to some target objective. The most

well-known deep learning models are neural networks (NNs),

but only NNs that have a sufficient number of hidden layers

(usually more than one) can be regarded as ‘deep’ models.

Besides deep NNs, other architectures have multiple layers,

such as deep Gaussian processes [82], neural processes [83],

and deep random forests [84], and can also be regarded as

deep learning structures. The major benefit of deep learning

over traditional ML is thus the automatic feature extraction,

by which expensive hand-crafted feature engineering can be

circumvented. We illustrate the relation between deep learning,

machine learning, and artificial intelligence (AI) at a high level

in Fig. 2.

In general, AI is a computation paradigm that endows

machines with intelligence, aiming to teach them how to work,

react, and learn like humans. Many techniques fall under this

broad umbrella, including machine learning, expert systems,

and evolutionary algorithms. Among these, machine learning

enables the artificial processes to absorb knowledge from data

and make decisions without being explicitly programmed.

Machine learning algorithms are typically categorized into

supervised, unsupervised, and reinforcement learning. Deep

learning is a family of machine learning techniques that mimic

biological nervous systems and perform representation learn-

ing through multi-layer transformations, extending across all

three learning paradigms mentioned before. As deep learning

has growing number of applications in mobile an wireless

networking, the crossovers between these domains make the

scope of this manuscript.

AI

Machine Learning

Supervised learning

Unsupervised learning

Reinforcement learningDeep Learning

Examples:

MLP, CNN, 

RNN

Applications in mobile & 

wireless networks

(our scope)

Examples: Examples:

Rule engines
Expert systems

Evolutionary algorithms

Fig. 2: Venn diagram of the relation between deep learning,

machine learning, and AI. This survey particularly focuses on

deep learning applications in mobile and wireless networks.

A. The Evolution of Deep Learning

The discipline traces its origins 75 years back, when

threshold logic was employed to produce a computational

model for neural networks [85]. However, it was only in

the late 1980s that neural networks (NNs) gained interest, as

Rumelhart et al. showed that multi-layer NNs could be trained
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effectively by back-propagating errors [86]. LeCun and Bengio

subsequently proposed the now popular Convolutional Neural

Network (CNN) architecture [87], but progress stalled due to

computing power limitations of systems available at that time.

Following the recent success of GPUs, CNNs have been em-

ployed to dramatically reduce the error rate in the Large Scale

Visual Recognition Challenge (LSVRC) [88]. This has drawn

unprecedented interest in deep learning and breakthroughs

continue to appear in a wide range of computer science areas.

B. Fundamental Principles of Deep Learning

The key aim of deep neural networks is to approximate com-

plex functions through a composition of simple and predefined

operations of units (or neurons). Such an objective function

can be almost of any type, such as a mapping between images

and their class labels (classification), computing future stock

prices based on historical values (regression), or even deciding

the next optimal chess move given the current status on the

board (control). The operations performed are usually defined

by a weighted combination of a specific group of hidden units

with a non-linear activation function, depending on the struc-

ture of the model. Such operations along with the output units

are named “layers”. The neural network architecture resembles

the perception process in a brain, where a specific set of units

are activated given the current environment, influencing the

output of the neural network model.

C. Forward and Backward Propagation

In mathematical terms, the architecture of deep neural

networks is usually differentiable, therefore the weights (or

parameters) of the model can be learned by minimizing

a loss function using gradient descent methods through

back-propagation, following the fundamental chain rule [86].

We illustrate the principles of the learning and inference

processes of a deep neural network in Fig. 3, where we use a

two-dimensional (2D) Convolutional Neural Network (CNN)

as an example.

Inputs x
Outputs y

Hidden 

Layer 1

Hidden 

Layer 2

Hidden 

Layer 3

Forward Passing (Inference)

Backward Passing (Learning)

Units

Fig. 3: Illustration of the learning and inference processes

of a 4-layer CNN. w(·) denote weights of each hidden layer,

σ(·) is an activation function, λ refers to the learning rate,

∗(·) denotes the convolution operation and L(w) is the loss

function to be optimized.

Forward propagation: The figure shows a CNN with 5 layers,

i.e., an input layer (grey), 3 hidden layers (blue) and an output

layer (orange). In forward propagation, A 2D input x (e.g

images) is first processed by a convolutional layer, which

perform the following convolutional operation:

h1 = σ(w1 ∗ x). (1)

Here h1 is the output of the first hidden layer, w1 is the

convolutional filter and σ(·) is the activation function,

aiming at improving the non-linearity and representability

of the model. The output h1 is subsequently provided as

input to and processed by the following two convolutional

layers, which eventually produces a final output y. This

could be for instance vector of probabilities for different

possible patterns (shapes) discovered in the (image) input.

To train the CNN appropriately, one uses a loss function

L(w) to measure the distance between the output y and the

ground truth y∗. The purpose of training is to find the best

weights w, so as to minimize the loss function L(w). This can

be achieved by the back propagation through gradient descent.

Backward propagation: During backward propagation, one

computes the gradient of the loss function L(w) over the

weight of the last hidden layer, and updates the weight by

computing:

w4 = w4 − λ
dL(w)

dw4

. (2)

Here λ denotes the learning rate, which controls the step

size of moving in the direction indicated by the gradient. The

same operation is performed for each weight, following the

chain rule. The process is repeated and eventually the gradient

descent will lead to a set w that minimizes the L(w).
For other NN structures, the training and inference processes

are similar. To help less expert readers we detail the principles

and computational details of various deep learning techniques

in Sec.V.

TABLE IV: Summary of the benefits of applying deep learning

to solve problems in mobile and wireless networks.

Key aspect Description Benefits

Feature
extraction

Deep neural networks can
automatically extract
high-level features
through layers of
different depths.

Reduce expensive
hand-crafted feature

engineering in processing
heterogeneous and noisy

mobile big data.

Big data
exploitation

Unlike traditional ML
tools, the performance of

deep learning usually
grow significantly with

the size of training data.

Efficiently utilize huge
amounts of mobile data
generated at high rates.

Unsuper-
vised

learning

Deep learning is effective
in processing un-/semi-
labeled data, enabling
unsupervised learning.

Handling large amounts
of unlabeled data, which
are common in mobile

system.

Multi-task
learning

Features learned by
neural networks through

hidden layers can be
applied to different tasks

by transfer learning.

Reduce computational
and memory requirements

when performing
multi-task learning in

mobile systems.

Geometric
mobile data

learning

Dedicated deep learning
architectures exist to

model geometric mobile
data

Revolutionize geometric
mobile data analysis
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D. Advantages of Deep Learning in Mobile and Wireless

Networking

We recognize several benefits of employing deep learning

to address network engineering problems, as summarized in

Table IV. Specifically:

1) It is widely acknowledged that, while vital to the perfor-

mance of traditional ML algorithms, feature engineering

is costly [89]. A key advantage of deep learning is that

it can automatically extract high-level features from data

that has complex structure and inner correlations. The

learning process does not need to be designed by a

human, which tremendously simplifies prior feature hand-

crafting [20]. The importance of this is amplified in the

context of mobile networks, as mobile data is usually gen-

erated by heterogeneous sources, is often noisy, and ex-

hibits non-trivial spatial/temporal patterns [17], whose la-

beling would otherwise require outstanding human effort.

2) Secondly, deep learning is capable of handling large

amounts of data. Mobile networks generate high volumes

of different types of data at fast pace. Training traditional

ML algorithms (e.g., Support Vector Machine (SVM) [90]

and Gaussian Process (GP) [91]) sometimes requires to

store all the data in memory, which is computationally

infeasible under big data scenarios. Furthermore, the

performance of ML does not grow significantly with

large volumes of data and plateaus relatively fast [18]. In

contrast, Stochastic Gradient Descent (SGD) employed to

train NNs only requires sub-sets of data at each training

step, which guarantees deep learning’s scalability with

big data. Deep neural networks further benefit as training

with big data prevents model over-fitting.

3) Traditional supervised learning is only effective when

sufficient labeled data is available. However, most cur-

rent mobile systems generate unlabeled or semi-labeled

data [17]. Deep learning provides a variety of methods

that allow exploiting unlabeled data to learn useful pat-

terns in an unsupervised manner, e.g., Restricted Boltz-

mann Machine (RBM) [92], Generative Adversarial Net-

work (GAN) [93]. Applications include clustering [94],

data distributions approximation [93], un/semi-supervised

learning [95], [96], and one/zero shot learning [97], [98],

among others.

4) Compressive representations learned by deep neural net-

works can be shared across different tasks, while this

is limited or difficult to achieve in other ML paradigms

(e.g., linear regression, random forest, etc.). Therefore, a

single model can be trained to fulfill multiple objectives,

without requiring complete model retraining for different

tasks. We argue that this is essential for mobile network

engineering, as it reduces computational and memory

requirements of mobile systems when performing multi-

task learning applications [99].

5) Deep learning is effective in handing geometric mobile

data [100], while this is a conundrum for other ML

approaches. Geometric data refers to multivariate data

represented by coordinates, topology, metrics and order

[101]. Mobile data, such as mobile user location and

network connectivity can be naturally represented by

point clouds and graphs, which have important geometric

properties. These data can be effectively modelled by

dedicated deep learning architectures, such as PointNet++

[102] and Graph CNN [103]. Employing these architec-

tures has great potential to revolutionize the geometric

mobile data analysis [104].

E. Limitations of Deep Learning in Mobile and Wireless

Networking

Although deep learning has unique advantages when ad-

dressing mobile network problems, it also has several short-

comings, which partially restricts its applicability in this

domain. Specifically,

1) In general, deep learning (including deep reinforcement

learning) is vulnerable to adversarial examples [105],

[106]. These refer to artifact inputs that are intention-

ally designed by an attacker to fool machine learning

models into making mistakes [105]. While it is difficult

to distinguish such samples from genuine ones, they can

trigger mis-adjustments of a model with high likelihood.

We illustrate an example of such an adversarial attack in

Fig. 4. Deep learning, especially CNNs are vulnerable to

these types of attacks. This may also affect the applica-

bility of deep learning in mobile systems. For instance,

hackers may exploit this vulnerability and construct cyber

attacks that subvert deep learning based detectors [107].

Constructing deep models that are robust to adversarial

examples is imperative, but remains challenging.

+ =

Result: 

 Castle  (87.19%)
Dedicated Noise Result: 

 Panda  (99.19%)

Raw image Adversarial example

Fig. 4: An example of an adversarial attack on deep learning.

2) Deep learning algorithms are largely black boxes and

have low interpretability. Their major breakthroughs are

in terms of accuracy, as they significantly improve per-

formance of many tasks in different areas. However,

although deep learning enables creating “machines” that

have high accuracy in specific tasks, we still have limited

knowledge as of why NNs make certain decisions. This

limits the applicability of deep learning, e.g. in network

economics. Therefore, businesses would rather continue

to employ statistical methods that have high interpretabil-

ity, whilst sacrificing on accuracy. Researchers have rec-

ognized this problem and investing continuous efforts to

address this limitation of deep learning (e.g. [108]–[110]).

3) Deep learning is heavily reliant on data, which sometimes

can be more important than the model itself. Deep models

can further benefit from training data augmentation [111].

This is indeed an opportunity for mobile networking, as

networks generates tremendous amounts of data. How-

ever, data collection may be costly, and face privacy
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concern, therefore it may be difficult to obtain sufficient

information for model training. In such scenarios, the

benefits of employing deep learning may be outweigth

by the costs.

4) Deep learning can be computationally demanding. Ad-

vanced parallel computing (e.g. GPUs, high-performance

chips) fostered the development and popularity of deep

learning, yet deep learning also heavily relies on these.

Deep NNs usually require complex structures to obtain

satisfactory accuracy performance. However, when de-

ploying NNs on embedded and mobile devices, energy

and capability constraints have to be considered. Very

deep NNs may not be suitable for such scenario and

this would inevitably compromise accuracy. Solutions are

being developed to mitigate this problem and we will dive

deeper into these in Sec. IV and VII.

5) Deep neural networks usually have many hyper-

parameters and finding their optimal configuration can

be difficult. For a single convolutional layer, we need to

configure at least hyper-parameters for the number, shape,

stride, and dilation of filters, as well as for the residual

connections. The number of such hyper-parameters grows

exponentially with the depth of the model and can highly

influence its performance. Finding a good set of hyper-

parameters can be similar to looking for a needle in a

haystack. The AutoML platform2 provides a first solution

to this problem, by employing progressive neural archi-

tecture search [112]. This task, however, remains costly.

To circumvent some of the aforementioned problems and

allow for effective deployment in mobile networks, deep

learning requires certain system and software support. We

review and discuss such enablers in the next section.

IV. ENABLING DEEP LEARNING IN MOBILE NETWORKING

5G systems seek to provide high throughput and ultra-low

latency communication services, to improve users’ QoE [4].

Implementing deep learning to build intelligence into 5G

systems, so as to meet these objectives is expensive. This is

because powerful hardware and software is required to support

training and inference in complex settings. Fortunately, several

tools are emerging, which make deep learning in mobile

networks tangible; namely, (i) advanced parallel computing,

(ii) distributed machine learning systems, (iii) dedicated deep

learning libraries, (iv) fast optimization algorithms, and (v) fog

computing. These tools can be seen as forming a hierarchical

structure, as illustrated in Fig. 5; synergies between them exist

that makes networking problem amenable to deep learning

based solutions. By employing these tools, once the training

is completed, inferences can be made within millisecond

timescales, as already reported by a number of papers for

a range of tasks (e.g., [113]–[115] ). We summarize these

advances in Table V and review them in what follows.

2AutoML – training high-quality custom machine learning models with
minimum effort and machine learning expertise. https://cloud.google.com/
automl/

Distributed Machine Learning Systems
(e.g., Gaia, TUX2)

Dedicated Deep 
Learning Libraries
(e.g., Tensorflow, 
Pytorch, Caffe2)

Fog Computing
(Software)

(e.g., Core ML, 
DeepSense)

Fast Optimization Algorithms
(e.g., SGD, RMSprop, Adam)

Advanced Parallel 
Computing

(e.g., GPU, TPU)

Fog Computing
(Hardware)

(e.g., nn-X, Kirin 970)

Fig. 5: Hierarchical view of deep learning enablers. Parallel

computing and hardware in fog computing lay foundations for

deep learning. Distributed machine learning systems can build

upon them, to support large-scale deployment of deep learning.

Deep learning libraries run at the software level, to enable

fast deep learning implementation. Higher-level optimizers are

used to train the NN, to fulfill specific objectives.

A. Advanced Parallel Computing

Compared to traditional machine learning models, deep

neural networks have significantly larger parameters spaces,

intermediate outputs, and number of gradient values. Each of

these need to be updated during every training step, requiring

powerful computation resources. The training and inference

processes involve huge amounts of matrix multiplications and

other operations, though they could be massively parallelized.

Traditional Central Processing Units (CPUs) have a limited

number of cores, thus they only support restricted computing

parallelism. Employing CPUs for deep learning implementa-

tions is highly inefficient and will not satisfy the low-latency

requirements of mobile systems.

Engineers address these issues by exploiting the power of

GPUs. GPUs were originally designed for high performance

video games and graphical rendering, but new techniques

such as Compute Unified Device Architecture (CUDA) [117]

and the CUDA Deep Neural Network library (cuDNN) [118]

developed by NVIDIA add flexibility to this type of hardware,

allowing users to customize their usage for specific purposes.

GPUs usually incorporate thousand of cores and perform ex-

ceptionally in fast matrix multiplications required for training

neural networks. This provides higher memory bandwidth

over CPUs and dramatically speeds up the learning process.

Recent advanced Tensor Processing Units (TPUs) developed

by Google even demonstrate 15-30× higher processing speeds

and 30-80× higher performance-per-watt, as compared to

CPUs and GPUs [116].

Diffractive neural networks (D2NNs) that completely rely

on light communication were recently introduced in [133],
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TABLE V: Summary of tools and techniques that enable deploying deep learning in mobile systems.

Technique Examples Scope Functionality
Performance

improvement

Energy con-

sumption

Economic

cost

Advanced
parallel

computing

GPU, TPU [116],
CUDA [117],
cuDNN [118]

Mobile servers,
workstations

Enable fast, parallel
training/inference of deep
learning models in mobile

applications

High High
Medium

(hardware)

Dedicated deep
learning library

TensorFlow [119],
Theano [120],
Caffe [121],
Torch [122]

Mobile servers
and devices

High-level toolboxes that
enable network engineers to
build purpose-specific deep

learning architectures

Medium
Associated

with
hardware

Low
(software)

Fog computing

nn-X [123], ncnn
[124], Kirin 970

[125],
Core ML [126]

Mobile devices
Support edge-based deep

learning computing
Medium Low

Medium
(hardware)

Fast optimization
algorithms

Nesterov [127],
Adagrad [128], RM-
Sprop, Adam [129]

Training deep
architectures

Accelerate and stabilize the
model optimization process

Medium
Associated

with
hardware

Low
(software)

Distributed
machine learning

systems

MLbase [130],
Gaia [10], Tux2 [11],

Adam [131],
GeePS [132]

Distributed data
centers,

cross-server

Support deep learning
frameworks in mobile

systems across data centers
High High

High
(hardware)

to enable zero-consumption and zero-delay deep learning.

The D2NN is composed of several transmissive layers, where

points on these layers act as neurons in a NN. The structure

is trained to optimize the transmission/reflection coefficients,

which are equivalent to weights in a NN. Once trained,

transmissive layers will be materialized via 3D printing and

they can subsequently be used for inference.

There are also a number of toolboxes that can assist the

computational optimization of deep learning on the server side.

Spring and Shrivastava introduce a hashing based technique

that substantially reduces computation requirements of deep

network implementations [134]. Mirhoseini et al. employ a

reinforcement learning scheme to enable machines to learn

the optimal operation placement over mixture hardware for

deep neural networks. Their solution achieves up to 20%

faster computation speed than human experts’ designs of such

placements [135].

Importantly, these systems are easy to deploy, therefore

mobile network engineers do not need to rebuild mobile

servers from scratch to support deep learning computing. This

makes implementing deep learning in mobile systems feasible

and accelerates the processing of mobile data streams.

B. Distributed Machine Learning Systems

Mobile data is collected from heterogeneous sources (e.g.,

mobile devices, network probes, etc.), and stored in multiple

distributed data centers. With the increase of data volumes, it

is impractical to move all mobile data to a central data center

to run deep learning applications [10]. Running network-wide

deep learning algorithms would therefore require distributed

machine learning systems that support different interfaces

(e.g., operating systems, programming language, libraries), so

as to enable training and evaluation of deep models across

geographically distributed servers simultaneously, with high

efficiency and low overhead.

Deploying deep learning in a distributed fashion will

inevitably introduce several system-level problems, which

require satisfying the following properties:

Consistency – Guaranteeing that model parameters and com-

putational processes are consistent across all machines.

Fault tolerance – Effectively dealing with equipment break-

downs in large-scale distributed machine learning systems.

Communication – Optimizing communication between nodes

in a cluster and to avoid congestion.

Storage – Designing efficient storage mechanisms tailored

to different environments (e.g., distributed clusters, single

machines, GPUs), given I/O and data processing diversity.

Resource management – Assigning workloads and ensuring

that nodes work well-coordinated.

Programming model – Designing programming interfaces to

support multiple programming languages.

There exist several distributed machine learning systems

that facilitate deep learning in mobile networking applications.

Kraska et al. introduce a distributed system named MLbase,

which enables to intelligently specify, select, optimize, and

parallelize ML algorithms [130]. Their system helps non-

experts deploy a wide range of ML methods, allowing opti-

mization and running ML applications across different servers.

Hsieh et al. develop a geography-distributed ML system called

Gaia, which breaks the throughput bottleneck by employing

an advanced communication mechanism over Wide Area Net-

works, while preserving the accuracy of ML algorithms [10].

Their proposal supports versatile ML interfaces (e.g. Tensor-

Flow, Caffe), without requiring significant changes to the ML

algorithm itself. This system enables deployments of complex

deep learning applications over large-scale mobile networks.

Xing et al. develop a large-scale machine learning platform

to support big data applications [136]. Their architecture

achieves efficient model and data parallelization, enabling

parameter state synchronization with low communication cost.

Xiao et al. propose a distributed graph engine for ML named

TUX2, to support data layout optimization across machines

and reduce cross-machine communication [11]. They demon-

strate remarkable performance in terms of runtime and con-

vergence on a large dataset with up to 64 billion edges.

Chilimbi et al. build a distributed, efficient, and scalable



IEEE COMMUNICATIONS SURVEYS & TUTORIALS 11

TABLE VI: Summary and comparison of mainstream deep learning libraries.

Library
Low-Layer

Language

Available

Interface
Pros Cons

Mobile

Sup-

ported

Popu-

larity

Upper-Level

Library

Tensor-
Flow

C++ Python, Java,
C, C++, Go

• Large user community
• Well-written document
• Complete functionality
• Provides visualization
tool (TensorBoard)
• Multiple interfaces support
• Allows distributed training
and model serving

• Difficult to debug
• The package is heavy
• Higher entry barrier
for beginners

Yes High Keras, TensorLayer,
Luminoth

Theano Python Python
• Flexible
• Good running speed

• Difficult to learn
• Long compilation time
• No longer maintained

No Low
Keras, Blocks,

Lasagne

Caffe(2) C++
Python,
Matlab

• Fast runtime
• Multiple platform
s support

• Small user base
• Modest documentation

Yes Medium None

(Py)Torch Lua, C++
Lua,

Python, C,
C++

• Easy to build models
• Flexible
• Well documented
• Easy to debug
• Rich pretrained models
available
• Declarative data parallelism

• Has limited resource
• Lacks model serving
• Lacks visualization tools

Yes High None

MXNET C++
C++,

Python,
Matlab, R

• Lightweight
• Memory-efficient
• Fast training
• Simple model serving
• Highly scalable

• Small user base
• Difficult to learn

Yes Low Gluon

system named “Adam"3 tailored to the training of deep mod-

els [131]. Their architecture demonstrates impressive perfor-

mance in terms of throughput, delay, and fault tolerance. An-

other dedicated distributed deep learning system called GeePS

is developed by Cui et al. [132]. Their framework allows data

parallelization on distributed GPUs, and demonstrates higher

training throughput and faster convergence rate. More recently,

Moritz et al. designed a dedicated distributed framework

named Ray to underpin reinforcement learning applications

[137]. Their framework is supported by an dynamic task ex-

ecution engine, which incorporates the actor and task-parallel

abstractions. They further introduce a bottom-up distributed

scheduling strategy and a dedicated state storage scheme, to

improve scalability and fault tolerance.

C. Dedicated Deep Learning Libraries

Building a deep learning model from scratch can prove

complicated to engineers, as this requires definitions of

forwarding behaviors and gradient propagation operations

at each layer, in addition to CUDA coding for GPU

parallelization. With the growing popularity of deep learning,

several dedicated libraries simplify this process. Most of these

toolboxes work with multiple programming languages, and

are built with GPU acceleration and automatic differentiation

support. This eliminates the need of hand-crafted definition

of gradient propagation. We summarize these libraries below,

and give a comparison among them in Table VI.

TensorFlow4 is a machine learning library developed by

Google [119]. It enables deploying computation graphs on

3Note that this is distinct from the Adam optimizer discussed in Sec. IV-D
4TensorFlow, https://www.tensorflow.org/

CPUs, GPUs, and even mobile devices [138], allowing ML

implementation on both single and distributed architectures.

This permits fast implementation of deep NNs on both

cloud and fog services. Although originally designed for

ML and deep neural networks applications, TensorFlow

is also suitable for other data-driven research purposes. It

provides TensorBoard,5 a sophisticated visualization tool, to

help users understand model structures and data flows, and

perform debugging. Detailed documentation and tutorials for

Python exist, while other programming languages such as

C, Java, and Go are also supported. currently it is the most

popular deep learning library. Building upon TensorFlow,

several dedicated deep learning toolboxes were released

to provide higher-level programming interfaces, including

Keras6, Luminoth 7 and TensorLayer [139].

Theano is a Python library that allows to efficiently define,

optimize, and evaluate numerical computations involving

multi-dimensional data [120]. It provides both GPU and

CPU modes, which enables users to tailor their programs to

individual machines. Learning Theano is however difficult

and building a NNs with it involves substantial compiling

time. Though Theano has a large user base and a support

community, and at some stage was one of the most popular

deep learning tools, its popularity is decreasing rapidly, as

core ideas and attributes are absorbed by TensorFlow.

Caffe(2) is a dedicated deep learning framework developed

5TensorBoard – A visualization tool for TensorFlow, https:
//www.tensorflow.org/guide/summariesandtensorboard.

6Keras deep learning library, https://github.com/fchollet/keras
7Luminoth deep learning library for computer vision, https://github.com/

tryolabs/luminoth
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by Berkeley AI Research [121] and the latest version,

Caffe2,8 was recently released by Facebook. Inheriting all

the advantages of the old version, Caffe2 has become a

very flexible framework that enables users to build their

models efficiently. It also allows to train neural networks

on multiple GPUs within distributed systems, and supports

deep learning implementations on mobile operating systems,

such as iOS and Android. Therefore, it has the potential

to play an important role in the future mobile edge computing.

(Py)Torch is a scientific computing framework with wide

support for machine learning models and algorithms [122].

It was originally developed in the Lua language, but

developers later released an improved Python version [140].

In essence PyTorch is a lightweight toolbox that can run

on embedded systems such as smart phones, but lacks

comprehensive documentations. Since building NNs in

PyTorch is straightforward, the popularity of this library is

growing rapidly. It also offers rich pretrained models and

modules that are easy to reuse and combine. PyTorch is now

officially maintained by Facebook and mainly employed for

research purposes.

MXNET is a flexible and scalable deep learning library that

provides interfaces for multiple languages (e.g., C++, Python,

Matlab, R, etc.) [141]. It supports different levels of machine

learning models, from logistic regression to GANs. MXNET

provides fast numerical computation for both single machine

and distributed ecosystems. It wraps workflows commonly

used in deep learning into high-level functions, such that

standard neural networks can be easily constructed without

substantial coding effort. However, learning how to work with

this toolbox in short time frame is difficult, hence the number

of users who prefer this library is relatively small. MXNET is

the official deep learning framework in Amazon.

Although less popular, there are other excellent deep learn-

ing libraries, such as CNTK,9 Deeplearning4j,10 Blocks,11

Gluon,12 and Lasagne,13 which can also be employed in

mobile systems. Selecting among these varies according to

specific applications. For AI beginners who intend to employ

deep learning for the networking domain, PyTorch is a good

candidate, as it is easy to build neural networks in this

environment and the library is well optimized for GPUs. On

the other hand, if for people who pursue advanced operations

and large-scale implementation, Tensorflow might be a better

choice, as it is well-established, under good maintainance and

has standed the test of many Google industrial projects.

D. Fast Optimization Algorithms

The objective functions to be optimized in deep learning

are usually complex, as they involve sums of extremely large

8Caffe2, https://caffe2.ai/
9MS Cognitive Toolkit, https://www.microsoft.com/en-us/cognitive-toolkit/
10Deeplearning4j, http://deeplearning4j.org
11Blocks, A Theano framework for building and training neural networks

https://github.com/mila-udem/blocks
12Gluon, A deep learning library https://gluon.mxnet.io/
13Lasagne, https://github.com/Lasagne

numbers of data-wise likelihood functions. As the depth of

the model increases, such functions usually exhibit high non-

convexity with multiple local minima, critical points, and

saddle points. In this case, conventional Stochastic Gradi-

ent Descent (SGD) algorithms [142] are slow in terms of

convergence, which will restrict their applicability to latency

constrained mobile systems. To overcome this problem and

stabilize the optimization process, many algorithms evolve the

traditional SGD, allowing NN models to be trained faster for

mobile applications. We summarize the key principles behind

these optimizers and make a comparison between them in

Table VII. We delve into the details of their operation next.

Fixed Learning Rate SGD Algorithms: Suskever et al.

introduce a variant of the SGD optimizer with Nesterov’s

momentum, which evaluates gradients after the current ve-

locity is applied [127]. Their method demonstrates faster

convergence rate when optimizing convex functions. Another

approach is Adagrad, which performs adaptive learning to

model parameters according to their update frequency. This is

suitable for handling sparse data and significantly outperforms

SGD in terms of robustness [128]. Adadelta improves the

traditional Adagrad algorithm, enabling it to converge faster,

and does not rely on a global learning rate [143]. RMSprop is

a popular SGD based method introduced by G. Hinton. RM-

Sprop divides the learning rate by an exponential smoothing

the average of gradients and does not require one to set the

learning rate for each training step [142].

Adaptive Learning Rate SGD Algorithms: Kingma and

Ba propose an adaptive learning rate optimizer named Adam,

which incorporates momentum by the first-order moment of

the gradient [129]. This algorithm is fast in terms of conver-

gence, highly robust to model structures, and is considered as

the first choice if one cannot decide what algorithm to use.

By incorporating the momentum into Adam, Nadam applies

stronger constraints to the gradients, which enables faster

convergence [144].

Other Optimizers: Andrychowicz et al. suggest that the

optimization process can be even learned dynamically [145].

They pose the gradient descent as a trainable learning problem,

which demonstrates good generalization ability in neural net-

work training. Wen et al. propose a training algorithm tailored

to distributed systems [148]. They quantize float gradient val-

ues to {-1, 0 and +1} in the training processing, which theoret-

ically require 20 times less gradient communications between

nodes. The authors prove that such gradient approximation

mechanism allows the objective function to converge to optima

with probability 1, where in their experiments only a 2%

accuracy loss is observed on average on GoogleLeNet [146]

training. Zhou et al. employ a differential private mechanism

to compare training and validation gradients, to reuse samples

and keep them fresh [147]. This can dramatically reduce

overfitting during training.

E. Fog Computing

The fog computing paradigm presents a new opportunity to

implement deep learning in mobile systems. Fog computing

refers to a set of techniques that permit deploying applications
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TABLE VII: Summary and comparison of different optimization algorithms.

Optimization algorithm Core idea Pros Cons

SGD [142]
Computes the gradient of

mini-batches iteratively and
updates the parameters

• Easy to implement

• Setting a global learning rate required
• Algorithm may get stuck on saddle
points or local minima
• Slow in terms of convergence
• Unstable

Nesterov’s momentum [127]

Introduces momentum to
maintain the last gradient

direction for the next
update

• Stable
• Faster learning
• Can escape local minima

• Setting a learning rate needed

Adagrad [128]
Applies different learning

rates to different
parameters

• Learning rate tailored to each
parameter
• Handle sparse gradients well

• Still requires setting a global
learning rate
• Gradients sensitive to the regularizer
• Learning rate becomes very slow in
the late stages

Adadelta [143]
Improves Adagrad, by

applying a self-adaptive
learning rate

• Does not rely on a global learning rate
• Faster speed of convergence
• Fewer hyper-parameters to adjust

• May get stuck in a local minima at
late training

RMSprop [142]
Employs root mean square

as a constraint of the
learning rate

• Learning rate tailored to each
parameter
• Learning rate do not decrease
dramatically at late training
• Works well in RNN training

• Still requires a global learning rate
• Not good at handling sparse gradients

Adam [129]

Employs a momentum
mechanism to store an
exponentially decaying

average of past gradients

• Learning rate stailored to each
parameter
• Good at handling sparse gradients and
non-stationary problems
• Memory-efficient
• Fast convergence

• It may turn unstable during training

Nadam [144]
Incorporates Nesterov

accelerated gradients into
Adam

• Works well in RNN training —

Learn to optimize [145]
Casts the optimization
problem as a learning
problem using a RNN

• Does not require to design the
learning by hand

• Require an additional RNN for
learning in the optimizer

Quantized training [146]
Quantizes the gradients

into {-1, 0, 1} for training
• Good for distributed training
• Memory-efficient

• Loses training accuracy

Stable gradient descent [147]

Employs a differential
private mechanism to
compare training and

validation gradients, to
reuse samples and keep

them fresh.

• More stable
• Less overfitting
• Converges faster than SGD

• Only validated on convex functions

or data storage at the edge of networks [149], e.g., on

individual mobile devices. This reduces the communications

overhead, offloads data traffic, reduces user-side latency, and

lightens the sever-side computational burdens [150], [151]. A

formal definition of fog computing is given in [152], where

this is interpreted as ’a huge number of heterogeneous (wire-

less and sometimes autonomous) ubiquitous and decentralized

devices [that] communicate and potentially cooperate among

them and with the network to perform storage and processing

tasks without the intervention of third parties.’ To be more

concrete, it can refer to smart phones, wearables devices and

vehicles which store, analyze and exchange data, to offload

the burden from cloud and perform more delay-sensitive tasks

[153], [154]. Since fog computing involves deployment at the

edge, participating devices usually have limited computing

resource and battery power. Therefore, special hardware and

software are required for deep learning implementation, as we

explain next.

Hardware: There exist several efforts that attempt to shift

deep learning computing from the cloud side to mobile

devices [155]. For example, Gokhale et al. develop a mo-

bile coprocessor named neural network neXt (nn-X), which

accelerates the deep neural networks execution in mobile

devices, while retaining low energy consumption [123]. Bang

et al. introduce a low-power and programmable deep learning

processor to deploy mobile intelligence on edge devices [156].

Their hardware only consumes 288 µW but achieves 374

GOPS/W efficiency. A Neurosynaptic Chip called TrueNorth

is proposed by IBM [157]. Their solution seeks to support

computationally intensive applications on embedded battery-

powered mobile devices. Qualcomm introduces a Snapdragon

neural processing engine to enable deep learning computa-

tional optimization tailored to mobile devices.14 Their hard-

ware allows developers to execute neural network models on

Snapdragon 820 boards to serve a variety of applications.

14Qualcomm Helps Make Your Mobile Devices Smarter With
New Snapdragon Machine Learning Software Development Kit:
https://www.qualcomm.com/news/releases/2016/05/02/qualcomm-helps-
make-your-mobile-devices-smarter-new-snapdragon-machine
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TABLE VIII: Comparison of mobile deep learning platform.

Platform Developer Mobile hardware supported Speed Code size Mobile compatibility Open-sourced

TensorFlow Google CPU Slow Medium Medium Yes

Caffe Facebook CPU Slow Large Medium Yes

ncnn Tencent CPU Medium Small Good Yes

CoreML Apple CPU/GPU Fast Small Only iOS 11+ supported No

DeepSense Yao et al. CPU Medium Unknown Medium No

In close collaboration with Google, Movidius15 develops an

embedded neural network computing framework that allows

user-customized deep learning deployments at the edge of mo-

bile networks. Their products can achieve satisfying runtime

efficiency, while operating with ultra-low power requirements.

It further supports difference frameworks, such as TensorFlow

and Caffe, providing users with flexibility in choosing among

toolkits. More recently, Huawei officially announced the Kirin

970 as a mobile AI computing system on chip.16 Their in-

novative framework incorporates dedicated Neural Processing

Units (NPUs), which dramatically accelerates neural network

computing, enabling classification of 2,000 images per second

on mobile devices.

Software: Beyond these hardware advances, there are also

software platforms that seek to optimize deep learning on mo-

bile devices (e.g., [158]). We compare and summarize all these

platforms in Table VIII.17 In addition to the mobile version of

TensorFlow and Caffe, Tencent released a lightweight, high-

performance neural network inference framework tailored to

mobile platforms, which relies on CPU computing.18 This

toolbox performs better than all known CPU-based open

source frameworks in terms of inference speed. Apple has

developed “Core ML", a private ML framework to facilitate

mobile deep learning implementation on iOS 11.19 This lowers

the entry barrier for developers wishing to deploy ML models

on Apple equipment. Yao et al. develop a deep learning

framework called DeepSense dedicated to mobile sensing

related data processing, which provides a general machine

learning toolbox that accommodates a wide range of edge

applications. It has moderate energy consumption and low

latency, thus being amenable to deployment on smartphones.

The techniques and toolboxes mentioned above make the

deployment of deep learning practices in mobile network

applications feasible. In what follows, we briefly introduce

several representative deep learning architectures and discuss

their applicability to mobile networking problems.

V. DEEP LEARNING: STATE-OF-THE-ART

Revisiting Fig. 2, machine learning methods can be natu-

rally categorized into three classes, namely supervised learn-

ing, unsupervised learning, and reinforcement learning. Deep

15Movidius, an Intel company, provides cutting edge solutions for deploying
deep learning and computer vision algorithms on ultra-low power devices.
https://www.movidius.com/

16Huawei announces the Kirin 970 – new flagship SoC with AI capabilities
http://www.androidauthority.com/huawei-announces-kirin-970-797788/

17Adapted from https://mp.weixin.qq.com/s/3gTp1kqkiGwdq5olrpOvKw
18ncnn is a high-performance neural network inference framework opti-

mized for the mobile platform, https://github.com/Tencent/ncnn
19Core ML: Integrate machine learning models into your app, https:

//developer.apple.com/documentation/coreml

learning architectures have achieved remarkable performance

in all these areas. In this section, we introduce the key prin-

ciples underpinning several deep learning models and discuss

their largely unexplored potential to solve mobile networking

problems. Technical details of classical models are provided to

readers who seek to obtain a deeper understanding of neural

networks. The more experienced can continue reading with

Sec. VI. We illustrate and summarize the most salient archi-

tectures that we present in Fig. 6 and Table IX, respectively.

A. Multilayer Perceptron

The Multilayer Perceptrons (MLPs) is the initial Artificial

Neural Network (ANN) design, which consists of at least three

layers of operations [175]. Units in each layer are densely

connected, hence require to configure a substantial number of

weights. We show an MLP with two hidden layers in Fig.

6(a). Note that usually only MLPs containing more than one

hidden layer are regarded as deep learning structures.

Given an input vector x, a standard MLP layer performs the

following operation:

y = σ(W · x + b). (3)

Here y denotes the output of the layer, W are the weights

and b the biases. σ(·) is an activation function, which aims

at improving the non-linearity of the model. Commonly used

activation function are the sigmoid,

sigmoid(x) =
1

1 + e−x
,

the Rectified Linear Unit (ReLU) [176],

ReLU(x) = max(x, 0),

tanh,

tanh(x) =
ex − e−x

ex
+ e−x

,

and the Scaled Exponential Linear Units (SELUs) [177],

SELU(x) = λ

{

x, if x > 0;

αex − α, if x ≤ 0,

where the parameters λ = 1.0507 and α = 1.6733 are

frequently used. In addition, the softmax function is typically

employed in the last layer when performing classification:

softmax(xi) =
exi

∑k
j=0 exk

,

where k is the number of labels involved in classification.

Until recently, sigmoid and tanh have been the activation

functions most widely used. However, they suffer from a

known gradient vanishing problem, which hinders gradient
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(a) Structure of an MLP with 2 hidden layers (blue circles).
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(b) Graphical model and training process of an RBM. v and h denote
visible and hidden variables, respectively.
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(c) Operating principle of an auto-encoder, which seeks to reconstruct
the input from the hidden layer.
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(d) Operating principle of a convolutional layer.
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(e) Recurrent layer – x1:t is the input sequence, indexed by time t, st
denotes the state vector and ht the hidden outputs.
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(f) The inner structure of an LSTM layer.
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(g) Underlying principle of a generative adversarial network (GAN).
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(h) Typical deep reinforcement learning architecture. The agent is a
neural network model that approximates the required function.

Fig. 6: Typical structure and operation principles of MLP, RBM, AE, CNN, RNN, LSTM, GAN, and DRL.
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TABLE IX: Summary of different deep learning architectures. GAN and DRL are shaded, since they are built upon other models.

Model
Learning

scenarios

Example

architectures

Suitable

problems
Pros Cons

Potential

applications in

mobile networks

MLP
Supervised,

unsupervised,
reinforcement

ANN,
AdaNet [159]

Modeling data
with simple
correlations

Naive structure and
straightforward to

build

High complexity,
modest performance

and slow
convergence

Modeling
multi-attribute mobile

data; auxiliary or
component of other
deep architectures

RBM Unsupervised
DBN [160],

Convolutional
DBN [161]

Extracting robust
representations

Can generate virtual
samples

Difficult to train well

Learning
representations from

unlabeled mobile
data; model weight

initialization;
network flow

prediction

AE Unsupervised
DAE [162],
VAE [163]

Learning sparse
and compact

representations

Powerful and
effective

unsupervised learning

Expensive to pretrain
with big data

model weight
initialization; mobile

data dimension
reduction; mobile
anomaly detection

CNN
Supervised,

unsupervised,
reinforcement

AlexNet [88],
ResNet [164],

3D-ConvNet [165],
GoogLeNet [146],

DenseNet [166]

Spatial data
modeling

Weight sharing;
affine invariance

High computational
cost; challenging to

find optimal
hyper-parameters;

requires deep
structures for
complex tasks

Spatial mobile data
analysis

RNN
Supervised,

unsupervised,
reinforcement

LSTM [167],
Attention based

RNN [168],
ConvLSTM [169]

Sequential data
modeling

Expertise in
capturing temporal

dependencies

High model
complexity; gradient

vanishing and
exploding problems

Individual traffic flow
analysis; network-

wide (spatio-)
temporal data

modeling

GAN Unsupervised
WGAN [81],

LS-GAN [170],
BigGAN [171]

Data generation
Can produce lifelike

artifacts from a target
distribution

Training process is
unstable

(convergence
difficult)

Virtual mobile data
generation; assisting
supervised learning

tasks in network data
analysis

DRL Reinforcement

DQN [19],
Deep Policy

Gradient [172],
A3C [80],

Rainbow [173],
DPPO [174]

Control problems
with high-

dimensional
inputs

Ideal for
high-dimensional

environment
modeling

Slow in terms of
convergence

Mobile network
control and

management.

propagation through layers. Therefore these functions are

increasingly more often replaced by ReLU or SELU. SELU

enables to normalize the output of each layer, which dramati-

cally accelerates the training convergence, and can be viewed

as a replacement of Batch Normalization [178].

The MLP can be employed for supervised, unsupervised,

and even reinforcement learning purposes. Although this struc-

ture was the most popular neural network in the past, its

popularity is decreasing because it entails high complexity

(fully-connected structure), modest performance, and low con-

vergence efficiency. MLPs are mostly used as a baseline or

integrated into more complex architectures (e.g., the final

layer in CNNs used for classification). Building an MLP is

straightforward, and it can be employed, e.g., to assist with

feature extraction in models built for specific objectives in

mobile network applications. The advanced Adaptive learning

of neural Network (AdaNet) enables MLPs to dynamically

train their structures to adapt to the input [159]. This new

architecture can be potentially explored for analyzing contin-

uously changing mobile environments.

B. Boltzmann Machine

Restricted Boltzmann Machines (RBMs) [92] were orig-

inally designed for unsupervised learning purposes. They

are essentially a type of energy-based undirected graphical

models, and include a visible layer and a hidden layer, and

where each unit can only assume binary values (i.e., 0 and 1).

The probabilities of these values are given by:

P(hj = 1|v) =
1

1 + e−W·v+bj

P(vj = 1|h) =
1

1 + e−WT ·h+aj

,

where h, v are the hidden and visible units respectively, and

W are weights and a, b are biases. The visible units are

conditional independent to the hidden units, and vice versa. A

typical structure of an RBM is shown in Fig. 6(b). In general,

input data are assigned to visible units v. Hidden units h are

invisible and they fully connect to all v through weights W ,

which is similar to a standard feed forward neural network.

However, unlike in MLPs where only the input vector can

affect the hidden units, with RBMs the state of v can affect

the state of h, and vice versa.
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RBMs can be effectively trained using the contrastive

divergence algorithm [179] through multiple steps of Gibbs

sampling [180]. We illustrate the structure and the training

process of an RBM in Fig. 6(b). RBM-based models are

usually employed to initialize the weights of a neural network

in more recent applications. The pre-trained model can be

subsequently fine-tuned for supervised learning purposes using

a standard back-propagation algorithm. A stack of RBMs is

called a Deep Belief Network (DBN) [160], which performs

layer-wise training and achieves superior performance as com-

pared to MLPs in many applications, including time series

forecasting [181], ratio matching [182], and speech recognition

[183]. Such structures can be even extended to a convolutional

architecture, to learn hierarchical spatial representations [161].

C. Auto-Encoders

Auto-Encoders (AEs) are also designed for unsupervised

learning and attempt to copy inputs to outputs. The underlying

principle of an AE is shown in Fig. 6(c). AEs are frequently

used to learn compact representation of data for dimension

reduction [184]. Extended versions can be further employed to

initialize the weights of a deep architecture, e.g., the Denoising

Auto-Encoder (DAE) [162]), and generate virtual examples

from a target data distribution, e.g. Variational Auto-Encoders

(VAEs) [163].

A VAE typically comprises two neural networks – an

encoder and a decoder. The input of the encoder is a data

point x (e.g., images) and its functionality is to encode this

input into a latent representation space z. Let fΘ(z|x) be an

encoder parameterized by Θ and z is sampled from a Gaussian

distribution, the objective of the encoder is to output the mean

and variance of the Gaussian distribution. Similarly, denoting

gΩ(x|z) the decoder parameterized by Ω, this accepts the latent

representation z as input, and outputs the parameter of the

distribution of x. The objective of the VAE is to minimize

the reconstruction error of the data and the Kullback-Leibler

(KL) divergence between p(z) and fΘ(z|x). Once trained, the

VAE can generate new data point samples by (i) drawing

latent variables zi ∼ p(z) and (ii) drawing a new data point

xi ∼ p(x|z).

AEs can be employed to address network security prob-

lems, as several research papers confirm their effectiveness

in detecting anomalies under different circumstances [185]–

[187], which we will further discuss in subsection VI-H. The

structures of RBMs and AEs are based upon MLPs, CNNs or

RNNs. Their goals are similar, while their learning processes

are different. Both can be exploited to extract patterns from un-

labeled mobile data, which may be subsequently employed for

various supervised learning tasks, e.g., routing [188], mobile

activity recognition [189], [190], periocular verification [191]

and base station user number prediction [192].

D. Convolutional Neural Network

Instead of employing full connections between layers, Con-

volutional Neural Networks (CNNs or ConvNets) employ a

set of locally connected kernels (filters) to capture correla-

tions between different data regions. Mathematically, for each

location py of the output y, the standard convolution performs

the following operation:

y(py) =
∑

pG ∈G

w(pG) · x(py + pG), (4)

where pG denotes all positions in the receptive field G of the

convolutional filter W , effectively representing the receptive

range of each neuron to inputs in a convolutional layer. Here

the weights W are shared across different locations of the

input map. We illustrate the operation of one 2D convolutional

layer in Fig. 6(d). Specifically, the inputs of a 2D CNN layer

are multiple 2D matrices with different channels (e.g. the

RGB representation of images). A convolutional layer employs

multiple filters shared across different locations, to “scan” the

inputs and produce output maps. In general, if the inputs and

outputs have M and N filters respectively, the convolutional

layer will require M × N filters to perform the convolution

operation.

CNNs improve traditional MLPs by leveraging three im-

portant ideas, namely, (i) sparse interactions, (ii) parameter

sharing, and (iii) equivariant representations [18]. This reduces

the number of model parameters significantly and maintains

the affine invariance (i.e., recognition results are robust to

the affine transformation of objects). Specifically, The sparse

interactions imply that the weight kernel has smaller size than

the input. It performs moving filtering to produce outputs

(with roughly the same size as the inputs) for the current

layer. Parameter sharing refers to employing the same kernel

to scan the whole input map. This significantly reduces the

number of parameters needed, which mitigates the risk of over-

fitting. Equivariant representations indicate that convolution

operations are invariant in terms of translation, scale, and

shape. This is particularly useful for image processing, since

essential features may show up at different locations in the

image, with various affine patterns.

Owing to the properties mentioned above, CNNs achieve

remarkable performance in imaging applications. Krizhevsky

et al. [88] exploit a CNN to classify images on the Ima-

geNet dataset [193]. Their method reduces the top-5 error

by 39.7% and revolutionizes the imaging classification field.

GoogLeNet [146] and ResNet [164] significantly increase the

depth of CNN structures, and propose inception and residual

learning techniques to address problems such as over-fitting

and gradient vanishing introduced by “depth”. Their structure

is further improved by the Dense Convolutional Network

(DenseNet) [166], which reuses feature maps from each layer,

thereby achieving significant accuracy improvements over

other CNN based models, while requiring fewer layers. CNNs

have also been extended to video applications. Ji et al. propose

3D convolutional neural networks for video activity recog-

nition [165], demonstrating superior accuracy as compared

to 2D CNN. More recent research focuses on learning the

shape of convolutional kernels [194]–[196]. These dynamic

architectures allow to automatically focus on important regions

in input maps. Such properties are particularly important in

analyzing large-scale mobile environments exhibiting cluster-

ing behaviors (e.g., surge of mobile traffic associated with a

popular event).
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Given the high similarity between image and spatial mobile

data (e.g., mobile traffic snapshots, users’ mobility, etc.),

CNN-based models have huge potential for network-wide

mobile data analysis. This is a promising future direction that

we further discuss in Sec. VIII.

E. Recurrent Neural Network

Recurrent Neural Networks (RNNs) are designed for mod-

eling sequential data, where sequential correlations exist be-

tween samples. At each time step, they produce output via

recurrent connections between hidden units [18], as shown in

Fig. 6(e). Given a sequence of inputs x = {x1, x2, · · · , xT }, a

standard RNN performs the following operations:

st = σs(Wx xt +Wsst−1 + bs)

ht = σh(Whst + bh),

where st represents the state of the network at time t and

it constructs a memory unit for the network. Its values are

computed by a function of the input xt and previous state

st−1. ht is the output of the network at time t. In natural

language processing applications, this usually represents a

language vector and becomes the input at t + 1 after being

processed by an embedding layer. The weights Wx,Wh and

biases bs, bh are shared across different temporal locations.

This reduces the model complexity and the degree of over-

fitting.

The RNN is trained via a Backpropagation Through Time

(BPTT) algorithm. However, gradient vanishing and exploding

problems are frequently reported in traditional RNNs, which

make them particularly hard to train [197]. The Long Short-

Term Memory (LSTM) mitigates these issues by introducing

a set of “gates” [167], which has been proven successful

in many applications (e.g., speech recognition [198], text

categorization [199], and wearable activity recognition [114]).

A standard LSTM performs the following operations:

it = σ(WxiXt +WhiHt−1 + bi),

ft = σ(Wx f Xt +Wh f Ht−1 + b f ),

Ct = ft ⊙ Ct−1 + it ⊙ tanh(WxcXt +WhcHt−1 + bc),

ot = σ(WxoXt +WhoHt−1 + bo),

ht = ot ⊙ tanh(Ct ).

Here, ‘⊙’ denotes the Hadamard product, Ct denotes the cell

outputs, ht are the hidden states, it , ft , and ot are input

gates, forget gates, and output gates, respectively. These gates

mitigate the gradient issues and significantly improve the

RNN. We illustrated the structure of an LSTM in Fig. 6(f).

Sutskever et al. introduce attention mechanisms to RNNs,

which achieves outstanding accuracy in tokenized predic-

tions [168]. Shi et al. substitute the dense matrix multiplication

in LSTMs with convolution operations, designing a Convolu-

tional Long Short-Term Memory (ConvLSTM) [169]. Their

proposal reduces the complexity of traditional LSTM and

demonstrates significantly lower prediction errors in precipita-

tion nowcasting (i.e., forecasting the volume of precipitation).

Mobile networks produce massive sequential data from

various sources, such as data traffic flows, and the evolution

Algorithm 1 Typical GAN training algorithm.

1: Inputs:

Batch size m.

The number of steps for the discriminator K .

Learning rate λ and an optimizer Opt(·)

Noise vector z ∼ pg(z).

Target data set x ∼ pdata(x).
2: Initialise:

Generative and discriminative models, G and

D, parameterized by ΘG and ΘD .
3: while ΘG and ΘD have not converged do

4: for k = 1 to K do

5: Sample m-element noise vector {z(1), · · · , z(m)}

from the noise prior pg(z)

6: Sample m data points {x(1), · · · , x(m)} from the

target data distribution pdata(x)

7: gD ← ∆ΘD [
1
m

∑m
i=1 logD(x(i))+

+
1
m

∑m
i=1 log(1 − D(G(z(i))))].

8: ΘD ← ΘD + λ · Opt(ΘD, gD).

9: end for

10: Sample m-element noise vector {z(1), · · · , z(m)} from

the noise prior pg(z)

11: gG ←
1
m

∑m
i=1 log(1 − D(G(z(i))))

12: ΘG ← ΘG − λ · Opt(ΘG, gG).

13: end while

of mobile network subscribers’ trajectories and application

latencies. Exploring the RNN family is promising to enhance

the analysis of time series data in mobile networks.

F. Generative Adversarial Network

The Generative Adversarial Network (GAN) is a framework

that trains generative models using the following adversarial

process. It simultaneously trains two models: a generative one

G that seeks to approximate the target data distribution from

training data, and a discriminative model D that estimates the

probability that a sample comes from the real training data

rather than the output of G [93]. Both of G and D are nor-

mally neural networks. The training procedure for G aims to

maximize the probability of D making a mistake. The overall

objective is solving the following minimax problem [93]:

min
G

max
D
Ex∼Pr (x)[logD(x)] + Ez∼Pn(z)[log(1 − D(G(z)))].

Algorithm 1 shows the typical routine used to train a simple

GAN. Both the generators and the discriminator are trained

iteratively while fixing the other one. Finally G can produce

data close to a target distribution (the same with training exam-

ples), if the model converges. We show the overall structure of

a GAN in Fig. 6(g). In practice, the generator G takes a noise

vector z as input, and generates an output G(z) that follows

the target distribution. D will try to discriminate whether G(z)

is a real sample or an artifact [200]. This effectively constructs

a dynamic game, for which a Nash Equilibrium is reached if

both G and D become optimal, and G can produce lifelike

data that D can no longer discriminate, i.e. D(G(z)) = 0.5, ∀z.

The training process of traditional GANs is highly sensitive

to model structures, learning rates, and other hyper-parameters.
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Researchers are usually required to employ numerous ad hoc

‘tricks’ to achieve convergence and improve the fidelity of

data generated. There exist several solutions for mitigating this

problem, e.g., Wasserstein Generative Adversarial Network

(WGAN) [81], Loss-Sensitive Generative Adversarial Network

(LS-GAN) [170] and BigGAN [171], but research on the

theory of GANs remains shallow. Recent work confirms that

GANs can promote the performance of some supervised tasks

(e.g., super-resolution [201], object detection [202], and face

completion [203]) by minimizing the divergence between in-

ferred and real data distributions. Exploiting the unsupervised

learning abilities of GANs is promising in terms of generating

synthetic mobile data for simulations, or assisting specific

supervised tasks in mobile network applications. This becomes

more important in tasks where appropriate datasets are lacking,

given that operators are generally reluctant to share their

network data.

G. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) refers to a set of

methods that approximate value functions (deep Q learning) or

policy functions (policy gradient method) through deep neural

networks. An agent (neural network) continuously interacts

with an environment and receives reward signals as feedback.

The agent selects an action at each step, which will change

the state of the environment. The training goal of the neural

network is to optimize its parameters, such that it can select

actions that potentially lead to the best future return. We

illustrate this principle in Fig. 6(h). DRL is well-suited to

problems that have a huge number of possible states (i.e., envi-

ronments are high-dimensional). Representative DRL methods

include Deep Q-Networks (DQNs) [19], deep policy gradient

methods [172], Asynchronous Advantage Actor-Critic [80],

Rainbow [173] and Distributed Proximal Policy Optimization

(DPPO) [174]. These perform remarkably in AI gaming (e.g.,

Gym20), robotics, and autonomous driving [205]–[208], and

have made inspiring deep learning breakthroughs recently.

In particular, the DQN [19] is first proposed by DeepMind

to play Atari video games. However, traditional DQN requires

several important adjustments to work well. The A3C [80]

employs an actor-critic mechanism, where the actor selects

the action given the state of the environment, and the critic

estimates the value given the state and the action, then delivers

feedback to the actor. The A3C deploys different actors and

critics on different threads of a CPU to break the dependency

of data. This significantly improves training convergence,

enabling fast training of DRL agents on CPUs. Rainbow [173]

combines different variants of DQNs, and discovers that these

are complementary to some extent. This insight improved

performance in many Atari games. To solve the step size

problem in policy gradients methods, Schulman et al. propose

a Distributed Proximal Policy Optimization (DPPO) method

to constrain the update step of new policies, and implement

20Gym is a toolkit for developing and comparing reinforcement learning
algorithms. It supports teaching agents everything from walking to playing
games like Pong or Pinball. In combination with the NS3 simulator Gym
becomes applicable to networking research. [204] https://gym.openai.com/

this on multi-threaded CPUs in a distributed manner [174].

Based on this method, an agent developed by OpenAI defeated

a human expert in Dota2 team in a 5v5 match. 21 Recent

DRL method also conquers a more complex real-time multi-

agent game StarCraft II 22. In [209], DeepMind develops an

game agent based on supervised learning and DRL named

AlphaStar, beating one of the world’s strongest professional

StarCraft players by 5-0.

Many mobile networking problems can be formulated as

Markov Decision Processes (MDPs), where reinforcement

learning can play an important role (e.g., base station on-

off switching strategies [210], routing [211], and adaptive

tracking control [212]). Some of these problems nevertheless

involve high-dimensional inputs, which limits the applica-

bility of traditional reinforcement learning algorithms. DRL

techniques broaden the ability of traditional reinforcement

learning algorithms to handle high dimensionality, in scenarios

previously considered intractable. Employing DRL is thus

promising to address network management and control prob-

lems under complex, changeable, and heterogeneous mobile

environments. We further discuss this potential in Sec. VIII.

VI. DEEP LEARNING DRIVEN MOBILE AND WIRELESS

NETWORKS

Deep learning has a wide range of applications in mobile

and wireless networks. In what follows, we present the most

important research contributions across different mobile net-

working areas and compare their design and principles. In

particular, we first discuss a key prerequisite, that of mobile

big data, then organize the review of relevant works into nine

subsections, focusing on specific domains where deep learning

has made advances. Specifically,

1) Deep Learning Driven Network-Level Mobile Data

Analysis focuses on deep learning applications built on

mobile big data collected within the network, including

network prediction, traffic classification, and Call Detail

Record (CDR) mining.

2) Deep Learning Driven App-Level Mobile Data Anal-

ysis shifts the attention towards mobile data analytics on

edge devices.

3) Deep Learning Driven User Mobility Analysis sheds

light on the benefits of employing deep neural networks to

understand the movement patterns of mobile users, either

at group or individual levels.

4) Deep Learning Driven User Localization reviews liter-

ature that employ deep neural networks to localize users

in indoor or outdoor environments, based on different sig-

nals received from mobile devices or wireless channels.

5) Deep Learning Driven Wireless Sensor Networks

discusses important work on deep learning applications in

WSNs from four different perspectives, namely central-

ized vs. decentralized sensing, WSN data analysis, WSN

localization and other applications.

6) Deep Learning Driven Network Control investigate the

usage of deep reinforcement learning and deep imitation

21Dota2 is a popular multiplayer online battle arena video game.
22StarCraft II is a popular multi-agent real-time strategy game.
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Fig. 7: Classification of the literature reviewed in Sec. VI.

learning on network optimization, routing, scheduling,

resource allocation, and radio control.

7) Deep Learning Driven Network Security presents work

that leverages deep learning to improve network security,

which we cluster by focus as infrastructure, software, and

privacy related.

8) Deep Learning Driven Signal Processing scrutinizes

physical layer aspects that benefit from deep learning and

reviews relevant work on signal processing.

9) Emerging Deep Learning Driven Mobile Network

Application warps up this section, presenting other inter-

esting deep learning applications in mobile networking.

For each domain, we summarize work broadly in tabular form,

providing readers with a general picture of individual topics.

Most important works in each domain are discussed in more

details in text. Lessons learned are also discussed at the end

of each subsection. We give a diagramatic view of the topics

dealt with by the literature reviewed in this section in Fig. 7.

A. Mobile Big Data as a Prerequisite

The development of mobile technology (e.g. smartphones,

augmented reality, etc.) are forcing mobile operators to evolve

mobile network infrastructures. As a consequence, both the

cloud and edge side of mobile networks are becoming in-

creasingly sophisticated to cater for users who produce and

consume huge amounts of mobile data daily. These data can

be either generated by the sensors of mobile devices that

record individual user behaviors, or from the mobile network

infrastructure, which reflects dynamics in urban environments.

Appropriately mining these data can benefit multidisciplinary

research fields and the industry in areas such mobile network

management, social analysis, public transportation, personal

services provision, and so on [36]. Network operators, how-

ever, could become overwhelmed when managing and ana-

lyzing massive amounts of heterogeneous mobile data [467].

Deep learning is probably the most powerful methodology that

can overcoming this burden. We begin therefore by introducing

characteristics of mobile big data, then present a holistic

review of deep learning driven mobile data analysis research.

Yazti and Krishnaswamy propose to categorize mobile data

into two groups, namely network-level data and app-level

data [468]. The key difference between them is that in the

former data is usually collected by the edge mobile devices,

while in the latter obtained throughout network infrastructure.

We summarize these two types of data and their information

comprised in Table X. Before delving into mobile data analyt-

ics, we illustrate the typical data collection process in Figure 9.

TABLE X: The taxonomy of mobile big data.

Mobile data Source
Information

Network-level data

Infrastructure
Infrastructure locations,
capability, equipment

holders, etc
Performance

indicators
Data traffic, end-to-end
delay, QoE, jitter, etc.

Call detail
records (CDR)

Session start and end
times, type, sender and

receiver, etc.
Radio

information
Signal power, frequency,
spectrum, modulation etc.

App-level data

Device
Device type, usage,

Media Access Control
(MAC) address, etc.

Profile
User settings, personal

information, etc

Sensors
Mobility, temperature,

magnetic field,
movement, etc

Application
Picture, video, voice,

health condition,
preference, etc.

System log
Software and hardware

failure logs, etc.

Network-level mobile data generated by the networking

infrastructure not only deliver a global view of mobile network

performance (e.g. throughput, end-to-end delay, jitter, etc.), but

also log individual session times, communication types, sender

and receiver information, through Call Detail Records (CDRs).

Network-level data usually exhibit significant spatio-temporal

variations resulting from users’ behaviors [469], which can

be utilized for network diagnosis and management, user

mobility analysis and public transportation planning [219].

Some network-level data (e.g. mobile traffic snapshots) can

be viewed as pictures taken by ‘panoramic cameras’, which

provide a city-scale sensing system for urban sensing.

On the other hand, App-level data is directly recorded

by sensors or mobile applications installed in various mo-

bile devices. These data are frequently collected through

crowd-sourcing schemes from heterogeneous sources, such as

Global Positioning Systems (GPS), mobile cameras and video

recorders, and portable medical monitors. Mobile devices act
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Fig. 8: Typical pipeline of an app-level mobile data processing system.

as sensor hubs, which are responsible for data gathering

and preprocessing, and subsequently distributing such data

to specific locations, as required [36]. We show a typical

app-level data processing system in Fig. 8. App-level mobile

data is generated and collected by a Software Development

Kit (SDK) installed on mobile devices. After pre-processing

and load-balancing (e.g. Nginx23), Such data is subsequently

processed by real-time collection and computing services

(e.g., Storm,24 Kafka,25 HBase,26 Redis,27 etc.) as required.

Further offline storage and computing with mobile data can

be performed with various tools, such as Hadoop Distribute

23Nginx is an HTTP and reverse proxy server, a mail proxy server, and a
generic TCP/UDP proxy server, https://nginx.org/en/.

24Storm is a free and open-source distributed real-time computation system,
http://storm.apache.org/

25Kafka R© is used for building real-time data pipelines and streaming apps,
https://kafka.apache.org/

26Apache HBaseTM is the Hadoop database, a distributed, scalable, big data
store, https://hbase.apache.org/

27Redis is an open source, in-memory data structure store, used as a
database, cache and message broker, https://redis.io/

File System (HDFS),28 Python, Mahout,29 Pig,30 or Oozie.31

The raw data and analysis results will be further transferred

to databases (e.g., MySQL32) Business Intelligence – BI (e.g.

Online Analytical Processing – OLAP33), and data warehous-

ing (e.g., Hive34). Among these, the algorithms container is

the core of the entire system as it connects to front-end access

and fog computing, real-time collection and computing, and

offline computing and analysis modules, while it links directly

to mobile applications, such as mobile healthcare, pattern

recognition, and advertising platforms. Deep learning logic can

be placed within the algorithms container.

App-level data may directly or indirectly reflect users’

28The Hadoop Distributed File System (HDFS) is a distributed file system
designed to run on commodity hardware, https://hadoop.apache.org/docs/
r1.2.1/hdfsdesign.html

29Apache MahoutTM is a distributed linear algebra framework, https:
//mahout.apache.org/

30Apache Pig is a high-level platform for creating programs that run on
Apache Hadoop, https://pig.apache.org/

31Oozie is a workflow scheduler system to manage Apache Hadoop jobs,
http://oozie.apache.org/

32MySQL is the open source database, https://www.oracle.com/
technetwork/database/mysql/index.html

33OLAP is an approach to answer multi-dimensional analytical queries
swiftly in computing, and is part of the broader category of business
intelligence.

34The Apache HiveTM is a data warehouse software, https:
//hive.apache.org/
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behaviors, such as mobility, preferences, and social links [63].

Analyzing app-level data from individuals can help recon-

structing one’s personality and preferences, which can be used

in recommender systems and users targeted advertising. Some

of these data comprise explicit information about individuals’

identities. Inappropriate sharing and use can raise significant

privacy issues. Therefore, extracting useful patterns from

multi-modal sensing devices without compromising user’s

privacy remains a challenging endeavor.

Compared to traditional data analysis techniques, deep

learning embraces several unique features to address the

aforementioned challenges [17]. Namely:

1) Deep learning achieves remarkable performance in vari-

ous data analysis tasks, on both structured and unstruc-

tured data. Some types of mobile data can be represented

as image-like (e.g. [219]) or sequential data [227].

2) Deep learning performs remarkably well in feature ex-

traction from raw data. This saves tremendous effort of

hand-crafted feature engineering, which allows spending

more time on model design and less on sorting through

the data itself.

3) Deep learning offers excellent tools (e.g. RBM, AE,

GAN) for handing unlabeled data, which is common in

mobile network logs.

4) Multi-modal deep learning allows to learn features over

multiple modalities [470], which makes it powerful in

modeling with data collected from heterogeneous sensors

and data sources.

These advantages make deep learning as a powerful tool for

mobile data analysis.

B. Deep Learning Driven Network-level Mobile Data Analysis

Network-level mobile data refers broadly to logs recorded

by Internet service providers, including infrastructure

metadata, network performance indicators and call detail

records (CDRs) (see Table. XI). The recent remarkable

success of deep learning ignites global interests in exploiting

this methodology for mobile network-level data analysis,

so as to optimize mobile networks configurations, thereby

improving end-uses’ QoE. These work can be categorized

into four types: network state prediction, network traffic

classification, CDR mining and radio analysis. In what

follows, we review work in these directions, which we first

summarize and compare in Table XI.

Network State Prediction refers to inferring mobile network

traffic or performance indicators, given historical measure-

ments or related data. Pierucci and Micheli investigate the

relationship between key objective metrics and QoE [213].

They employ MLPs to predict users’ QoE in mobile commu-

nications, based on average user throughput, number of active

users in a cells, average data volume per user, and channel

quality indicators, demonstrating high prediction accuracy.

Network traffic forecasting is another field where deep learning

is gaining importance. By leveraging sparse coding and max-

pooling, Gwon and Kung develop a semi-supervised deep

learning model to classify received frame/packet patterns and

infer the original properties of flows in a WiFi network

[214]. Their proposal demonstrates superior performance over

traditional ML techniques. Nie et al. investigate the traffic

demand patterns in wireless mesh network [215]. They design

a DBN along with Gaussian models to precisely estimate

traffic distributions.

In addition to the above, several researchers employ deep

learning to forecast mobile traffic at city scale, by considering

spatio-temporal correlations of geographic mobile traffic mea-

surements. We illustrate the underlying principle in Fig. 10.

In [217], Wang et al. propose to use an AE-based architec-

ture and LSTMs to model spatial and temporal correlations

of mobile traffic distribution, respectively. In particular, the

authors use a global and multiple local stacked AEs for

spatial feature extraction, dimension reduction and training

parallelism. Compressed representations extracted are subse-

quently processed by LSTMs, to perform final forecasting.

Experiments with a real-world dataset demonstrate superior

performance over SVM and the Autoregressive Integrated
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TABLE XI: A summary of work on network-level mobile data analysis.

Domain Reference Applications Model Optimizer Key contribution

Network prediction

Pierucci and
Micheli
[213]

QoE prediction MLP Unknown
Uses NNs to correlate Quality of Service

parameters and QoE estimations.

Gwon and
Kung [214]

Inferring Wi-Fi flow
patterns

Sparse coding +
Max pooling

SGD Semi-supervised learning.

Nie et al.

[215]
Wireless mesh network

traffic prediction
DBN + Gaussian

models
SGD

Considers both long-term dependency and
short-term fluctuations.

Moyo and
Sibanda

[216]
TCP/IP traffic prediction MLP Unknown

Investigates the impact of learning in traffic
forecasting.

Wang et al.

[217]
Mobile traffic forecasting AE + LSTM SGD

Uses an AE to model spatial correlations and
an LSTM to model temporal correlation

Zhang and
Patras [218]

Long-term mobile traffic
forecasting

ConvLSTM +
3D-CNN

Adam
Combines 3D-CNNs and ConvLSTMs to

perform long-term forecasting

Zhang et al.

[219]
Mobile traffic

super-resolution
CNN + GAN Adam

Introduces the MTSR concept and applies
image processing techniques for mobile traffic

analysis

Huang et al.

[220]
Mobile traffic forecasting

LSTM +
3D-CNN

Unknown
Combines CNNs and RNNs to extract

geographical and temporal features from
mobile traffic.

Zhang et al.

[221]
Cellular traffic prediction

Densely
connected CNN

Adam
Uses separate CNNs to model closeness and

periods in temporal dependency.
Chen et al.

[79]
Cloud RAN optimization

Multivariate
LSTM

Unknown
Uses mobile traffic forecasting to aid cloud

radio access network optimization
Navabi et al.

[222]
Wireless WiFi channel

feature prediction
MLP SGD

Infers non-observable channel information
from observable features.

Feng et al.

[236]
Mobile cellular traffic

prediction
LSTM Adam

Extracts spatial and temporal dependencies
using separate modules.

Alawe et al.

[471]
Mobile traffic load

forecasting
MLP, LSTM Unknown

Employs traffic forecasting to improve 5G
network scalability.

Wang et al.

[104]
Cellular traffic prediction

Graph neural
networks

Pineda
algorithm

Represents spatio-temporal dependency via
graphs and first work employing Graph neural

networks for traffic forecasting.

Fang et al.

[233]
Mobile demand

forecasting

Graph CNN,
LSTM,

Spatio-temporal
graph

ConvLSTM

Unknown
Modelling the spatial correlations between cells

using a dependency graph.

Luo et al.

[234]
Channel state information

prediction
CNN and LSTM RMSprop

Employing a two-stage offline-online training
scheme to improve the stability of framework.

Traffic classification

Wang [223] Traffic classification
MLP, stacked

AE
Unknown

Performs feature learning, protocol
identification and anomalous protocol detection

simultaneously.
Wang et al.

[224]
Encrypted traffic

classification
CNN SGD

Employs an end-to-end deep learning approach
to perform encrypted traffic classification.

Lotfollahi et

al. [225]
Encrypted traffic

classification
CNN Adam

Can perform both traffic characterization and
application identification.

Wang et al.

[226]
Malware traffic

classification
CNN SGD

First work to use representation learning for
malware classification from raw traffic.

Aceto et al.

[472]
Mobile encrypted traffic

classification
MLP, CNN,

LSTM
SGD, Adam

Comprehensive evaluations of different NN
architectures and excellent performance.

Li et al.

[235]
Network traffic
classification

Bayesian
auto-encoder

SGD
Applying Bayesian probability theory to obtain

the a posteriori distribution of model
parameters.

CDR mining

Liang et al.

[227]
Metro density prediction RNN SGD

Employs geo-spatial data processing, a
weight-sharing RNN and parallel stream

analytic programming.
Felbo et al.

[228]
Demographics prediction CNN Adam

Exploits the temporal correlation inherent to
mobile phone metadata.

Chen et al.

[229]
Tourists’ next visit
location prediction

MLP, RNN

Scaled
conjugate
gradient
descent

LSTM that performs significantly better than
other ML approaches.

Lin et al.

[230]
Human activity chains

generation
Input-Output

HMM + LSTM
Adam

First work that uses an RNN to generate
human activity chains.

Others
Xu et al.

[231]
Wi-Fi hotpot
classification

CNN Unknown
Combining deep learning with frequency

analysis.

Meng et al.

[232]
QoE-driven big data

analysis
CNN SGD

Investigates trade-off between accuracy of
high-dimensional big data analysis and model

training speed.
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Moving Average (ARIMA) model. The work in [218] extends

mobile traffic forecasting to long time frames. The authors

combine ConvLSTMs and 3D CNNs to construct spatio-

temporal neural networks that capture the complex spatio-

temporal features at city scale. They further introduce a fine-

tuning scheme and lightweight approach to blend predictions

with historical means, which significantly extends the length

of reliable prediction steps. Deep learning was also employed

in [220], [236], [471] and [79], where the authors employ

CNNs and LSTMs to perform mobile traffic forecasting. By

effectively extracting spatio-temporal features, their proposals

gain significantly higher accuracy than traditional approaches,

such as ARIMA. Wang et al. represent spatio-temporal de-

pendencies in mobile traffic using graphs, and learn such

dependencies using Graph Neural Networks [104]. Beyond

the accurate inference achieved in their study, this work also

demonstrates potential for precise social events inference.

t-s

...

t

Mobile traffic observations

t+1

t+2

t+n

Deep learning

 predictor

Fig. 10: The underlying principle of city-scale mobile traffic

forecasting. The deep learning predictor takes as input a

sequence of mobile traffic measurements in a region (snapshots

t − s to t), and forecasts how much mobile traffic will be

consumed in the same areas in the future t+1 to t+n instances.

More recently, Zhang et al. propose an original Mobile

Traffic Super-Resolution (MTSR) technique to infer network-

wide fine-grained mobile traffic consumption given coarse-

grained counterparts obtained by probing, thereby reducing

traffic measurement overheads [219]. We illustrate the princi-

ple of MTSR in Fig. 11. Inspired by image super-resolution

techniques, they design a dedicated CNN with multiple skip

connections between layers, named deep zipper network, along

with a Generative Adversarial Network (GAN) to perform

precise MTSR and improve the fidelity of inferred traffic

snapshots. Experiments with a real-world dataset show that

this architecture can improve the granularity of mobile traffic

measurements over a city by up to 100×, while significantly

outperforming other interpolation techniques.

Traffic Classification is aimed at identifying specific

applications or protocols among the traffic in networks. Wang

recognizes the powerful feature learning ability of deep

neural networks and uses a deep AE to identify protocols

in a TCP flow dataset, achieving excellent precision and

recall rates [223]. Work in [224] proposes to use a 1D CNN

for encrypted traffic classification. The authors suggest that

this structure works well for modeling sequential data and

has lower complexity, thus being promising in addressing

the traffic classification problem. Similarly, Lotfollahi et al.

High-resolution image

Image SR

Low-resolution image

Coarse-grained  Measurements Fine-grained Measurements

MTSR

Fig. 11: Illustration of the image super-resolution (SR) prin-

ciple (above) and the mobile traffic super-resolution (MTSR)

technique (below). Figure adapted from [219].

present Deep Packet, which is based on a CNN, for encrypted

traffic classification [225]. Their framework reduces the

amount of hand-crafted feature engineering and achieves

great accuracy. An improved stacked AE is employed

in [235], where Li et al. incorporate Bayesian methods into

AEs to enhance the inference accuracy in network traffic

classification. More recently, Aceto et al. employ MLPs,

CNNs, and LSTMs to perform encrypted mobile traffic

classification [472], arguing that deep NNs can automatically

extract complex features present in mobile traffic. As reflected

by their results, deep learning based solutions obtain superior

accuracy over RFs in classifying Android, IOS and Facebook

traffic. CNNs have also been used to identify malware traffic,

where work in [226] regards traffic data as images and

unusual patterns that malware traffic exhibit are classified

by representation learning. Similar work on mobile malware

detection will be further discussed in subsection VI-H.

CDR Mining involves extracting knowledge from specific

instances of telecommunication transactions such as phone

number, cell ID, session start/end time, traffic consumption,

etc. Using deep learning to mine useful information from

CDR data can serve a variety of functions. For example,

Liang et al. propose Mercury to estimate metro density

from streaming CDR data, using RNNs [227]. They take

the trajectory of a mobile phone user as a sequence of

locations; RNN-based models work well in handling such

sequential data. Likewise, Felbo et al. use CDR data to study

demographics [228]. They employ a CNN to predict the

age and gender of mobile users, demonstrating the superior

accuracy of these structures over other ML tools. More

recently, Chen et al. compare different ML models to predict

tourists’ next locations of visit by analyzing CDR data
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[229]. Their experiments suggest that RNN-based predictors

significantly outperform traditional ML methods, including

Naive Bayes, SVM, RF, and MLP.

Lessons learned: Network-level mobile data, such as mo-

bile traffic, usually involves essential spatio-temporal cor-

relations. These correlations can be effectively learned by

CNNs and RNNs, as they are specialized in modeling spatial

and temporal data (e.g., images, traffic series). An important

observation is that large-scale mobile network traffic can be

processed as sequential snapshots, as suggested in [218],

[219], which resemble images and videos. Therefore, potential

exists to exploit image processing techniques for network-

level analysis. Techniques previously used for imaging usu-

ally, however, cannot be directly employed with mobile data.

Efforts must be made to adapt them to the particularities of the

mobile networking domain. We expand on this future research

direction in Sec. VIII-B.

On the other hand, although deep learning brings precision

in network-level mobile data analysis, making causal inference

remains challenging, due to limited model interpretability. For

example, a NN may predict there will be a traffic surge in

a certain region in the near future, but it is hard to explain

why this will happen and what triggers such a surge. Addi-

tional efforts are required to enable explanation and confident

decision making. At this stage, the community should rather

use deep learning algorithms as intelligent assistants that can

make accurate inferences and reduce human effort, instead of

relying exclusively on these.

C. Deep Learning Driven App-level Mobile Data Analysis

Triggered by the increasing popularity of Internet of Things

(IoT), current mobile devices bundle increasing numbers of

applications and sensors that can collect massive amounts of

app-level mobile data [473]. Employing artificial intelligence

to extract useful information from these data can extend the

capability of devices [76], [474], [475], thus greatly benefit-

ing users themselves, mobile operators, and indirectly device

manufacturers. Analysis of mobile data therefore becomes

an important and popular research direction in the mobile

networking domain. Nonetheless, mobile devices usually op-

erate in noisy, uncertain and unstable environments, where

their users move fast and change their location and activity

contexts frequently. As a result, app-level mobile data analysis

becomes difficult for traditional machine learning tools, which

performs relatively poorly. Advanced deep learning practices

provide a powerful solution for app-level data mining, as

they demonstrate better precision and higher robustness in IoT

applications [476].

There exist two approaches to app-level mobile data anal-

ysis, namely (i) cloud-based computing and (ii) edge-based

computing. We illustrate the difference between these scenar-

ios in Fig. 12. As shown in the left part of the figure, the cloud-

based computing treats mobile devices as data collectors and

messengers that constantly send data to cloud servers, via local

34Human profile source: https://lekeart.deviantart.com/art/male-body-
profile-251793336

points of access with limited data preprocessing capabilities.

This scenario typically includes the following steps: (i) users

query on/interact with local mobile devices; (ii) queries are

transmitted to severs in the cloud; (iii) servers gather the

data received for model training and inference; (iv) query

results are subsequently sent back to each device, or stored and

analyzed without further dissemination, depending on specific

application requirements. The drawback of this scenario is

that constantly sending and receiving messages to/from servers

over the Internet introduces overhead and may result in severe

latency. In contrast, in the edge-based computing scenario

pre-trained models are offloaded from the cloud to individual

mobile devices, such that they can make inferences locally. As

illustrated in the right part of Fig. 12, this scenario typically

consists of the following: (i) servers use offline datasets to

per-train a model; (ii) the pre-trained model is offloaded to

edge devices; (iii) mobile devices perform inferences locally

using the model; (iv) cloud servers accept data from local

devices; (v) the model is updated using these data whenever

necessary. While this scenario requires less interactions with

the cloud, its applicability is limited by the computing and

battery capabilities of edge hardware. Therefore, it can only

support tasks that require light computations.

Many researchers employ deep learning for app-level

mobile data analysis. We group the works reviewed according

to their application domains, namely mobile healthcare,

mobile pattern recognition, and mobile Natural Language

Processing (NLP) and Automatic Speech Recognition (ASR).

Table XII gives a high-level summary of existing research

efforts and we discuss representative work next.

Mobile Health. There is an increasing variety of wearable

health monitoring devices being introduced to the market.

By incorporating medical sensors, these devices can capture

the physical conditions of their carriers and provide real-time

feedback (e.g. heart rate, blood pressure, breath status etc.), or

trigger alarms to remind users of taking medical actions [477].

Liu and Du design a deep learning-driven MobiEar to aid

deaf people’s awareness of emergencies [238]. Their proposal

accepts acoustic signals as input, allowing users to register dif-

ferent acoustic events of interest. MobiEar operates efficiently

on smart phones and only requires infrequent communications

with servers for updates. Likewise, Liu et al. develop a UbiEar,

which is operated on the Android platform to assist hard-to-

hear sufferers in recognizing acoustic events, without requiring

location information [239]. Their design adopts a lightweight

CNN architecture for inference acceleration and demonstrates

comparable accuracy over traditional CNN models.

Hosseini et al. design an edge computing system for health

monitoring and treatment [244]. They use CNNs to extract

features from mobile sensor data, which plays an important

role in their epileptogenicity localization application. Stamate

et al. develop a mobile Android app called cloudUPDRS to

manage Parkinson’s symptoms [245]. In their work, MLPs

are employed to determine the acceptance of data collected

by smart phones, to maintain high-quality data samples. The

proposed method outperforms other ML methods such as GPs

and RFs. Quisel et al. suggest that deep learning can be effec-
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Fig. 12: Illustration of two deployment approaches for app-level mobile data analysis, namely cloud-based (left) and edge-

based (right). The cloud-based approach makes inference on clouds and send results to edge devices. On the contrary, the

edge-based approach deploys models on edge devices which can make local inference.

tively used for mobile health data analysis [246]. They exploit

CNNs and RNNs to classify lifestyle and environmental traits

of volunteers. Their models demonstrate superior prediction

accuracy over RFs and logistic regression, over six datasets.

As deep learning performs remarkably in medical data

analysis [478], we expect more and more deep learning

powered health care devices will emerge to improve physical

monitoring and illness diagnosis.

Mobile Pattern Recognition. Recent advanced mobile de-

vices offer people a portable intelligent assistant, which fosters

a diverse set of applications that can classify surrounding

objects (e.g. [248]–[250], [253]) or users’ behaviors (e.g.

[114], [255], [258], [264], [265], [479], [480]) based on

patterns observed in the output of the mobile camera or other

sensors. We review and compare recent works on mobile

pattern recognition in this part.

Object classification in pictures taken by mobile devices

is drawing increasing research interest. Li et al. develop

DeepCham as a mobile object recognition framework [248].

Their architecture involves a crowd-sourcing labeling process,

which aims to reduce the hand-labeling effort, and a collab-

orative training instance generation pipeline that is built for

deployment on mobile devices. Evaluations of the prototype

system suggest that this framework is efficient and effective

in terms of training and inference. Tobías et al. investigate the

applicability of employing CNN schemes on mobile devices

for objection recognition tasks [249]. They conduct exper-

iments on three different model deployment scenarios, i.e.,

on GPU, CPU, and respectively on mobile devices, with two

benchmark datasets. The results obtained suggest that deep

learning models can be efficiently embedded in mobile devices

to perform real-time inference.

Mobile classifiers can also assist Virtual Reality (VR) ap-

plications. A CNN framework is proposed in [253] for facial

expressions recognition when users are wearing head-mounted

displays in the VR environment. Rao et al. incorporate a deep

learning object detector into a mobile augmented reality (AR)

system [254]. Their system achieves outstanding performance

in detecting and enhancing geographic objects in outdoor en-

vironments. Further work focusing on mobile AR applications

is introduced in [481], where the authors characterize the

tradeoffs between accuracy, latency, and energy efficiency of

object detection.

Activity recognition is another interesting area that relies on

data collected by mobile motion sensors [480], [482]. This

refers to the ability to classify based on data collected via,

e.g., video capture, accelerometer readings, motion – Passive

Infra-Red (PIR) sensing, specific actions and activities that a

human subject performs. Data collected will be delivered to

servers for model training and the model will be subsequently

deployed for domain-specific tasks.

Essential features of sensor data can be automatically ex-

tracted by neural networks. The first work in this space that

is based on deep learning employs a CNN to capture local

dependencies and preserve scale invariance in motion sensor

data [255]. The authors evaluate their proposal on 3 offline

datasets, demonstrating their proposal yields higher accuracy

over statistical methods and Principal Components Analysis

(PCA). Almaslukh et al. employ a deep AE to perform

human activity recognition by analyzing an offline smart

phone dataset gathered from accelerometers and gyroscope

sensors [256]. Li et al. consider different scenarios for activity

recognition [257]. In their implementation, Radio Frequency

Identification (RFID) data is directly sent to a CNN model for

recognizing human activities. While their mechanism achieves
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TABLE XII: A summary of works on app-level mobile data analysis.

Subject Reference Application Deployment Model

Mobile Healthcare

Liu and Du [238] Mobile ear Edge-based CNN
Liu at al. [239] Mobile ear Edge-based CNN

Jindal [240] Heart rate prediction Cloud-based DBN
Kim et al. [241] Cytopathology classification Cloud-based CNN

Sathyanarayana et al. [242] Sleep quality prediction Cloud-based MLP, CNN, LSTM
Li and Trocan [243] Health conditions analysis Cloud-based Stacked AE
Hosseini et al. [244] Epileptogenicity localisation Cloud-based CNN
Stamate et al. [245] Parkinson’s symptoms management Cloud-based MLP
Quisel et al. [246] Mobile health data analysis Cloud-based CNN, RNN
Khan et al. [247] Respiration surveillance Cloud-based CNN

Mobile Pattern Recognition

Li et al. [248] Mobile object recognition Edge-based CNN

Tobías et al. [249] Mobile object recognition
Edge-based &
Cloud based

CNN

Pouladzadeh and
Shirmohammadi [250]

Food recognition system Cloud-based CNN

Tanno et al. [251] Food recognition system Edge-based CNN
Kuhad et al. [252] Food recognition system Cloud-based MLP

Teng and Yang [253] Facial recognition Cloud-based CNN
Wu et al. [294] Mobile visual search Edge-based CNN
Rao et al. [254] Mobile augmented reality Edge-based CNN

Ohara et al. [293] WiFi-driven indoor change detection Cloud-based CNN,LSTM
Zeng et al. [255] Activity recognition Cloud-based CNN, RBM

Almaslukh et al. [256] Activity recognition Cloud-based AE
Li et al. [257] RFID-based activity recognition Cloud-based CNN

Bhattacharya and Lane [258] Smart watch-based activity recognition Edge-based RBM

Antreas and Angelov [259] Mobile surveillance system
Edge-based &
Cloud based

CNN

Ordóñez and Roggen [114] Activity recognition Cloud-based ConvLSTM
Wang et al. [260] Gesture recognition Edge-based CNN, RNN
Gao et al. [261] Eating detection Cloud-based DBM, MLP
Zhu et al. [262] User energy expenditure estimation Cloud-based CNN, MLP

Sundsøy et al. [263] Individual income classification Cloud-based MLP
Chen and Xue [264] Activity recognition Cloud-based CNN
Ha and Choi [265] Activity recognition Cloud-based CNN

Edel and Köppe [266] Activity recognition Edge-based Binarized-LSTM
Okita and Inoue [269] Multiple overlapping activities recognition Cloud-based CNN+LSTM

Alsheikh et al. [17] Activity recognition using Apache Spark Cloud-based MLP

Mittal et al. [270] Garbage detection
Edge-based &
Cloud based

CNN

Seidenari et al. [271] Artwork detection and retrieval Edge-based CNN
Zeng et al. [272] Mobile pill classification Edge-based CNN

Lane and Georgiev [75]
Mobile activity recognition, emotion
recognition and speaker identification

Edge-based MLP

Yao et al. [292]
Car tracking,heterogeneous human activity

recognition and user identification
Edge-based CNN, RNN

Zou et al. [273] IoT human activity recognition Cloud-based AE, CNN, LSTM
Zeng [274] Mobile object recognition Edge-based Unknown

Katevas et al. [291] Notification attendance prediction Edge-based RNN
Radu et al. [189] Activity recognition Edge-based RBM, CNN

Wang et al. [275], [276] Activity and gesture recognition Cloud-based Stacked AE
Feng et al. [277] Activity detection Cloud-based LSTM
Cao et al. [278] Mood detection Cloud-based GRU

Ran et al. [279] Object detection for AR applications.
Edge-based &
cloud-based

CNN

Zhao et al. [290]
Estimating 3D human skeleton from radio

frequently signal
Cloud-based CNN

Mobile NLP and ASR

Siri [280] Speech synthesis Edge-based
Mixture density

networks
McGraw et al. [281] Personalised speech recognition Edge-based LSTM

Prabhavalkar et al. [282] Embedded speech recognition Edge-based LSTM
Yoshioka et al. [283] Mobile speech recognition Cloud-based CNN

Ruan et al. [284] Shifting from typing to speech Cloud-based Unknown
Georgiev et al. [99] Multi-task mobile audio sensing Edge-based MLP

Others

Ignatov et al. [285] Mobile images quality enhancement Cloud-based CNN

Lu et al. [286]
Information retrieval from videos in

wireless network
Cloud-based CNN

Lee et al. [287] Reducing distraction for smartwatch users Cloud-based MLP
Vu et al. [288] Transportation mode detection Cloud-based RNN

Fang et al. [289] Transportation mode detection Cloud-based MLP

Xue et al. [267] Mobile App classification Cloud-based
AE, MLP, CNN,

and LSTM
Liu et al. [268] Mobile motion sensor fingerprinting Cloud-based LSTM
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high accuracy in different applications, experiments suggest

that the RFID-based method does not work well with metal

objects or liquid containers.

[258] exploits an RBM to predict human activities,

given 7 types of sensor data collected by a smart watch.

Experiments on prototype devices show that this approach

can efficiently fulfill the recognition objective under tolerable

power requirements. Ordóñez and Roggen architect an

advanced ConvLSTM to fuse data gathered from multiple

sensors and perform activity recognition [114]. By leveraging

CNN and LSTM structures, ConvLSTMs can automatically

compress spatio-temporal sensor data into low-dimensional

representations, without heavy data post-processing effort.

Wang et al. exploit Google Soli to architect a mobile

user-machine interaction platform [260]. By analyzing radio

frequency signals captured by millimeter-wave radars, their

architecture is able to recognize 11 types of gestures with

high accuracy. Their models are trained on the server side,

and inferences are performed locally on mobile devices. More

recently, Zhao et al. design a 4D CNN framework (3D for

the spatial dimension + 1D for the temporal dimension) to

reconstruct human skeletons using radio frequency signals

[290]. This novel approach resembles virtual “X-ray”,

enabling to accurately estimate human poses, without

requiring an actual camera.

Mobile NLP and ASR. Recent remarkable achievements

obtained by deep learning in Natural Language Processing

(NLP) and Automatic Speech Recognition (ASR) are also

embraced by applications for mobile devices.

Powered by deep learning, the intelligent personal assistant

Siri, developed by Apple, employs a deep mixture density

networks [483] to fix typical robotic voice issues and synthe-

size more human-like voice [280]. An Android app released

by Google supports mobile personalized speech recognition

[281]; this quantizes the parameters in LSTM model compres-

sion, allowing the app to run on low-power mobile phones.

Likewise, Prabhavalkar et al. propose a mathematical RNN

compression technique that reduces two thirds of an LSTM

acoustic model size, while only compromising negligible ac-

curacy [282]. This allows building both memory- and energy-

efficient ASR applications on mobile devices.

Yoshioka et al. present a framework that incorporates a

network-in-network architecture into a CNN model, which

allows to perform ASR with mobile multi-microphone devices

used in noisy environments [283]. Mobile ASR can also

accelerate text input on mobile devices, Ruan et al.’s study

showing that with the help of ASR, the input rates of English

and Mandarin are 3.0 and 2.8 times faster over standard

typing on keyboards [284]. More recently, the applicability

of deep learning to multi-task audio sensing is investigated

in [99], where Georgiev et al. propose and evaluate a

novel deep learning modelling and optimization framework

tailored to embedded audio sensing tasks. To this end,

they selectively share compressed representations between

different tasks, which reduces training and data storage

overhead, without significantly compromising accuracy of

an individual task. The authors evaluate their framework on

a memory-constrained smartphone performing four audio

tasks (i.e., speaker identification, emotion recognition, stress

detection, and ambient scene analysis). Experiments suggest

this proposal can achieve high efficiency in terms of energy,

runtime and memory, while maintaining excellent accuracy.

Other applications. Deep learning also plays an important

role in other applications that involve app-level data analysis.

For instance, Ignatov et al. show that deep learning can

enhance the quality of pictures taken by mobile phones. By

employing a CNN, they successfully improve the quality of

images obtained by different mobile devices, to a digital

single-lens reflex camera level [285]. Lu et al. focus on video

post-processing under wireless networks [286], where their

framework exploits a customized AlexNet to answer queries

about detected objects. This framework further involves an

optimizer, which instructs mobile devices to offload videos, in

order to reduce query response time.

Another interesting application is presented in [287], where

Lee et al. show that deep learning can help smartwatch users

reduce distraction by eliminating unnecessary notifications.

Specifically, the authors use an 11-layer MLP to predict the

importance of a notification. Fang et al. exploit an MLP to

extract features from high-dimensional and heterogeneous

sensor data, including accelerometer, magnetometer, and

gyroscope measurements [289]. Their architecture achieves

95% accuracy in recognizing human transportation modes,

i.e., still, walking, running, biking, and on vehicle.

Lessons Learned: App-level data is heterogeneous and gen-

erated from distributed mobile devices, and there is a trend

to offload the inference process to these devices. However,

due to computational and battery power limitations, models

employed in the edge-based scenario are constrained to light-

weight architectures, which are less suitable for complex tasks.

Therefore, the trade-off between model complexity and accu-

racy should be carefully considered [68]. Numerous efforts

were made towards tailoring deep learning to mobile devices,

in order to make algorithms faster and less energy-consuming

on embedded equipment. For example, model compression,

pruning, and quantization are commonly used for this purpose.

Mobile device manufacturers are also developing new software

and hardware to support deep learning based applications. We

will discuss this work in more detail in Sec. VII.

At the same time, app-level data usually contains important

users information and processing this poses significant privacy

concerns. Although there have been efforts that commit to pre-

serve user privacy, as we discuss in Sec.VI-H, research efforts

in this direction are new, especially in terms of protecting user

information in distributed training. We expect more efforts in

this direction in the future.

D. Deep Learning Driven Mobility Analysis

Understanding movement patterns of groups of human

beings and individuals is becoming crucial for epidemiology,

urban planning, public service provisioning, and mobile net-

work resource management [484]. Deep learning is gaining
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TABLE XIII: A summary of work on deep learning driven mobility analysis.

Reference Application Mobility level Model Key contribution

Ouyang et al.

[295]
Mobile user trajectory

prediction
Individual CNN Online framework for data stream processing.

Yang et al. [296]
Social networks and mobile

trajectories modeling
Mobile Ad-hoc

Network
RNN, GRU Multi-task learning.

Tkačík and
Kordík [308]

Mobility modelling and
prediction

Individual
Neural Turing

Machine

The Neural Turing Machine can store historical
data and perform “read” and “write” operations

automatically.

Song et al. [297]
City-wide mobility prediction
and transportation modeling

City-wide Multi-task LSTM Multi-task learning.

Zhang et al.

[298]
City-wide crowd flows

prediction
City-wide

Deep spatio-temporal
residual networks

(CNN-based)

Exploitation of spatio-temporal characteristics
of mobility events.

Lin et al. [230]
Human activity chains

generation
User group

Input-Output HMM
+ LSTM

Generative model.

Subramanian and
Sadiq [299]

Mobile movement prediction Individual MLP
Fewer location updates and lower paging

signaling costs.

Ezema and Ani
[300]

Mobile location estimation Individual MLP Operates with received signal strength in GSM.

Shao et al. [301] CNN driven Pedometer Individual CNN
Reduced false negatives caused by periodic
movements and lower initial response time.

Yayeh et al.

[302]
Mobility prediction in mobile

Ad-hoc network
Individual MLP

Achieving high prediction accuracy under
random waypoint mobility model.

Chen et al. [303]
Mobility driven traffic

accident risk prediction
City-wide

Stacked denoising
AE

Automatically learning correlation between
human mobility and traffic accident risk.

Song et al. [304]
Human emergency behavior

and mobility modelling
City-wide DBN

Achieves accurate prediction over various
disaster events, including earthquake, tsunami

and nuclear accidents.

Yao et al. [305] Trajectory clustering User group
sequence-to-sequence

AE with RNNs

The learned representations can robustly
encode the movement characteristics of the

objects and generate spatio-temporally invariant
clusters.

Liu et al. [306] Urban traffic prediction City-wide
CNN, RNN, LSTM,

AE, and RBM

Reveals the potential of employing deep
learning to urban traffic prediction with

mobility data.

Wickramasuriya
et al. [307]

Base station prediction with
proactive mobility

management
Individual RNN

Employs proactive and anticipatory mobility
management for dynamic base station selection.

Kim and Song
[309]

User mobility and personality
modelling

Individual MLP, RBM
Foundation for the customization of

location-based services.

Jiang et al. [310]
Short-term urban mobility

prediction
City-wide RNN

Superior prediction accuracy and verified as
highly deployable prototype system.

Wang et al.

[311]
Mobility management in

dense networks
Individual LSTM

Improves the quality of service of mobile users
in the handover process, while maintaining

network energy efficiency.

Jiang et al. [312]
Urban human mobility

prediction
City-wide RNN

First work that utilizes urban region of interest
to model human mobility city-wide.

Feng et al. [313] Human mobility forecasting Individual Attention RNN
Employs the attention mechanism and

combines heterogeneous transition regularity
and multi-level periodicity.

increasing attention in this area, both from a group and

individual level perspective (see Fig. 13). In this subsection,

we thus discuss research using deep learning in this space,

which we summarize in Table XIII.

Deep learning

Mobility analysis on an individual

Deep learning

Mobility analysis on a group

t
t+n t t+n

Fig. 13: Illustration of mobility analysis paradigms at indi-

vidual (left) and group (right) levels.

Since deep learning is able to capture spatial dependencies

in sequential data, it is becoming a powerful tool for mobility

analysis. The applicability of deep learning for trajectory pre-

diction is studied in [485]. By sharing representations learned

by RNN and Gate Recurrent Unit (GRU), the framework

can perform multi-task learning on both social networks and

mobile trajectories modeling. Specifically, the authors first use

deep learning to reconstruct social network representations

of users, subsequently employing RNN and GRU models

to learn patterns of mobile trajectories with different time

granularity. Importantly, these two components jointly share

representations learned, which tightens the overall architecture

and enables efficient implementation. Ouyang et al. argue that

mobility data are normally high-dimensional, which may be

problematic for traditional ML models. Therefore, they build

upon deep learning advances and propose an online learning
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scheme to train a hierarchical CNN architecture, allowing

model parallelization for data stream processing [295]. By

analyzing usage records, their framework “DeepSpace” pre-

dicts individuals’ trajectories with much higher accuracy as

compared to naive CNNs, as shown with experiments on

a real-world dataset. In [308], Tkačík and Kordík design a

Neural Turing Machine [486] to predict trajectories of indi-

viduals using mobile phone data. The Neural Turing Machine

embraces two major components: a memory module to store

the historical trajectories, and a controller to manage the

“read” and “write” operations over the memory. Experiments

show that their architecture achieves superior generalization

over stacked RNN and LSTM, while also delivering more

precise trajectory prediction than the n-grams and k nearest

neighbor methods.

Instead of focusing on individual trajectories, Song et al.

shed light on the mobility analysis at a larger scale [297]. In

their work, LSTM networks are exploited to jointly model the

city-wide movement patterns of a large group of people and

vehicles. Their multi-task architecture demonstrates superior

prediction accuracy over a standard LSTM. City-wide mobile

patterns is also researched in [298], where the authors architect

deep spatio-temporal residual networks to forecast the move-

ments of crowds. In order to capture the unique character-

istics of spatio-temporal correlations associated with human

mobility, their framework abandons RNN-based models and

constructs three ResNets to extract nearby and distant spatial

dependencies within a city. This scheme learns temporal fea-

tures and fuses representations extracted by all models for the

final prediction. By incorporating external events information,

their proposal achieves the highest accuracy among all deep

learning and non-deep learning methods studied. An RNN is

also employed in [310], where Jiang et al. perform short-term

urban mobility forecasting on a huge dataset collected from a

real-world deployment. Their model delivers superior accuracy

over the n-gram and Markovian approaches.

Lin et al. consider generating human movement chains

from cellular data, to support transportation planning [230]. In

particular, they first employ an input-output Hidden Markov

Model (HMM) to label activity profiles for CDR data pre-

processing. Subsequently, an LSTM is designed for activity

chain generation, given the labeled activity sequences. They

further synthesize urban mobility plans using the generative

model and the simulation results reveal reasonable fit accuracy.

Jiang et al. design 24-h mobility prediction system base

on RNN mdoels [312]. They employ dynamic Region of

Interests (ROIs) for each hour to discovered through divide-

and-merge mining from raw trajectory database, which leads

to high prediction accuracy. Feng et al. incorporate atten-

tion mechanisms on RNN [313], to capture the complicated

sequential transitions of human mobility. By combining the

heterogeneous transition regularity and multi-level periodicity,

their model delivers up to 10% of accuracy improvement

compared to state-of-the-art forecasting models.

Yayeh et al. employ an MLP to predict the mobility of

mobile devices in mobile ad-hoc networks, given previously

observed pause time, speed, and movement direction [302].

Simulations conducted using the random waypoint mobility

model show that their proposal achieves high prediction ac-

curacy. An MLP is also adopted in [309], where Kim and

Song model the relationship between human mobility and

personality, and achieve high prediction accuracy. Yao et al.

discover groups of similar trajectories to facilitate higher-level

mobility driven applications using RNNs [305]. Particularly, a

sequence-to-sequence AE is adopted to learn fixed-length rep-

resentations of mobile users’ trajectories. Experiments show

that their method can effectively capture spatio-temporal pat-

terns in both real and synthetic datasets. Shao et al. design a

sophisticated pedometer using a CNN [301]. By reducing false

negative steps caused by periodic movements, their proposal

significantly improves the robustness of the pedometer.

In [303], Chen et al. combine GPS records and traffic

accident data to understand the correlation between human

mobility and traffic accidents. To this end, they design a

stacked denoising AE to learn a compact representation of

the human mobility, and subsequently use that to predict

the traffic accident risk. Their proposal can deliver accurate,

real-time prediction across large regions. GPS records are

also used in other mobility-driven applications. Song et al.

employ DBNs to predict and simulate human emergency

behavior and mobility in natural disaster, learning from GPS

records of 1.6 million users [304]. Their proposal yields

accurate predictions in different disaster scenarios such as

earthquakes, tsunamis, and nuclear accidents. GPS data is

also utilized in [306], where Liu et al. study the potential of

employing deep learning for urban traffic prediction using

mobility data.

Lessons learned: Mobility analysis is concerned with the

movement trajectory of a single user or large groups of users.

The data of interest are essential time series, but have an

additional spatial dimension. Mobility data is usually subject

to stochasticity, loss, and noise; therefore precise modelling

is not straightforward. As deep learning is able to perform

automatic feature extraction, it becomes a strong candidate

for human mobility modelling. Among them, CNNs and RNNs

are the most successful architectures in such applications (e.g.,

[230], [295]–[298]), as they can effectively exploit spatial and

temporal correlations.

E. Deep Learning Driven User Localization

Location-based services and applications (e.g. mobile AR,

GPS) demand precise individual positioning technology [487].

As a result, research on user localization is evolving rapidly

and numerous techniques are emerging [488]. In general, user

localization methods can be categorized as device-based and

device-free [489]. We illustrate the two different paradigms

in Fig. 14. Specifically, in the first category specific devices

carried by users become prerequisites for fulfilling the appli-

cations’ localization function. This type of approaches rely on

signals from the device to identify the location. Conversely,

approaches that require no device pertain to the device-free

category. Instead these employ special equipment to monitor

signal changes, in order to localize the entities of interest.

Deep learning can enable high localization accuracy with both



IEEE COMMUNICATIONS SURVEYS & TUTORIALS 31

TABLE XIV: Leveraging Deep learning in user localization

Reference Application Input data
Device

requirement
Model Key contribution

Wang et al.

[314]
Indoor fingerprinting CSI Device-based RBM

First deep learning driven indoor
localization based on CSI

Wang et al.

[275], [276]
Indoor localization CSI Device-based RBM

Works with calibrated phase
information of CSI

Wang et al.

[315]
Indoor localization CSI Device-based CNN

Uses more robust angle of arrival for
estimation

Wang et al.

[316]
Indoor localization CSI Device-based RBM

Bi-modal framework using both angle
of arrival and average amplitudes of

CSI

Nowicki and
Wietrzykowski

[317]
Indoor localization WiFi scans Device-based Stacked AE

Requires less system tuning or
filtering effort

Wang et al.

[318], [319]
Indoor localization

Received signal
strength

Device-free Stacked AE
Device-free framework, multi-task

learning

Mohammadiet

al. [320]
Indoor localization

Received signal
strength

Device-free VAE+DQN
Handles unlabeled data; reinforcement

learning aided semi-supervised
learning

Anzum et al.

[321]
Indoor localization

Received signal
strength

Device-based
Counter

propagation
neural network

Solves the ambiguity among zones

Wang et al.

[322]
Indoor localization

Smartphone magnetic
and light sensors

Device-based LSTM
Employ bimodal magnetic field and

light intensity data

Kumar et al.

[323]
Indoor vehicles

localization
Camera images Device-free CNN Focus on vehicles applications

Zheng and Weng
[324]

Outdoor navigation
Camera images ad

GPS
Device-free

Developmental
network

Online learning scheme; edge-based

Zhang et al.

[113]
Indoor and outdoor

localization
Received signal

strength
Device-based Stacked AE

Operates under both indoor and
outdoor environments

Vieira et al.

[325]

Massive MIMO
fingerprint-based

positioning

Associated channel
fingerprint

- CNN
Operates with massive MIMO

channels

Hsu et al. [336]
Activity recognition,
localization and sleep

monitoring
RF Signal Device-free CNN

Multi-user, device-free localization and
sleep monitoring

Wang et al.

[326]
Indoor localization CSI Device-based RBM

Explores features of wireless channel
data and obtains optimal weights as

fingerprints

Wang et al.

[334]
Indoor localization CSI Device-based CNN

Exploits the angle of arrival for stable
indoor localization

Xiao et al. [335]
3D Indoor
localization

Bluetooth relative
received signal

strength
Device-free Denoising AE Low-cost and robust localization

Niitsoo et al.

[333]
Indoor localization

Raw channel impulse
response data

Device-free CNN
Robust to multipath propagation

environments

Ibrahim et al.

[332]
Indoor localization

Received signal
strength

Device-based CNN
100% accuracy in building and floor

identification

Adege et al.

[331]
Indoor localization

Received signal
strength

Device-based
MLP + linear
discriminant

analysis

Accurate in multi-building
environments

Zhang et al.

[330]
Indoor localization

Pervasive magnetic
field and CSI

Device-based MLP
Using the magnetic field to improve

the positioning accuracy

Zhou et al. [329] Indoor localization CSI Device-free MLP Device-free localization

Shokry et al.

[328]
Outdoor localization

Crowd-sensed
received signal

strength information
Device-based MLP

More accurate than cellular
localization while requiring less energy

Chen et al. [327] Indoor localization CSI Device-based CNN Represents CSI as feature images

Guan et al. [337] Indoor localization
Line-of-sight and non

line-of-sight radio
signals

Device-based MLP
Combining deep learning with genetic

algorithms; visible light
communication based

paradigms. We summarize the most notable contributions in

Table XIV and delve into the details of these works next.

To overcome the variability and coarse-granularity limita-

tions of signal strength based methods, Wang et al. propose a

deep learning driven fingerprinting system name “DeepFi” to

perform indoor localization based on Channel State Informa-

tion (CSI) [314]. Their toolbox yields much higher accuracy

as compared to traditional methods, including including FIFS

[490], Horus [491], and Maximum Likelihood [492]. The same

group of authors extend their work in [275], [276] and [315],

[316], where they update the localization system, such that

it can work with calibrated phase information of CSI [275],

[276], [326]. They further use more sophisticated CNN [315],

[334] and bi-modal structures [316] to improve the accuracy.

Nowicki and Wietrzykowski propose a localization frame-

work that reduces significantly the effort of system tuning or
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Fig. 14: An illustration of device-based (left) and device-free

(right) indoor localization systems.

filtering and obtains satisfactory prediction performance [317].

Wang et al. suggest that the objective of indoor localization

can be achieved without the help of mobile devices. In [319],

the authors employ an AE to learn useful patterns from

WiFi signals. By automatic feature extraction, they produce a

predictor that can fulfill multi-tasks simultaneously, including

indoor localization, activity, and gesture recognition. A similar

work in presented in [329], where Zhou et al. employ an

MLP structure to perform device-free indoor localization using

CSI. Kumar et al. use deep learning to address the problem

of indoor vehicles localization [323]. They employ CNNs to

analyze visual signal and localize vehicles in a car park. This

can help driver assistance systems operate in underground

environments where the system has limited vision ability.

In [335], Xiao et al. achieve low cost indoor localization

with Bluetooth technology. The authors design a denosing AE

to extract fingerprint features from the received signal strength

of Bluetooth Low Energy beacon and subsequently project that

to the exact position in 3D space. Experiments conducted in

a conference room demonstrate that the proposed framework

can perform precise positioning in both vertical and horizontal

dimensions in real-time. Niitsoo et al. employ a CNN to

perform localization given raw channel impulse response data

[333]. Their framework is robust to multipath propagation

environments and more precise than signal processing based

approaches. A CNN is also adopted in [332], where the

authors work with received signal strength series and achieve

100% prediction accuracy in terms of building and floor

identification. The work in [331] combines deep learning with

linear discriminant analysis for feature reduction, achieving

low positioning errors in multi-building environments. Zhang

et al. combine pervasive magnetic field and WiFi fingerprint-

ing for indoor localization using an MLP [330]. Experiments

show that adding magnetic field information to the input of

the model can improve the prediction accuracy, compared to

solutions based soley on WiFi fingerprinting.

Hsu et al. use deep learning to provide Radio Frequency-

based user localization, sleep monitoring, and insomnia anal-

ysis in multi-user home scenarios where individual sleep

monitoring devices might not be available [336]. They use

EZ-Sleep

Fig. 15: EZ-Sleep setup in a subject’s bedroom. Figure

adopted from [336].

a CNN classifier with a 14-layer residual network model for

sleep monitoring, in addition to Hidden Markov Models, to

accurately track when the user enters or leaves the bed. By

deploying sleep sensors called EZ-Sleep in 8 homes (see

Fig. 15), collecting data for 100 nights of sleep over a month,

and cross-validating this using an electroencephalography-

based sleep monitor, the authors demonstrate the perfor-

mance of their solution is comparable to that of individual,

electroencephalography-based devices.

Most mobile devices can only produce unlabeled position

data, therefore unsupervised and semi-supervised learning

become essential. Mohammadi et al. address this problem by

leveraging DRL and VAE. In particular, their framework envi-

sions a virtual agent in indoor environments [320], which can

constantly receive state information during training, including

signal strength indicators, current agent location, and the real

(labeled data) and inferred (via a VAE) distance to the target.

The agent can virtually move in eight directions at each time

step. Each time it takes an action, the agent receives an reward

signal, identifying whether it moves to a correct direction.

By employing deep Q learning, the agent can finally localize

accurately a user, given both labeled and unlabeled data.

Beyond indoor localization, there also exist several

research works that apply deep learning in outdoor scenarios.

For example, Zheng and Weng introduce a lightweight

developmental network for outdoor navigation applications on

mobile devices [324]. Compared to CNNs, their architecture

requires 100 times fewer weights to be updated, while

maintaining decent accuracy. This enables efficient outdoor

navigation on mobile devices. Work in [113] studies

localization under both indoor and outdoor environments.

They use an AE to pre-train a four-layer MLP, in order

to avoid hand-crafted feature engineering. The MLP is

subsequently used to estimate the coarse position of targets.

The authors further introduce an HMM to fine-tune the

predictions based on temporal properties of data. This

improves the accuracy estimation in both in-/out-door

positioning with Wi-Fi signals. More recently, Shokry et al.

propose DeepLoc, a deep learning-based outdoor localization

system using crowdsensed geo-tagged received signal strength

information [328]. By using an MLP to learn the correlation

between cellular signal and users’ locations, their framework
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Fig. 16: An example framework for WSN data collection and

(centralized and decentralized) analysis.

can deliver median localization accuracy within 18.8m in

urban areas and within 15.7m in rural areas on Android

devices, while requiring modest energy budgets.

Lessons learned: Localization relies on sensorial output, sig-

nal strength, or CSI. These data usually have complex features,

therefore large amounts of data are required for learning [317].

As deep learning can extract features in an unsupervised

manner, it has become a strong candidate for localization

tasks. On the other hand, it can be observed that positioning

accuracy and system robustness can be improved by fusing

multiple types of signals when providing these as the input

(see, e.g., [330]). Using deep learning to automatically extract

features and correlate information from different sources for

localization purposes is becoming a trend.

F. Deep Learning Driven Wireless Sensor Networks

Wireless Sensor Networks (WSNs) consist of a set of unique

or heterogeneous sensors that are distributed over geographical

regions. Theses sensors collaboratively monitor physical or

environment status (e.g. temperature, pressure, motion, pollu-

tion, etc.) and transmit the data collected to centralized servers

through wireless channels (see top circle in Fig. 9 for an

illustration). A WSN typically involves three key core tasks,

namely sensing, communication and analysis. Deep learning

is becoming increasingly popular also for WSN applications

[349]. In what follows, we review works adopting deep

learning in this domain, covering different angles, namely:

centralized vs. decentralized analysis paradigms, WSN data

analysis per se, WSN localization, and other applications. Note

that the contributions of these works are distinct from mobile

data analysis discussed in subsections VI-B and VI-C, as in

this subsection we only focus on WSN applications. We begin

by summarizing the most important works in Table XV.

Centralized vs Decentralized Analysis Approaches:

There exist two data processing scenarios in WSNs, namely

centralized and decentralized. The former simply takes sensors

as data collectors, which are only responsible for gathering

data and sending these to a central location for processing.

The latter assumes sensors have some computational ability

and the main server offloads part of the jobs to the edge,

each sensor performing data processing individually. We

show an example framework for WSN data collection and

analysis in Fig. 16, where sensor data is collected via various

nodes in a field of interest. Such data is delivered to a sink

node, which aggregates and optionally further processes this.

Work in [346] focuses on the centralized approach and the

authors apply a 3-layer MLP to reduce data redundancy

while maintaining essential points for data aggregation. These

data are sent to a central server for analysis. In contrast,

Li et al. propose to distribute data mining to individual

sensors [347]. They partition a deep neural network into

different layers and offload layer operations to sensor nodes.

Simulations conducted suggest that, by pre-processing with

NNs, their framework obtains high fault detection accuracy,

while reducing power consumption at the central server.

WSN Localization: Localization is also an important and

challeging task in WSNs. Chuang and Jiang exploit neural

networks to localize sensor nodes in WSNs [338]. To adapt

deep learning models to specific network topology, they em-

ploy an online training scheme and correlated topology-trained

data, enabling efficient model implementations and accurate

location estimation. Based on this, Bernas and Płaczek ar-

chitect an ensemble system that involves multiple MLPs for

location estimation in different regions of interest [339]. In

this scenario, node locations inferred by multiple MLPs are

fused by a fusion algorithm, which improves the localization

accuracy, particularly benefiting sensor nodes that are around

the boundaries of regions. A comprehensive comparison of

different training algorithms that apply MLP-based node lo-

calization is presented in [340]. Experiments suggest that the

Bayesian regularization algorithm in general yields the best

performance. Dong et al. consider an underwater node local-

ization scenario [341]. Since acoustic signals are subject to

loss caused by absorption, scattering, noise, and interference,

underwater localization is not straightforward. By adopting a

deep neural network, their framework successfully addresses

the aforementioned challenges and achieves higher inference

accuracy as compared to SVM and generalized least square

methods.

Phoemphon et al. [351] combine a fuzzy logic system

and an ELM via a particle swarm optimization technique

to achieve robust range-free location estimation for sensor

nodes. In particular, the fuzzy logic system is employed

for adjusting the weight of traditional centroids, while the

ELM is used for optimization for the localization precision.

Their method achieves superior accuracy over other soft

computing-based approaches. Similarly, Banihashemian et al.

employ the particle swarm optimization technique combining

with MLPs to perform range-free WSN localization, which

achieves low localization error [352]. Kang et al. shed light

water leakage and localization in water distribution systems

[354]. They represent the water pipeline network as a graph

and assume leakage events occur at vertices. They combine

CNN with SVM to perform detection and localization on

wireless sensor network testbed, achieving 99.3% leakage

detection accuracy and localization error for less than 3 meters.
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TABLE XV: A summary of work on deep learning driven WSNs.

Perspective Reference Application Model Optimizer Key contribution

Centralized vs. Decentralized
Khorasani and

Naji [346]
Data aggregation MLP Unknown

Improves the energy efficiency
in the aggregation process

Li et al. [347] Distributed data mining MLP Unknown
Performing data analysis at

distributed nodes, reducing by
58.31% the energy consumption

WSN Localization

Bernas and
Płaczek [339]

Indoor localization MLP
Resilient

backpropagation

Dramatically reduces the
memory consumption of

received signal strength map
storage

Payal et al. [340] Node localization MLP

First-order and
second-order

gradient descent
algorithm

Compares different training
algorithms of MLP for WSN

localization

Dong et al. [341] Underwater localization MLP RMSprop
Performs WSN localization in

underwater environments

Phoemphon et

al. [351]
WSN node localization

Logic fuzzy
system +

ELM

Algorithm 4
described in

[351]

Combining logic fuzzy system
and ELM to achieve robust

range-free WSN node
localization

Banihashemian
et al. [352]

Range-free WSN node
localization

MLP, ELM
Conjugate

gradient based
method

Employs a particle swarm
optimization algorithm to

simultaneously optimize the
neural network based on storage

cost and localization accuracy

Kang et al. [354]
Water leakage detection

and localization
CNN +
SVM

SGD

Propose an enhanced
graph-based local search

algorithm using a virtual node
scheme to select the nearest

leakage location

El et al. [357]
WSN localization in the
presence of anisotropic

signal attenuation
MLP Unknown

Robust against anisotropic signal
attenuation

WSN Data Analysis

Yan et al. [342]
Smoldering and flaming
combustion identification

MLP SGD

Achieves high accuracy in
detecting fire in forests using
smoke, CO2 and temperature

sensors

Wang et al.

[343]
Temperature correction MLP SGD

Employs deep learning to learn
correlation between polar

radiation and air temperature
error

Lee et al. [344] Online query processing CNN Unknown
Employs adaptive query

refinement to enable real-time
analysis

Li and Serpen
[345]

Self-adaptive WSN
Hopfield
network

Unknown

Embedding Hopfield NNs as a
static optimizer for the

weakly-connected dominating
problem

Khorasani and
Naji [346]

Data aggregation MLP Unknown
Improves the energy efficiency

in the aggregation process
Li et al. [347] Distributed data mining MLP Unknown Distributed data mining

Luo and
Nagarajany [348]

Distributed WSN
anomaly detection

AE SGD
Employs distributed anomaly

detection techniques to offload
computations from the cloud

Other

Heydari et al.

[350]

Energy consumption
optimization and secure

communication in
wireless multimedia

sensor networks

Stacked AE Unknown
Use deep learning to enable fast
data transfer and reduce energy

consumption

Mehmood et al.

[355]

Robust routing for
pollution monitoring in

WSNs
MLP SGD Highly energy-efficient

Alsheikh et al.

[356]

Rate-distortion balanced
data compression for

WSNs
AE

Limited memory
Broyden Fletcher
Goldfarb Shann

algorithm

Energy-efficient and bounded
reconstruction errors

Wang et al.

[358]
Blind drift calibration for

WSNs

Projection-
recovery
network
(CNN
based)

Adam

Exploits spatial and temporal
correlations of data from all

sensors; first work that adopts
deep learning in WSN data

calibration

Jia et al. [359] Ammonia monitoring LSTM Adam
Low-power and accurate

ammonia monitoring
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WSN Data Analysis: Deep learning has also been exploited

for identification of smoldering and flaming combustion phases

in forests. In [342], Yan et al. embed a set of sensors into a

forest to monitor CO2, smoke, and temperature. They suggest

that various burning scenarios will emit different gases, which

can be taken into account when classifying smoldering and

flaming combustion. Wang et al. consider deep learning to

correct inaccurate measurements of air temperature [343].

They discover a close relationship between solar radiation and

actual air temperature, which can be effectively learned by

neural networks. In [353], Sun et al. employ a Wavelet neural

network based solution to evaluate radio link quality in WSNs

on smart grids. Their proposal is more precise than traditional

approaches and can provide end-to-end reliability guarantees

to smart grid applications.

Missing data or de-synchronization are common in

WSN data collection. These may lead to serious problems

in analysis due to inconsistency. Lee et al. address this

problem by plugging a query refinement component in

deep learning based WSN analysis systems [344]. They

employ exponential smoothing to infer missing data, thereby

maintaining the integrity of data for deep learning analysis

without significantly compromising accuracy. To enhance the

intelligence of WSNs, Li and Serpen embed an artificial neural

network into a WSN, allowing it to agilely react to potential

changes and following deployment in the field [345]. To this

end, they employ a minimum weakly-connected dominating

set to represent the WSN topology, and subsequently use a

Hopfield recurrent neural network as a static optimizer, to

adapt network infrastructure to potential changes as necessary.

This work represents an important step towards embedding

machine intelligence in WSNs.

Other Applications: The benefits of deep learning have

also been demonstrated in other WSN applications. The work

in [350] focuses on reducing energy consumption while main-

taining security in wireless multimedia sensor networks. A

stacked AE is employed to categorize images in the form of

continuous pieces, and subsequently send the data over the net-

work. This enables faster data transfer rates and lower energy

consumption. Mehmood et al. employ MLPs to achieve robust

routing in WSNs, so as to facilitate pollution monitoring [355].

Their proposal use the NN to provide an efficiency threshold

value and switch nodes that consume less energy than this

threshold, thereby improving energy efficiency. Alsheikh et

al. introduce an algorithm for WSNs that uses AEs to mini-

mize the energy expenditure [356]. Their architecture exploits

spatio-temporal correlations to reduce the dimensions of raw

data and provides reconstruction error bound guarantees.

Wang et al. design a dedicated projection-recovery neural

network to blindly calibrate sensor measurements in an on-

line manner [358]. Their proposal can automatically extract

features from sensor data and exploit spatial and temporal

correlations among information from all sensors, to achieve

high accuracy. This is the first effort that adopts deep learning

in WSN data calibration. Jia et al. shed light on ammonia

monitoring using deep learning [359]. In their design, an

LSTM is employed to predict the sensors’ electrical resistance

during a very short heating pulse, without waiting for settling

in an equilibrium state. This dramatically reduces the energy

consumption of sensors in the waiting process. Experiments

with 38 prototype sensors and a home-built gas flow system

show that the proposed LSTM can deliver precise prediction

of equilibrium state resistance under different ammonia con-

centrations, cutting down the overall energy consumption by

approximately 99.6%.

Lessons learned: The centralized and decentralized WSN

data analysis paradigms resemble the cloud and fog computing

philosophies in other areas. Decentralized methods exploit the

computing ability of sensor nodes and perform light processing

and analysis locally. This offloads the burden on the cloud

and significantly reduces the data transmission overheads and

storage requirements. However, at the moment, the centralized

approach dominates the WSN data analysis landscape. As deep

learning implementation on embedded devices becomes more

accessible, in the future we expect to witness a grow in the

popularity of the decentralized schemes.

On the other hand, looking at Table XV, it is interesting to

see that the majority of deep learning practices in WSNs em-

ploy MLP models. Since MLP is straightforward to architect

and performs reasonably well, it remains a good candidate for

WSN applications. However, since most sensor data collected

is sequential, we expect RNN-based models will play a more

important role in this area.

G. Deep Learning Driven Network Control

In this part, we turn our attention to mobile network

control problems. Due to powerful function approximation

mechanism, deep learning has made remarkable breakthroughs

in improving traditional reinforcement learning [26] and imi-

tation learning [493]. These advances have potential to solve

mobile network control problems which are complex and pre-

viously considered intractable [494], [495]. Recall that in re-

inforcement learning, an agent continuously interacts with the

environment to learn the best action. With constant exploration

and exploitation, the agent learns to maximize its expected

return. Imitation learning follows a different learning paradigm

called “learning by demonstration”. This learning paradigm

relies on a ‘teacher’ who tells the agent what action should

be executed under certain observations during the training.

After sufficient demonstrations, the agent learns a policy that

imitates the behavior of the teacher and can operate standalone

without supervision. For instance, an agent is trained to mimic

human behaviour (e.g., in applications such as game play, self-

driving vehicles, or robotics), instead of learning by interacting

with the environment, as in the case of pure reinforcement

learning. This is because in such applications, making mistakes

can have fatal consequences [27].

Beyond these two approaches, analysis-based control is

gaining traction in mobile networking. Specifically, this

scheme uses ML models for network data analysis, and

subsequently exploits the results to aid network control.

Unlike reinforcement/imitation learning, analysis-based

control does not directly output actions. Instead, it extract

useful information and delivers this to an agent, to execute the
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TABLE XVI: A summary of work on deep learning driven network control.

Domain Reference Application Control approach Model

Network optimization

Liu et al. [360] Demand constrained energy minimization Analysis-based DBN
Subramanian and

Banerjee [361]
Machine to machine system optimization Analysis-based

Deep multi-modal
network

He et al. [362], [363] Caching and interference alignment Reinforcement learning Deep Q learning

Masmar and Evans [364]
mmWave Communication performance

optimization
Reinforcement learning Deep Q learning

Wang et al. [365] Handover optimization in wireless systems Reinforcement learning Deep Q learning

Chen and Smith [366]
Cellular network random access

optimization
Reinforcement learning Deep Q learning

Chen et al. [367] Automatic traffic optimization Reinforcement learning Deep policy gradient

Routing

Lee et al. [368] Virtual route assignment Analysis-based MLP
Yang et al. [296] Routing optimization Analysis-based Hopfield neural networks
Mao et al. [188] Software defined routing Imitation learning DBN
Tang et al. [369] Wireless network routing Imitation learning CNN
Mao et al. [397] Intelligent packet routing Imitation learning Tensor-based DBN

Geyer et al. [398] Distributed routing Imitation learning
Graph-query neural

network

Pham et al. [405] Routing for knowledge-defined networking Reinforcement learning
Deep Deterministic

Policy Gradient

Scheduling

Zhang et al. [370]
Hybrid dynamic voltage and frequency

scaling scheduling
Reinforcement learning Deep Q learning

Atallah et al. [371]
Roadside communication network

scheduling
Reinforcement learning Deep Q learning

Chinchali et al. [372] Cellular network traffic scheduling Reinforcement learning Policy gradient

Atallah et al. [371]
Roadside communications networks

scheduling
Reinforcement learning Deep Q learning

Wei et al. [373]
User scheduling and content caching for

mobile edge networks
Reinforcement learning Deep policy gradient

Mennes et al. [395]
Predicting free slots in a Multiple

Frequencies Time Division Multiple
Access (MF-TDMA) network.

Imitation learning MLP

Resource allocation

Sun et al. [374]
Resource management over wireless

networks
Imitation learning MLP

Xu et al. [375]
Resource allocation in cloud radio access

networks
Reinforcement learning Deep Q learning

Ferreira et al. [376]
Resource management in cognitive

communications
Reinforcement learning Deep SARSA

Challita et al. [378] Proactive resource management for LTE Reinforcement learning Deep policy gradient

Ye and Li [377]
Resource allocation in vehicle-to-vehicle

communication
Reinforcement learning Deep Q learning

Li et al. [394]
Computation offloading and resource
allocation for mobile edge computing

Reinforcement learning Deep Q learning

Zhou et al. [396] Radio resource assignment Analysis-based LSTM

Radio control

Naparstek and Cohen
[379]

Dynamic spectrum access Reinforcement learning Deep Q learning

O’Shea and Clancy [380] Radio control and signal detection Reinforcement learning Deep Q learning

Wijaya et al. [381], [383]
Intercell-interference cancellation and

transmit power optimization
Imitation learning RBM

Rutagemwa et al. [382] Dynamic spectrum alignment Analysis-based RNN
Yu et al. [390] Multiple access for wireless network Reinforcement learning Deep Q learning

Li et al. [400]
Power control for spectrum sharing in

cognitive radios
Reinforcement learning DQN

Liu et al. [404]
Anti-jamming communications in dynamic

and unknown environment
Reinforcement learning DQN

Luong et al. [399]
Transaction transmission and channel

selection in cognitive radio blockchain
Reinforcement learning Double DQN

Ferreira et al. [496]
Radio transmitter settings selection in

satellite communications
Reinforcement learning

Deep multi-objective
reinforcement learning

Other

Mao et al. [384] Adaptive video bitrate Reinforcement learning A3C
Oda et al. [385], [386] Mobile actor node control Reinforcement learning Deep Q learning

Kim [387] IoT load balancing Analysis-based DBN

Challita et al. [388] Path planning for aerial vehicle networking Reinforcement learning
Multi-agent echo state

networks
Luo et al. [389] Wireless online power control Reinforcement learning Deep Q learning
Xu et al. [391] Traffic engineering Reinforcement learning Deep policy gradient
Liu et al. [392] Base station sleep control Reinforcement learning Deep Q learning

Zhao et al. [393] Network slicing Reinforcement learning Deep Q learning
Zhu et al. [237] Mobile edge caching Reinforcement learning A3C
Liu et al. [402] Unmanned aerial vehicles control Reinforcement learning DQN

Lee et al. [401]
Transmit power Control in

device-to-device communications
Imitation learning MLP

He et al. [403]
Dynamic orchestration of networking,

caching, and computing
Reinforcement learning DQN
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Fig. 17: Principles of three control approaches applied in

mobile and wireless networks control, namely reinforcement

learning (above), imitation learning (middle), and analysis-

based control (below).

actions. We illustrate the principles between the three control

paradigms in Fig. 17. We review works proposed so far in

this space next, and summarize these efforts in Table XVI.

Network Optimization refers to the management of network

resources and functions in a given environment, with the goal

of improving the network performance. Deep learning has

recently achieved several successful results in this area. For

example, Liu et al. exploit a DBN to discover the correlations

between multi-commodity flow demand information and link

usage in wireless networks [360]. Based on the predictions

made, they remove the links that are unlikely to be scheduled,

so as to reduce the size of data for the demand constrained

energy minimization. Their method reduces runtime by up

to 50%, without compromising optimality. Subramanian and

Banerjee propose to use deep learning to predict the health

condition of heterogeneous devices in machine to machine

communications [361]. The results obtained are subsequently

exploited for optimizing health aware policy change decisions.

He et al. employ deep reinforcement learning to address

caching and interference alignment problems in wireless

networks [362], [363]. In particular, they treat time-varying

channels as finite-state Markov channels and apply deep

Q networks to learn the best user selection policy. This

novel framework demonstrates significantly higher sum

rate and energy efficiency over existing approaches. Chen

et al. shed light on automatic traffic optimization using a

deep reinforcement learning approach [367]. Specifically,

they architect a two-level DRL framework, which imitates

the Peripheral and Central Nervous Systems in animals, to

address scalability problems at datacenter scale. In their

design, multiple peripheral systems are deployed on all

end-hosts, so as to make decisions locally for short traffic

flows. A central system is further employed to decide on

the optimization with long traffic flows, which are more

tolerant to longer delay. Experiments in a testbed with 32

severs suggest that the proposed design reduces the traffic

optimization turn-around time and flow completion time

significantly, compared to existing approaches.

Routing: Deep learning can also improve the efficiency of

routing rules. Lee et al. exploit a 3-layer deep neural network

to classify node degree, given detailed information of the

routing nodes [368]. The classification results along with

temporary routes are exploited for subsequent virtual route

generation using the Viterbi algorithm. Mao et al. employ a

DBN to decide the next routing node and construct a software

defined router [188]. By considering Open Shortest Path First

as the optimal routing strategy, their method achieves up

to 95% accuracy, while reducing significantly the overhead

and delay, and achieving higher throughput with a signaling

interval of 240 milliseconds. In follow up work, the authors

use tensors to represent hidden layers, weights and biases in

DBNs, which further improves the routing performance [397].

A similar outcome is obtained in [296], where the authors

employ Hopfield neural networks for routing, achieving

better usability and survivability in mobile ad hoc network

application scenarios. Geyer et al. represent the network

using graphs, and design a dedicated Graph-Query NN

to address the distributed routing problem [398]. This

novel architecture takes graphs as input and uses message

passing between nodes in the graph, allowing it to operate

with various network topologies. Pham et al. shed light

on routing protocols in knowledge-defined networking,

using a Deep Deterministic Policy Gradient algorithm

based on reinforcement learning [405]. Their agent takes

traffic conditions as input and incorporates QoS into the

reward function. Simulations show that their framework can

effectively learn the correlations between traffic flows, which

leads to better routing configurations.

Scheduling: There are several studies that investigate schedul-

ing with deep learning. Zhang et al. introduce a deep Q

learning-powered hybrid dynamic voltage and frequency scal-

ing scheduling mechanism, to reduce the energy consumption

in real-time systems (e.g. Wi-Fi, IoT, video applications) [370].

In their proposal, an AE is employed to approximate the Q

function and the framework performs experience replay [497]

to stabilize the training process and accelerate convergence.

Simulations demonstrate that this method reduces by 4.2%
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the energy consumption of a traditional Q learning based

method. Similarly, the work in [371] uses deep Q learning for

scheduling in roadside communications networks. In partic-

ular, interactions between vehicular environments, including

the sequence of actions, observations, and reward signals

are formulated as an MDP. By approximating the Q value

function, the agent learns a scheduling policy that achieves

lower latency and busy time, and longer battery life, compared

to traditional scheduling methods.

More recently, Chinchali et al. present a policy gradient

based scheduler to optimize the cellular network traffic

flow [372]. Specifically, they cast the scheduling problem as

a MDP and employ RF to predict network throughput, which

is subsequently used as a component of a reward function.

Evaluations with a realistic network simulator demonstrate

that this proposal can dynamically adapt to traffic variations,

which enables mobile networks to carry 14.7% more data

traffic, while outperforming heuristic schedulers by more than

2×. Wei et al. address user scheduling and content caching

simultaneously [373]. In particular, they train a DRL agent,

consisting of an actor for deciding which base station should

serve certain content, and whether to save the content. A critic

is further employed to estimate the value function and deliver

feedback to the actor. Simulations over a cluster of base

stations show that the agent can yield low transmission delay.

Li et al. shed light on resource allocation in a multi-user

mobile computing scenario [394]. They employ a deep Q

learning framework to jointly optimize the offloading decision

and computational resource allocation, so as to minimize

the sum cost of delay and energy consumption of all user

equipment. Simulations show that their proposal can reduce

the total cost of the system, as compared to fully-local,

fully-offloading, and naive Q-learning approaches.

Resource Allocation: Sun et al. use a deep neural network

to approximate the mapping between the input and output of

the Weighted Minimum Mean Square Error resource alloca-

tion algorithm [498], in interference-limited wireless network

environments [374]. By effective imitation learning, the neural

network approximation achieves close performance to that of

its teacher. Deep learning has also been applied to cloud radio

access networks, Xu et al. employing deep Q learning to deter-

mine the on/off modes of remote radio heads given, the current

mode and user demand [375]. Comparisons with single base

station association and fully coordinated association methods

suggest that the proposed DRL controller allows the system to

satisfy user demand while requiring significantly less energy.

Ferreira et al. employ deep State-Action-Reward-State-

Action (SARSA) to address resource allocation management

in cognitive communications [376]. By forecasting the

effects of radio parameters, this framework avoids wasted

trials of poor parameters, which reduces the computational

resources required. In [395], Mennes et al. employ MLPs

to precisely forecast free slots prediction in a Multiple

Frequencies Time Division Multiple Access (MF-TDMA)

network, thereby achieving efficient scheduling. The authors

conduct simulations with a network deployed in a 100×100

room, showing that their solution can effectively reduces

collisions by half. Zhou et al. adopt LSTMs to predict traffic

load at base stations in ultra dense networks [396]. Based on

the predictions, their method changes the resource allocation

policy to avoid congestion, which leads to lower packet loss

rates, and higher throughput and mean opinion scores.

Radio Control: In [379], the authors address the dynamic

spectrum access problem in multichannel wireless network

environments using deep reinforcement learning. In this set-

ting, they incorporate an LSTM into a deep Q network,

to maintain and memorize historical observations, allowing

the architecture to perform precise state estimation, given

partial observations. The training process is distributed to each

user, which enables effective training parallelization and the

learning of good policies for individual users. Experiments

demonstrate that this framework achieves double the channel

throughput, when compared to a benchmark method. Yu et

al. apply deep reinforcement learning to address challenges in

wireless multiple access control [390], recognizing that in such

tasks DRL agents are fast in terms of convergence and robust

against non-optimal parameter settings. Li et al. investigate

power control for spectrum sharing in cognitive radios using

DRL. In their design, a DQN agent is built to adjust the

transmit power of a cognitive radio system, such that the

overall signal-to-interference-plus-noise ratio is maximized.

The work in [380] sheds light on the radio control and signal

detection problems. In particular, the authors introduce a radio

signal search environment based on the Gym Reinforcement

Learning platform. Their agent exhibits a steady learning

process and is able to learn a radio signal search policy. Ru-

tagemwa et al. employ an RNN to perform traffic prediction,

which can subsequently aid the dynamic spectrum assignment

in mobile networks [382]. With accurate traffic forecasting,

their proposal improves the performance of spectrum sharing

in dynamic wireless environments, as it attains near-optimal

spectrum assignments. In [404], Liu et al. approach the anti-

jamming communications problem in dynamic and unknown

environments with a DRL agent. Their system is based on a

DQN with CNN, where the agent takes raw spectrum infor-

mation as input and requires limited prior knowledge about

the environment, in order to improve the overall throughput

of the network in such adversarial circumstances.

Luong et al. incorporate the blockchain technique into

cognitive radio networking [399], employing a double DQN

agent to maximize the number of successful transaction

transmissions for secondary users, while minimizing the

channel cost and transaction fees. Simulations show that the

DQN method significantly outperforms na ive Q learning

in terms of successful transactions, channel cost, and

learning speed. DRL can further attack problems in the

satellite communications domain. In [496], Ferreira et al.

fuse multi-objective reinforcement learning [406] with deep

neural networks to select among multiple radio transmitter

settings while attempting to achieve multiple conflicting

goals, in a dynamically changing satellite communications

channel. Specifically, two set of NNs are employed to

execute exploration and exploitation separately. This builds

an ensembling system, with makes the framework more
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robust to the changing environment. Simulations demonstrate

that their system can nearly optimize six different objectives

(i.e. bit error rate, throughput, bandwidth, spectral efficiency,

additional power consumption, and power efficiency), only

with small performance errors compared to ideal solutions.

Other applications: Deep learning is playing an important

role in other network control problems as well. Mao et al. de-

velop the Pensieve system that generates adaptive video bit rate

algorithms using deep reinforcement learning [384]. Specifi-

cally, Pensieve employs a state-of-the-art deep reinforcement

learning algorithm A3C, which takes the bandwidth, bit rate

and buffer size as input, and selects the bit rate that leads to the

best expected return. The model is trained offline and deployed

on an adaptive bit rate server, demonstrating that the system

outperforms the best existing scheme by 12%-25% in terms

of QoE. Liu et al. apply deep Q learning to reduce the energy

consumption in cellular networks [392]. They train an agent

to dynamically switch on/off base stations based on traffic

consumption in areas of interest. An action-wise experience

replay mechanism is further designed for balancing different

traffic behaviours. Experiments show that their proposal can

significantly reduce the energy consumed by base stations,

outperforming naive table-based Q learning approaches. A

control mechanism for unmanned aerial vehicles using DQN

is proposed in [402], where multiple objectives are targeted:

maximizing energy efficiency, communications coverage, fair-

ness and connectivity. The authors conduct extensive simula-

tions in an virtual playground, showing that their agent is able

to learn the dynamics of the environment, achieving superior

performance over random and greedy control baselines.

Kim and Kim link deep learning with the load balancing

problem in IoT [387]. The authors suggest that DBNs can

effectively analyze network load and process structural

configuration, thereby achieving efficient load balancing in

IoT. Challita et al. employ a deep reinforcement learning

algorithm based on echo state networks to perform path

planning for a cluster of unmanned aerial vehicles [388].

Their proposal yields lower delay than a heuristic baseline. Xu

et al. employ a DRL agent to learn from network dynamics

how to control traffic flow [391]. They advocate that DRL

is suitable for this problem, as it performs remarkably well

in handling dynamic environments and sophisticated state

spaces. Simulations conducted over three network topologies

confirm this viewpoint, as the DRL agent significantly reduces

the delay, while providing throughput comparable to that of

traditional approaches. Zhu et al. employ the A3C algorithm

to address the caching problem in mobile edge computing.

Their method obtains superior cache hit ratios and traffic

offloading performance over three baselines caching methods.

Several open challenges are also pointed out, which are

worthy of future pursuit. The edge caching problem is also

addressed in [403], where He et al. architect a DQN agent to

perform dynamic orchestration of networking, caching, and

computing. Their method facilitates high revenue to mobile

virtual network operators.

Lessons learned: There exist three approaches to network

control using deep learning i.e., reinforcement learning, imita-

tion learning, and analysis-based control. Reinforcement learn-

ing requires to interact with the environment, trying different

actions and obtaining feedback in order to improve. The agent

will make mistakes during training, and usually needs a large

number of steps of steps to become smart. Therefore, most

works do not train the agent on the real infrastructure, as

making mistakes usually can have serious consequences for

the network. Instead, a simulator that mimics the real network

environments is built and the agent is trained offline using that.

This imposes high fidelity requirements on the simulator, as

the agent can not work appropriately in an environment that

is different from the one used for training. On the other hand,

although DRL performs remarkable well in many applications,

considerable amount of time and computing resources are

required to train an usable agent. This should be considered

in real-life implementation.

In contrast, the imitation learning mechanism “learns by

demonstration”. It requires a teacher that provides labels

telling the agent what it should do under certain circumstances.

In the networking context, this mechanism is usually employed

to reduce the computational time [188]. Specifically, in some

network application (e.g., routing), computing the optimal

solution is time-consuming, which cannot satisfy the delay

constraints of mobile network. To mitigate this, one can

generate a large dataset offline, and use an NN agent to learn

the optimal actions.

Analysis-based control on the other hand, is suitable for

problems were decisions cannot be based solely on the state

of the network environment. One can use a NN to extract addi-

tional information (e.g. traffic forecasts), which subsequently

aids decisions. For example, the dynamic spectrum assignment

can benefit from the analysis-based control.

H. Deep Learning Driven Network Security

With the increasing popularity of wireless connectivity,

protecting users, network equipment and data from malicious

attacks, unauthorized access and information leakage becomes

crucial. Cyber security systems guard mobile devices and

users through firewalls, anti-virus software, and Intrusion

Detection Systems (IDS) [499]. The firewall is an access

security gateway that allows or blocks the uplink and downlink

network traffic, based on pre-defined rules. Anti-virus software

detects and removes computer viruses, worms and Trojans and

malware. IDSs identify unauthorized and malicious activities,

or rule violations in information systems. Each performs

its own functions to protect network communication, central

servers and edge devices.

Modern cyber security systems benefit increasingly

from deep learning [501], since it can enable the system to

(i) automatically learn signatures and patterns from experience

and generalize to future intrusions (supervised learning); or

(ii) identify patterns that are clearly differed from regular

behavior (unsupervised learning). This dramatically reduces

the effort of pre-defined rules for discriminating intrusions.

Beyond protecting networks from attacks, deep learning can

also be used for attack purposes, bringing huge potential
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TABLE XVII: A summary of work on deep learning driven network security.

Level Reference Application Problem considered
Learning

paradigm
Model

Infrastructure

Azar et al. [407] Cyber security applications
Malware classification & Denial of service,

probing, remote to user & user to root
Unsupervised
& supervised

Stacked AE

Thing [187]
IEEE 802.11 network
anomaly detection and

attack classification
Flooding, injection and impersonation attacks

Unsupervised
& supervised

Stacked AE

Aminanto and
Kim [408]

Wi-Fi impersonation attacks
detection

Flooding, injection and impersonation attacks
Unsupervised
& supervised

MLP, AE

Feng et al. [409] Spectrum anomaly detection
Sudden signal-to-noise ratio changes in the

communication channels
Unsupervised
& supervised

AE

Khan et al. [410]
Flooding attacks detection
in wireless mesh networks

Moderate and severe distributed flood attack Supervised MLP

Diro and
Chilamkurti [411]

IoT distributed attacks
detection

Denial of service, probing, remote to user & user
to root

Supervised MLP

Saied et al. [412]
Distributed denial of service

attack detection
Known and unknown distributed denial of service

attack
Supervised MLP

Martin et al.

[413]
IoT intrusion detection

Denial of service, probing, remote to user & user
to root

Unsupervised
& supervised

Conditional
VAE

Hamedani et al.

[414]
Attacks detection in delayed

feedback networks
Attack detection in smart grids using reservoir

computing
Supervised MLP

Luo and
Nagarajany [348]

Anomalies in WSNs
Spikes and burst recorded by temperature and

relative humidity sensors
Unsupervised AE

Das et al. [415] IoT authentication Long duration of signal imperfections Supervised LSTM

Jiang et al. [416] MAC spoofing detection
Packets from different hardware use same MAC

address
Supervised CNN

Jiang et al. [422]
Cyberattack detection in
mobile cloud computing

Various cyberattacks from 3 different datasets
Unsupervised
+ supervised

RBM

Software

Yuan et al. [417] Android malware detection Apps in Contagio Mobile and Google Play Store
Unsupervised
& supervised

RBM

Yuan et al. [418] Android malware detection
Apps in Contagio Mobile, Google Play Store and

Genome Project
Unsupervised
& supervised

DBN

Su et al. [419] Android malware detection
Apps in Drebin, Android Malware Genome Project,

the Contagio Community, and Google Play Store
Unsupervised
& supervised

DBN + SVM

Hou et al. [420] Android malware detection App samples from Comodo Cloud Security Center
Unsupervised
& supervised

Stacked AE

Martinelli [421] Android malware detection
Apps in Drebin, Android Malware Genome Project

and Google Play Store
Supersived CNN

McLaughlin et al.

[423]
Android malware detection

Apps in Android Malware Genome project and
Google Play Store

Supersived CNN

Chen et al. [424]
Malicious application

detection at the network
edge

Publicly-available malicious applications
Unsupervised
& supervised

RBM

Wang et al. [226] Malware traffic classification Traffic extracted from 9 types of malware Superivised CNN
Oulehla et al.

[425]
Mobile botnet detection Client-server and hybrid botnets Unknown Unknown

Torres et al. [426] Botnet detection Spam, HTTP and unknown traffic Superivised LSTM
Eslahi et al. [427] Mobile botnet detection HTTP botnet traffic Superivised MLP
Alauthaman et al.

[428]
Peer-to-peer botnet detection Waledac and Strom Bots Superivised MLP

User privacy

Shokri and
Shmatikov [429]

Privacy preserving deep
learning

Avoiding sharing data in collaborative model
training

Superivised MLP, CNN

Phong et al. [430]
Privacy preserving deep

learning
Addressing information leakage introduced in [429] Supervised MLP

Ossia et al. [431]
Privacy-preserving mobile

analytics
Offloading feature extraction from cloud Supervised CNN

Abadi et al. [432]
Deep learning with
differential privacy

Preventing exposure of private information in
training data

Supervised MLP

Osia et al. [433]
Privacy-preserving personal

model training
Offloading personal data from clouds

Unsupervised
& supervised

MLP

Servia et al. [434]
Privacy-preserving model

inference
Breaking down large models for privacy-preserving

analytics
Supervised CNN

Hitaj et al. [435]
Stealing information from
collaborative deep learning

Breaking the ordinary and differentially private
collaborative deep learning

Unsupervised GAN

Hitaj et al. [432] Password guessing Generating passwords from leaked password set Unsupervised GAN
Greydanus [436] Enigma learning Reconstructing functions of polyalphabetic cipher Supervised LSTM

Maghrebi [437] Breaking cryptographic Side channel attacks Supervised
MLP, AE,

CNN, LSTM

Liu et al. [438] Password guessing
Employing adversarial generation to guess

passwords
Unsupervised LSTM

Ning et al. [439] Mobile apps sniffing
Defending against mobile apps sniffing through

noise injection
Supervised CNN

Wang et al. [500]
Private inference in mobile

cloud
Computation offloading and privacy preserving for

mobile inference
Supervised MLP, CNN
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to steal or crack user passwords or information. In this

subsection, we review deep learning driven network security

from three perspectives, namely infrastructure, software, and

user privacy. Specifically, infrastructure level security work

focuses on detecting anomalies that occur in the physical

network and software level work is centred on identifying

malware and botnets in mobile networks. From the user

privacy perspective, we discuss methods to protect from how

to protect against private information leakage, using deep

learning. To our knowledge, no other reviews summarize

these efforts. We summarize these works in Table XVII.

Infrastructure level security: We mostly focus on anomaly

detection at the infrastructure level, i.e. identifying network

events (e.g., attacks, unexpected access and use of data) that

do not conform to expected behaviors. Many researchers

exploit the outstanding unsupervised learning ability of AEs

[407]. For example, Thing investigates features of attacks and

threats that exist in IEEE 802.11 networks [187]. The author

employs a stacked AE to categorize network traffic into 5 types

(i.e. legitimate, flooding, injection and impersonation traffic),

achieving 98.67% overall accuracy. The AE is also exploited in

[408], where Aminanto and Kim use an MLP and stacked AE

for feature selection and extraction, demonstrating remarkable

performance. Similarly, Feng et al. use AEs to detect abnormal

spectrum usage in wireless communications [409]. Their ex-

periments suggest that the detection accuracy can significantly

benefit from the depth of AEs.

Distributed attack detection is also an important issue in

mobile network security. Khan et al. focus on detecting flood-

ing attacks in wireless mesh networks [410]. They simulate

a wireless environment with 100 nodes, and artificially inject

moderate and severe distributed flooding attacks, to generate a

synthetic dataset. Their deep learning based methods achieve

excellent false positive and false negative rates. Distributed

attacks are also studied in [411], where the authors focus on an

IoT scenario. Another work in [412] employs MLPs to detect

distributed denial of service attacks. By characterizing typical

patterns of attack incidents, the proposed model works well

in detecting both known and unknown distributed denial of

service attacks. More recently, Nguyen et al. employ RBMs to

classify cyberattacks in the mobile cloud in an online manner

[422]. Through unsupervised layer-wise pre-training and fine-

tuning, their methods obtain over 90% classification accuracy

on three different datasets, significantly outperforming other

machine learning approaches.

Martin et al. propose a conditional VAE to identify

intrusion incidents in IoT [413]. In order to improve detection

performance, their VAE infers missing features associated

with incomplete measurements, which are common in IoT

environments. The true data labels are embedded into the

decoder layers to assist final classification. Evaluations on the

well-known NSL-KDD dataset [502] demonstrate that their

model achieves remarkable accuracy in identifying denial

of service, probing, remote to user and user to root attacks,

outperforming traditional ML methods by 0.18 in terms of

F1 score. Hamedani et al. employ MLPs to detect malicious

attacks in delayed feedback networks [414]. The proposal

achieves more than 99% accuracy over 10,000 simulations.

Software level security: Nowadays, mobile devices are carry-

ing considerable amount of private information. This informa-

tion can be stolen and exploited by malicious apps installed on

smartphones for ill-conceived purposes [503]. Deep learning

is being exploited for analyzing and detecting such threats.

Yuan et al. use both labeled and unlabeled mobile apps

to train an RBM [417]. By learning from 300 samples,

their model can classify Android malware with remarkable

accuracy, outperforming traditional ML tools by up to 19%.

Their follow-up research in [418] named Droiddetector further

improves the detection accuracy by 2%. Similarly, Su et al.

analyze essential features of Android apps, namely requested

permission, used permission, sensitive application program-

ming interface calls, action and app components [419]. They

employ DBNs to extract features of malware and an SVM for

classification, achieving high accuracy and only requiring 6

seconds per inference instance.

Hou et al. attack the malware detection problem from a

different perspective. Their research points out that signature-

based detection is insufficient to deal with sophisticated An-

droid malware [420]. To address this problem, they propose

the Component Traversal, which can automatically execute

code routines to construct weighted directed graphs. By em-

ploying a Stacked AE for graph analysis, their framework

Deep4MalDroid can accurately detect Android malware that

intentionally repackages and obfuscates to bypass signatures

and hinder analysis attempts to their inner operations. This

work is followed by that of Martinelli et al., who exploit

CNNs to discover the relationship between app types and

extracted syscall traces from real mobile devices [421]. The

CNN has also been used in [423], where the authors draw

inspiration from NLP and take the disassembled byte-code of

an app as a text for analysis. Their experiments demonstrate

that CNNs can effectively learn to detect sequences of opcodes

that are indicative of malware. Chen et al. incorporate location

information into the detection framework and exploit an RBM

for feature extraction and classification [424]. Their proposal

improves the performance of other ML methods.

Botnets are another important threat to mobile networks.

A botnet is effectively a network that consists of machines

compromised by bots. These machine are usually under

the control of a botmaster who takes advantages of the

bots to harm public services and systems [504]. Detecting

botnets is challenging and now becoming a pressing task

in cyber security. Deep learning is playing an important

role in this area. For example, Oulehla et al. propose to

employ neural networks to extract features from mobile

botnet behaviors [425]. They design a parallel detection

framework for identifying both client-server and hybrid

botnets, and demonstrate encouraging performance. Torres

et al. investigate the common behavior patterns that botnets

exhibit across their life cycle, using LSTMs [426]. They

employ both under-sampling and over-sampling to address

the class imbalance between botnet and normal traffic in the

dataset, which is common in anomaly detection problems.

Similar issues are also studies in [427] and [428], where
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the authors use standard MLPs to perform mobile and

peer-to-peer botnet detection respectively, achieving high

overall accuracy.

User privacy level: Preserving user privacy during training

and evaluating a deep neural network is another important

research issue [505]. Initial research is conducted in [429],

where the authors enable user participation in the training

and evaluation of a neural network, without sharing their

input data. This allows to preserve individual’s privacy while

benefiting all users, as they collaboratively improve the model

performance. Their framework is revisited and improved in

[430], where another group of researchers employ additively

homomorphic encryption, to address the information leakage

problem ignored in [429], without compromising model accu-

racy. This significantly boosts the security of the system. More

recently, Wang et al. [500] propose a framework called AR-

DEN to preserve users’ privacy while reducing communication

overhead in mobile-cloud deep learning applications. ARDEN

partitions a NN across cloud and mobile devices, with heavy

computation being conducted on the cloud and mobile devices

performing only simple data transformation and perturbation,

using a differentially private mechanism. This simultaneously

guarantees user privacy, improves inference accuracy, and

reduces resource consumption.

Osia et al. focus on privacy-preserving mobile analytics

using deep learning. They design a client-server framework

based on the Siamese architecture [506], which accommodates

a feature extractor in mobile devices and correspondingly a

classifier in the cloud [431]. By offloading feature extraction

from the cloud, their system offers strong privacy guarantees.

An innovative work in [432] implies that deep neural networks

can be trained with differential privacy. The authors introduce

a differentially private SGD to avoid disclosure of private

information of training data. Experiments on two publicly-

available image recognition datasets demonstrate that their

algorithm is able to maintain users privacy, with a manageable

cost in terms of complexity, efficiency, and performance.

This approach is also useful for edge-based privacy filtering

techniques such as Distributed One-class Learning [507].

Servia et al. consider training deep neural networks on

distributed devices without violating privacy constraints [434].

Specifically, the authors retrain an initial model locally, tai-

lored to individual users. This avoids transferring personal

data to untrusted entities, hence user privacy is guaranteed.

Osia et al. focus on protecting user’s personal data from the

inferences’ perspective. In particular, they break the entire

deep neural network into a feature extractor (on the client side)

and an analyzer (on the cloud side) to minimize the exposure

of sensitive information. Through local processing of raw

input data, sensitive personal information is transferred into

abstract features, which avoids direct disclosure to the cloud.

Experiments on gender classification and emotion detection

suggest that this framework can effectively preserve user

privacy, while maintaining remarkable inference accuracy.

Deep learning has also been exploited for cyber attacks,

including attempts to compromise private user information and

guess passwords. In [435], Hitaj et al. suggest that learning

a deep model collaboratively is not reliable. By training a

GAN, their attacker is able to affect such learning process and

lure the victims to disclose private information, by injecting

fake training samples. Their GAN even successfully breaks

the differentially private collaborative learning in [432]. The

authors further investigate the use of GANs for password

guessing. In [508], they design PassGAN, which learns the

distribution of a set of leaked passwords. Once trained on a

dataset, PassGAN is able to match over 46% of passwords in a

different testing set, without user intervention or cryptography

knowledge. This novel technique has potential to revolutionize

current password guessing algorithms.
Greydanus breaks a decryption rule using an LSTM

network [436]. They treat decryption as a sequence-to-

sequence translation task, and train a framework with large

enigma pairs. The proposed LSTM demonstrates remarkable

performance in learning polyalphabetic ciphers. Maghrebi

et al. exploit various deep learning models (i.e. MLP, AE,

CNN, LSTM) to construct a precise profiling system and

perform side channel key recovery attacks [437]. Surprisingly,

deep learning based methods demonstrate overwhelming

performance over other template machine learning attacks in

terms of efficiency in breaking both unprotected and protected

Advanced Encryption Standard implementations. In [439],

Ning et al. demonstrate that an attacker can use a CNN to

infer with over 84% accuracy what apps run on a smartphone

and their usage, based on magnetometer or orientation

data. The accuracy can increase to 98% if motion sensors

information is also taken into account, which jeopardizes user

privacy. To mitigate this issue, the authors propose to inject

Gaussian noise into the magnetometer and orientation data,

which leads to a reduction in inference accuracy down to

15%, thereby effectively mitigating the risk of privacy leakage.

Lessons learned: Most deep learning based solutions focus

on existing network attacks, yet new attacks emerge every day.

As these new attacks may have different features and appear

to behave ‘normally’, old NN models may not easily detect

them. Therefore, an effective deep learning technique should

be able to (i) rapidly transfer the knowledge of old attacks to

detect newer ones; and (ii) constantly absorb the features of

newcomers and update the underlying model. Transfer learning

and lifelong learning are strong candidates to address this

problems, as we will discuss in Sec.VII-C. Research in this

directions remains shallow, hence we expect more efforts in

the future.
Another issue to which attention should be paid is the fact

that NNs are vulnerable to adversarial attacks. This has been

briefly discussed in Sec. III-E. Although formal reports on

this matter are lacking, hackers may exploit weaknesses in

NN models and training procedures to perform attacks that

subvert deep learning based cyber-defense systems. This is an

important potential pitfall that should be considered in real

implementations.

I. Deep Learning Driven Signal Processing

Deep learning is also gaining increasing attention in signal

processing, in applications including Multi-Input Multi-Output
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TABLE XVIII: A summary of deep learning driven signal processing.

Domain Reference Application Model

MIMO systems

Samuel et al. [449] MIMO detection MLP
Yan et al. [450] Signal detection in a MIMO-OFDM system AE+ELM

Vieira et al. [325] Massive MIMO fingerprint-based positioning CNN
Neumann et al. [448] MIMO channel estimation CNN

Wijaya et al. [381], [383] Inter-cell interference cancellation and transmit power optimization RBM
O’Shea et al. [440] Optimization of representations and encoding/decoding processes AE

Borgerding et al. [441] Sparse linear inverse problem in MIMO CNN
Fujihashi et al. [442] MIMO nonlinear equalization MLP

Huang et al. [460] Super-resolution channel and direction-of-arrival estimation MLP

Modulation

Rajendran et al. [443] Automatic modulation classification LSTM

West and O’Shea [444] Modulation recognition
CNN, ResNet, Inception

CNN, LSTM

O’Shea et al. [445] Modulation recognition
Radio transformer

network
O’Shea and Hoydis [451] Modulation classification CNN

Jagannath et al. [452] Modulation classification in a software defined radio testbed MLP

Others

O’Shea et al. [453] Radio traffic sequence recognition LSTM

O’Shea et el. [454] Learning to communicate over an impaired channel
AE + radio transformer

network
Ye et al. [455] Channel estimation and signal detection in OFDM systsms. MLP

Liang et al. [456] Channel decoding CNN
Lyu et al. [457] NNs for channel decoding MLP, CNN and RNN

Dörner et al. [458] Over-the-air communications system AE
Liao et al. [459] Rayleigh fading channel prediction MLP

Huang et al. [461] Light-emitting diode (LED) visible light downlink error correction AE
Alkhateeb et al. [447] Coordinated beamforming for highly-mobile millimeter wave systems MLP

Gante et al. [446] Millimeter wave positioning CNN
Ye et al. [509] Channel agnostic end-to-end learning based communication system Conditional GAN

(MIMO) and modulation. MIMO has become a fundamental

technique in current wireless communications, both in cellular

and WiFi networks. By incorporating deep learning, MIMO

performance is intelligently optimized based on environment

conditions. Modulation recognition is also evolving to be more

accurate, by taking advantage of deep learning. We give an

overview of relevant work in this area in Table XVIII.

MIMO Systems: Samuel et al. suggest that deep neural

networks can be a good estimator of transmitted vectors in

a MIMO channel. By unfolding a projected gradient de-

scent method, they design an MLP-based detection network

to perform binary MIMO detection [449]. The Detection

Network can be implemented on multiple channels after a

single training. Simulations demonstrate that the proposed

architecture achieves near-optimal accuracy, while requiring

light computation without prior knowledge of Signal-to-Noise

Ratio (SNR). Yan et al. employ deep learning to solve a similar

problem from a different perspective [450]. By considering

the characteristic invariance of signals, they exploit an AE as

a feature extractor, and subsequently use an Extreme Learn-

ing Machine (ELM) to classify signal sources in a MIMO

orthogonal frequency division multiplexing (OFDM) system.

Their proposal achieves higher detection accuracy than several

traditional methods, while maintaining similar complexity.

Vieira et al. show that massive MIMO channel measure-

ments in cellular networks can be utilized for fingerprint-

based inference of user positions [325]. Specifically, they

design CNNs with weight regularization to exploit the sparse

and information-invariance of channel fingerprints, thereby

achieving precise positions inference. CNNs have also been

employed for MIMO channel estimation. Neumann et al.

exploit the structure of the MIMO channel model to design

a lightweight, approximated maximum likelihood estimator

for a specific channel model [448]. Their methods outperform

traditional estimators in terms of computation cost and re-

duce the number of hyper-parameters to be tuned. A similar

idea is implemented in [455], where Ye et al. employ an

MLP to perform channel estimation and signal detection in

OFDM systems.

Wijaya et al. consider applying deep learning to a different

scenario [381], [383]. The authors propose to use non-iterative

neural networks to perform transmit power control at base

stations, thereby preventing degradation of network perfor-

mance due to inter-cell interference. The neural network is

trained to estimate the optimal transmit power at every packet

transmission, selecting that with the highest activation prob-

ability. Simulations demonstrate that the proposed framework

significantly outperform the belief propagation algorithm that

is routinely used for transmit power control in MIMO systems,

while attaining a lower computational cost.

More recently, O’Shea et al. bring deep learning to physical

layer design [440]. They incorporate an unsupervised deep

AE into a single-user end-to-end MIMO system, to opti-

mize representations and the encoding/decoding processes, for

transmissions over a Rayleigh fading channel. We illustrate

the adopted AE-based framework in Fig 18. This design

incorporates a transmitter consisting of an MLP followed by

a normalization layer, which ensures that physical constraints

on the signal are guaranteed. After transfer through an additive

white Gaussian noise channel, a receiver employs another

MLP to decode messages and select the one with the highest

probability of occurrence. The system can be trained with

an SGD algorithm in an end-to-end manner. Experimental
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Fig. 18: A communications system over an additive white Gaussian noise channel represented as an autoencoder.

results show that the AE system outperforms the Space Time

Block Code approach in terms of SNR by approximately 15

dB. In [441], Borgerding et al. propose to use deep learning

to recover a sparse signal from noisy linear measurements

in MIMO environments. The proposed scheme is evaluated

on compressive random access and massive-MIMO channel

estimation, where it achieves better accuracy over traditional

algorithms and CNNs.

Modulation: West and O’Shea compare the modulation

recognition accuracy of different deep learning architectures,

including traditional CNN, ResNet, Inception CNN, and

LSTM [444]. Their experiments suggest that the LSTM is the

best candidate for modulation recognition, since it achieves

the highest accuracy. Due to its superior performance, an

LSTM is also employed for a similar task in [443]. O’Shea

et al. then focus on tailoring deep learning architectures to

radio properties. Their prior work is improved in [445], where

they architect a novel deep radio transformer network for

precise modulation recognition. Specifically, they introduce

radio-domain specific parametric transformations into a spatial

transformer network, which assists in the normalization of

the received signal, thereby achieving superior performance.

This framework also demonstrates automatic synchronization

abilities, which reduces the dependency on traditional expert

systems and expensive signal analytic processes. In [451],

O’Shea and Hoydis introduce several novel deep learning

applications for the network physical layer. They demonstrate

a proof-of-concept where they employ a CNN for modulation

classification and obtain satisfying accuracy.

Other signal processing applciations: Deep learning is also

adopted for radio signal analysis. In [453], O’Shea et al.

employ an LSTM to replace sequence translation routines

between radio transmitter and receiver. Although their frame-

work works well in ideal environments, its performance drops

significantly when introducing realistic channel effects. Later,

the authors consider a different scenario in [454], where they

exploit a regularized AE to enable reliable communications

over an impaired channel. They further incorporate a radio

transformer network for signal reconstruction at the decoder

side, thereby achieving receiver synchronization. Simulations

demonstrate that this approach is reliable and can be efficiently

implemented.

In [456], Liang et al. exploit noise correlations to decode

channels using a deep learning approach. Specifically, they use

a CNN to reduce channel noise estimation errors by learning

the noise correlation. Experiments suggest that their frame-

work can significantly improve the decoding performance.

The decoding performance of MLPs , CNNs and RNNs is

compared in [457]. By conducting experiments in different

setting, the obtained results suggest the RNN achieves the

best decoding performance, nonetheless yielding the highest

computational overhead. Liao et al. employ MLPs to per-

form accurate Rayleigh fading channel prediction [459]. The

authors further equip their proposal with a sparse channel

sample construction method to save system resources without

compromising precision. Deep learning can further aid visible

light communication. In [461], Huang et al. employ a deep

learning based system for error correction in optical commu-

nications. Specifically, an AE is used in their work to perform

dimension reduction on light-emitting diode (LED) visible

light downlink, thereby maximizing the channel bandwidth .

The proposal follows the theory in [451], where O’Shea et

al. demonstrate that deep learning driven signal processing

systems can perform as good as traditional encoding and/or

modulation systems.

Deep learning has been further adopted in solving

millimeter wave beamforming. In [447], Alkhateeb et al.

propose a millimeter wave communication system that utilizes

MLPs to predict beamforming vectors from signals received

from distributed base stations. By substituting a genie-aided

solution with deep learning, their framework reduces the

coordination overhead, enabling wide-coverage and low-

latency beamforming. Similarly, Gante et al. employ CNNs

to infer the position of a device, given the received millimeter

wave radiation. Their preliminary simulations show that the

CNN-based system can achieve small estimation errors in

a realistic outdoors scenario, significantly outperforming

existing prediction approaches.

Lessons learned: Deep learning is beginning to play an
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TABLE XIX: A summary of emerging deep learning driven mobile network applications.

Reference Application Model Key contribution

Gonzalez et al. [462]
Network data
monetifzation

-
A platform named Net2Vec to facilitate deep learning deployment in

communication networks.

Kaminski et al. [463]
In-network computation

for IoT
MLP Enables to perform collaborative data processing and reduces latency.

Xiao et al. [464] Mobile crowdsensing Deep Q learning Mitigates vulnerabilities of mobile crowdsensing systems.

Luong et al. [465]
Resource allocation for

mobile blockchains
MLP

Employs deep learning to perform monotone transformations of miners’bids
and outputs the allocation and conditional payment rules in optimal auctions.

Gulati et al. [466]
Data dissemination in

Internet of Vehicles (IoV)
CNN

Investigates the relationship between data dissemination performance and
social score, energy level, number of vehicles and their speed.

important role in signal processing applications and the per-

formance demonstrated by early prototypes is remarkable. This

is because deep learning can prove advantageous with regards

to performance, complexity, and generalization capabilities.

At this stage, research in this area is however incipient. We

can only expect that deep learning will become increasingly

popular in this area.

J. Emerging Deep Learning Applications in Mobile Networks

In this part, we review work that builds upon deep learning

in other mobile networking areas, which are beyond the

scopes of the subjects discussed thus far. These emerging

applications open several new research directions, as we

discuss next. A summary of these works is given in Table XIX.

Network Data Monetization: Gonzalez et al. employ

unsupervised deep learning to generate real-time accurate

user profiles [462] using an on-network machine learning

platform called Net2Vec [510]. Specifically, they analyze

user browsing data in real time and generate user profiles

using product categories. The profiles can be subsequently

associated with the products that are of interest to the users

and employed for online advertising.

IoT In-Network Computation: Instead of regarding IoT

nodes as producers of data or the end consumers of processed

information, Kaminski et al. embed neural networks into

an IoT deployment and allow the nodes to collaboratively

process the data generated [463]. This enables low-latency

communication, while offloading data storage and processing

from the cloud. In particular, the authors map each hidden

unit of a pre-trained neural network to a node in the IoT

network, and investigate the optimal projection that leads

to the minimum communication overhead. Their framework

achieves functionality similar to in-network computation in

WSNs and opens a new research directions in fog computing.

Mobile Crowdsensing: Xiao et al. investigate vulnerabilities

facing crowdsensing in the mobile network context. They

argue that there exist malicious mobile users who intentionally

provide false sensing data to servers, to save costs and preserve

their privacy, which in turn can make mobile crowdsensings

systems vulnerable [464]. The authors model the server-users

system as a Stackelberg game, where the server plays the

role of a leader that is responsible for evaluating the sensing

effort of individuals, by analyzing the accuracy of each

sensing report. Users are paid based on the evaluation of

their efforts, hence cheating users will be punished with zero

reward. To design an optimal payment policy, the server

employs a deep Q network, which derives knowledge from

experience sensing reports, without requiring specific sensing

models. Simulations demonstrate superior performance in

terms of sensing quality, resilience to attacks, and server

utility, as compared to traditional Q learning based and

random payment strategies.

Mobile Blockchain: Substantial computing resource

requirements and energy consumption limit the applicability

of blockchain in mobile network environments. To mitigate

this problem, Luong et al. shed light on resource management

in mobile blockchain networks based on optimal auction

in [465]. They design an MLP to first conduct monotone

transformations of the miners’ bids and subsequently output

the allocation scheme and conditional payment rules for each

miner. By running experiments with different settings, the

results suggest the propsoed deep learning based framework

can deliver much higher profit to edge computing service

provider than the second-price auction baseline.

Internet of Vehicles (IoV): Gulati et al. extend the success

of deep learning to IoV [466]. The authors design a deep

learning-based content centric data dissemination approach

that comprises three steps, namely (i) performing energy

estimation on selected vehicles that are capable of data

dissemination; (ii) employing a Weiner process model to

identify stable and reliable connections between vehicles;

and (iii) using a CNN to predict the social relationship

among vehicles. Experiments unveil that the volume of data

disseminated is positively related to social score, energy

levels, and number of vehicles, while the speed of vehicles

has negative impact on the connection probability.

Lessons learned: The adoption of deep learning in the

mobile and wireless networking domain is exciting and un-

doubtedly many advances are yet to appear. However, as

discussed in Sec. III-E, deep learning solutions are not uni-

versal and may not be suitable for every problem. One should

rather regard deep learning as a powerful tool that can assist

with fast and accurate inference, and facilitate the automation

of some processes previously requiring human intervention.

Nevertheless, deep learning algorithms will make mistakes,

and their decisions might not be easy to interpret. In tasks

that require high interpretability and low fault-tolerance, deep

learning still has a long way to go, which also holds for the
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TABLE XX: Summary of works on improving deep learning for mobile devices and systems.

Reference Methods Target model

Iandola et al. [516] Filter size shrinking, reducing input channels and late downsampling CNN

Howard et al. [517] Depth-wise separable convolution CNN

Zhang et al. [518] Point-wise group convolution and channel shuffle CNN

Zhang et al. [519] Tucker decomposition AE

Cao et al. [520] Data parallelization by RenderScript RNN

Chen et al. [521] Space exploration for data reusability and kernel redundancy removal CNN

Rallapalli et al. [522] Memory optimizations CNN

Lane et al. [523] Runtime layer compression and deep architecture decomposition MLP, CNN

Huynh et al. [524] Caching, Tucker decomposition and computation offloading CNN

Wu et al. [525] Parameters quantization CNN

Bhattacharya and Lane [526] Sparsification of fully-connected layers and separation of convolutional kernels MLP, CNN

Georgiev et al. [99] Representation sharing MLP

Cho and Brand [527] Convolution operation optimization CNN

Guo and Potkonjak [528] Filters and classes pruning CNN

Li et al. [529] Cloud assistance and incremental learning CNN

Zen et al. [530] Weight quantization LSTM

Falcao et al. [531] Parallelization and memory sharing Stacked AE

Fang et al. [532] Model pruning and recovery scheme CNN

Xu et al. [533] Reusable region lookup and reusable region propagation scheme CNN

Liu et al. [534]
Using deep Q learning based optimizer to achieve appropriate balance between accuracy, latency,

storage and energy consumption for deep NNs on mobile platforms
CNN

Chen et al. [535]
Machine learning based optimization system to automatically explore and search for optimized

tensor operators
All NN

architectures

Yao et al. [536] Learning model execution time and performing the model compression
MLP, CNN,

GRU, and LSTM

Li et al. [537] streamline slimming and branch slimming CNN

majority of ML algorithms.

VII. TAILORING DEEP LEARNING TO MOBILE NETWORKS

Although deep learning performs remarkably in many mo-

bile networking areas, the No Free Lunch (NFL) theorem

indicates that there is no single model that can work univer-

sally well in all problems [511]. This implies that for any

specific mobile and wireless networking problem, we may

need to adapt different deep learning architectures to achieve

the best performance. In this section, we look at how to tailor

deep learning to mobile networking applications from three

perspectives, namely, mobile devices and systems, distributed

data centers, and changing mobile network environments.

A. Tailoring Deep Learning to Mobile Devices and Systems

The ultra-low latency requirements of future 5G networks

demand runtime efficiency from all operations performed by

mobile systems. This also applies to deep learning driven

applications. However, current mobile devices have limited

hardware capabilities, which means that implementing com-

plex deep learning architectures on such equipment may be

computationally unfeasible, unless appropriate model tuning is

performed. To address this issue, ongoing research improves

existing deep learning architectures [512], such that the in-

ference process does not violate latency or energy constraints

[513], [514], nor raise any privacy concern [515]. We outline

these works in Table XX and discuss their key contributions

next.

Iandola et al. design a compact architecture for embedded

systems named SqueezeNet, which has similar accuracy to

that of AlexNet [88], a classical CNN, yet 50 times fewer

parameters [516]. SqueezeNet is also based on CNNs, but

its significantly smaller model size (i) allows more efficiently

training on distributed systems; (ii) reduces the transmission

overhead when updating the model at the client side; and (iii)

facilitates deployment on resource-limited embedded devices.

Howard et al. extend this work and introduce an efficient

family of streamlined CNNs called MobileNet, which uses

depth-wise separable convolution operations to drastically

reduce the number of computations required and the model

size [517]. This new design can run with low latency and can

satisfy the requirements of mobile and embedded vision ap-

plications. The authors further introduce two hyper-parameters

to control the width and resolution of multipliers, which can

help strike an appropriate trade-off between accuracy and

efficiency. The ShuffleNet proposed by Zhang et al. improves

the accuracy of MobileNet by employing point-wise group

convolution and channel shuffle, while retaining similar model

complexity [518]. In particular, the authors discover that more

groups of convolution operations can reduce the computation

requirements.

Zhang et al. focus on reducing the number of parameters of

structures with fully-connected layers for mobile multimedia

features learning [519]. This is achieved by applying Trucker

decomposition to weight sub-tensors in the model, while

maintaining decent reconstruction capability. The Trucker de-

composition has also been employed in [524], where the

authors seek to approximate a model with fewer parameters, in

order to save memory. Mobile optimizations are further studied

for RNN models. In [520], Cao et al. use a mobile toolbox

called RenderScript35 to parallelize specific data structures and

enable mobile GPUs to perform computational accelerations.

Their proposal reduces the latency when running RNN models

35Android Renderscript https://developer.android.com/guide/topics/
renderscript/compute.html.
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on Android smartphones. Chen et al. shed light on imple-

menting CNNs on iOS mobile devices [521]. In particular,

they reduce the model executions latency, through space ex-

ploration for data re-usability and kernel redundancy removal.

The former alleviates the high bandwidth requirements of

convolutional layers, while the latter reduces the memory

and computational requirements, with negligible performance

degradation.

Rallapalli et al. investigate offloading very deep CNNs from

clouds to edge devices, by employing memory optimization on

both mobile CPUs and GPUs [522]. Their framework enables

running at high speed deep CNNs with large memory re-

quirements in mobile object detection applications. Lane et al.

develop a software accelerator, DeepX, to assist deep learning

implementations on mobile devices. The proposed approach

exploits two inference-time resource control algorithms, i.e.,

runtime layer compression and deep architecture decomposi-

tion [523]. The runtime layer compression technique controls

the memory and computation runtime during the inference

phase, by extending model compression principles. This is

important in mobile devices, since offloading the inference

process to edge devices is more practical with current hardware

platforms. Further, the deep architecture designs “decomposi-

tion plans” that seek to optimally allocate data and model

operations to local and remote processors. By combining

these two, DeepX enables maximizing energy and runtime

efficiency, under given computation and memory constraints.

Yao et al. [536] design a framework called FastDeepIoT, which

fisrt learns the execution time of NN models on target de-

vices, and subsequently conducts model compression to reduce

the runtime without compromising the inference accuracy.

Through this process, up to 78% of execution time and 69%

of energy consumption is reduced, compared to state-of-the-art

compression algorithms.

More recently, Fang et al. design a framework called

NestDNN, to provide flexible resource-accuracy trade-offs

on mobile devices [532]. To this end, the NestDNN first

adopts a model pruning and recovery scheme, which translates

deep NNs to single compact multi-capacity models. With this

approach up to 4.22% inference accuracy can be achieved

with six mobile vision applications, at a 2.0× faster video

frame processing rate and reducing energy consumption by

1.7×. In [533], Xu et al. accelerate deep learning inference

for mobile vision from the caching perspective. In particular,

the proposed framework called DeepCache stores recent input

frames as cache keys and recent feature maps for individual

CNN layers as cache values. The authors further employ

reusable region lookup and reusable region propagation, to

enable a region matcher to only run once per input video

frame and load cached feature maps at all layers inside the

CNN. This reduces the inference time by 18% and energy

consumption by 20% on average. Liu et al. develop a usage-

driven framework named AdaDeep, to select a combination

of compression techniques for a specific deep NN on mobile

platforms [534]. By using a deep Q learning optimizer, their

proposal can achieve appropriate trade-offs between accuracy,

latency, storage and energy consumption.

Beyond these works, researchers also successfully adapt

deep learning architectures through other designs and sophis-

ticated optimizations, such as parameters quantization [525],

[530], model slimming [537], sparsification and separation

[526], representation and memory sharing [99], [531], con-

volution operation optimization [527], pruning [528], cloud

assistance [529] and compiler optimization [535]. These tech-

niques will be of great significance when embedding deep

neural networks into mobile systems.

B. Tailoring Deep Learning to Distributed Data Containers

Mobile systems generate and consume massive volumes of

mobile data every day. This may involve similar content, but

which is distributed around the world. Moving such data to

centralized servers to perform model training and evaluation

inevitably introduces communication and storage overheads,

which does not scale. However, neglecting characteristics

embedded in mobile data, which are associated with local

culture, human mobility, geographical topology, etc., during

model training can compromise the robustness of the model

and implicitly the performance of the mobile network appli-

cations that build on such models. The solution is to offload

model execution to distributed data centers or edge devices,

to guarantee good performance, whilst alleviating the burden

on the cloud.

As such, one of the challenges facing parallelism, in the con-

text of mobile networking, is that of training neural networks

on a large number of mobile devices that are battery powered,

have limited computational capabilities and in particular lack

GPUs. The key goal of this paradigm is that of training with

a large number of mobile CPUs at least as effective as with

GPUs. The speed of training remains important, but becomes

a secondary goal.

Generally, there are two routes to addressing this problem,

namely, (i) decomposing the model itself, to train (or make

inference with) its components individually; or (ii) scaling

the training process to perform model update at different

locations associated with data containers. Both schemes allow

one to train a single model without requiring to centralize all

data. We illustrate the principles of these two approaches in

Fig. 19 and summarize the existing work in Table XXI.

Model Parallelism. Large-scale distributed deep learning is

first studied in [128], where the authors develop a framework

named DistBelief, which enables training complex neural net-

works on thousands of machines. In their framework, the full

model is partitioned into smaller components and distributed

over various machines. Only nodes with edges (e.g. connec-

tions between layers) that cross boundaries between machines

are required to communicate for parameters update and infer-

ence. This system further involves a parameter server, which

enables each model replica to obtain the latest parameters

during training. Experiments demonstrate that the proposed

framework can be training significantly faster on a CPU

cluster, compared to training on a single GPU, while achieving

state-of-the-art classification performance on ImageNet [193].

Teerapittayanon et al. propose deep neural networks tailored

to distributed systems, which include cloud servers, fog layers
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TABLE XXI: Summary of work on model and training parallelism for mobile systems and devices.

Parallelism

Paradigm

Reference Target Core Idea Improvement

Model
parallelism

Dean et al. [128]
Very large deep neural
networks in distributed

systems.

Employs downpour SGD to support a large number
of model replicas and a Sandblaster framework to

support a variety of batch optimizations.

Up to 12× model training
speed up, using 81

machines.
Teerapittayanon

et al. [538]
Neural network on cloud

and end devices.
Maps a deep neural network to a distributed setting

and jointly trains each individual section.
Up to 20× reduction of

communication cost.

De Coninck et

al. [115]
Neural networks on IoT

devices.

Distills from a pre-trained NN to obtain a smaller
NN that performs classification on a subset of the

entire space.

10ms inference latency
on a mobile device.

Omidshafiei et

al. [539]

Multi-task multi-agent
reinforcement learning

under partial
observability.

Deep recurrent Q-networks & cautiously-optimistic
learners to approximate action-value function;

decentralized concurrent experience replays
trajectories to stabilize training.

Near-optimal execution
time.

Training
parallelism

Recht et al.

[540]
Parallelized SGD.

Eliminates overhead associated with locking in
distributed SGD.

Up to 10× speed up in
distributed training.

Goyal et al.

[541]
Distributed synchronous

SGD.

Employs a hyper-parameter-free learning rule to
adjust the learning rate and a warmup mechanism

to address the early optimization problem.

Trains billions of images
per day.

Zhang et al.

[542]
Asynchronous distributed

SGD.

Combines the stochastic variance reduced gradient
algorithm and a delayed proximal gradient

algorithm.
Up to 6× speed up

Hardy et al.

[543]
Distributed deep learning

on edge-devices.
Compression technique (AdaComp) to reduce

ingress traffic at parameter severs.
Up to 191× reduction in

ingress traffic.
McMahan et al.

[544]
Distributed training on

mobile devices.
Users collectively enjoy benefits of shared models
trained with big data without centralized storage.

Up to 64.3× training
speedup.

Keith et al. [545]
Data computation over

mobile devices.
Secure multi-party computation to obtain model

parameters on distributed mobile devices.

Up to 1.98×
communication

expansion.

Machine/Device 1

Machine/Device 2

Machine/Device 3 Machine/Device 4

Model Parallelism

Data Collection

Asynchronous SGD

Time

Training Parallelism

Fig. 19: The underlying principles of model parallelism (left) and training parallelism (right).

and geographically distributed devices [538]. The authors

scale the overall neural network architecture and distribute

its components hierarchically from cloud to end devices.

The model exploits local aggregators and binary weights, to

reduce computational storage, and communication overheads,

while maintaining decent accuracy. Experiments on a multi-

view multi-camera dataset demonstrate that this proposal can

perform efficient cloud-based training and local inference. Im-

portantly, without violating latency constraints, the deep neural

network obtains essential benefits associated with distributed

systems, such as fault tolerance and privacy.

Coninck et al. consider distributing deep learning over IoT

for classification applications [115]. Specifically, they deploy

a small neural network to local devices, to perform coarse

classification, which enables fast response filtered data to be

sent to central servers. If the local model fails to classify, the

larger neural network in the cloud is activated to perform fine-

grained classification. The overall architecture maintains good

accuracy, while significantly reducing the latency typically

introduced by large model inference.

Decentralized methods can also be applied to deep

reinforcement learning. In [539], Omidshafiei et al. consider

a multi-agent system with partial observability and limited

communication, which is common in mobile systems. They

combine a set of sophisticated methods and algorithms,

including hysteresis learners, a deep recurrent Q network,
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concurrent experience replay trajectories and distillation, to

enable multi-agent coordination using a single joint policy

under a set of decentralized partially observable MDPs.

Their framework can potentially play an important role in

addressing control problems in distributed mobile systems.

Training Parallelism is also essential for mobile system,

as mobile data usually come asynchronously from differ-

ent sources. Training models effectively while maintaining

consistency, fast convergence, and accuracy remains however

challenging [546].

A practical method to address this problem is to perform

asynchronous SGD. The basic idea is to enable the server that

maintains a model to accept delayed information (e.g. data,

gradient updates) from workers. At each update iteration, the

server only requires to wait for a smaller number of workers.

This is essential for training a deep neural network over

distributed machines in mobile systems. The asynchronous

SGD is first studied in [540], where the authors propose a lock-

free parallel SGD named HOGWILD, which demonstrates

significant faster convergence over locking counterparts. The

Downpour SGD in [128] improves the robustness of the

training process when work nodes breakdown, as each model

replica requests the latest version of the parameters. Hence

a small number of machine failures will not have a sig-

nificant impact on the training process. A similar idea has

been employed in [541], where Goyal et al. investigate the

usage of a set of techniques (i.e. learning rate adjustment,

warm-up, batch normalization), which offer important insights

into training large-scale deep neural networks on distributed

systems. Eventually, their framework can train an network on

ImageNet within 1 hour, which is impressive in comparison

with traditional algorithms.

Zhang et al. argue that most of asynchronous SGD al-

gorithms suffer from slow convergence, due to the inherent

variance of stochastic gradients [542]. They propose an im-

proved SGD with variance reduction to speed up the con-

vergence. Their algorithm outperforms other asynchronous

SGD approaches in terms of convergence, when training deep

neural networks on the Google Cloud Computing Platform.

The asynchronous method has also been applied to deep

reinforcement learning. In [80], the authors create multiple

environments, which allows agents to perform asynchronous

updates to the main structure. The new A3C algorithm breaks

the sequential dependency and speeds up the training of the

traditional Actor-Critic algorithm significantly. In [543], Hardy

et al. further study distributed deep learning over cloud and

edge devices. In particular, they propose a training algorithm,

AdaComp, which allows to compress worker updates of the

target model. This significantly reduce the communication

overhead between cloud and edge, while retaining good fault

tolerance.

Federated learning is an emerging parallelism approach that

enables mobile devices to collaboratively learn a shared model,

while retaining all training data on individual devices [544],

[547]. Beyond offloading the training data from central servers,

this approach performs model updates with a Secure Aggrega-

tion protocol [545], which decrypts the average updates only if

enough users have participated, without inspecting individual

updates. Based on this idea, Google recently build a prototype

system using federated Learning in the domain of mobile

devices [548]. This fulfills the objective that “bringing the code

to the data, instead of the data to the code", which protects

individuals’ privacy.

C. Tailoring Deep Learning to Changing Mobile Network

Environments

Mobile network environments often exhibit changing

patterns over time. For instance, the spatial distributions

of mobile data traffic over a region may vary significantly

between different times of the day [549]. Applying a deep

learning model in changing mobile environments requires

lifelong learning ability to continuously absorb new features,

without forgetting old but essential patterns. Moreover, new

smartphone-targeted viruses are spreading fast via mobile

networks and may severely jeopardize users’ privacy and

business profits. These pose unprecedented challenges to

current anomaly detection systems and anti-virus software,

as such tools must react to new threats in a timely manner,

using limited information. To this end, the model should

have transfer learning ability, which can enable the fast

transfer of knowledge from pre-trained models to different

jobs or datasets. This will allow models to work well with

limited threat samples (one-shot learning) or limited metadata

descriptions of new threats (zero-shot learning). Therefore,

both lifelong learning and transfer learning are essential for

applications in ever changing mobile network environments.

We illustrated these two learning paradigms in Fig. 20 and

review essential research in this subsection.

Deep Lifelong Learning mimics human behaviors and seeks

to build a machine that can continuously adapt to new envi-

ronments, retain as much knowledge as possible from previous

learning experience [550]. There exist several research efforts

that adapt traditional deep learning to lifelong learning. For

example, Lee et al. propose a dual-memory deep learning

architecture for lifelong learning of everyday human behaviors

over non-stationary data streams [551]. To enable the pre-

trained model to retain old knowledge while training with new

data, their architecture includes two memory buffers, namely

a deep memory and a fast memory. The deep memory is

composed of several deep networks, which are built when the

amount of data from an unseen distribution is accumulated

and reaches a threshold. The fast memory component is a

small neural network, which is updated immediately when

coming across a new data sample. These two memory mod-

ules allow to perform continuous learning without forgetting

old knowledge. Experiments on a non-stationary image data

stream prove the effectiveness of this model, as it significantly

outperforms other online deep learning algorithms. The mem-

ory mechanism has also been applied in [552]. In particular,

the authors introduce a differentiable neural computer, which

allows neural networks to dynamically read from and write to

an external memory module. This enables lifelong lookup and

forgetting of knowledge from external sources, as humans do.
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Fig. 20: The underlying principles of deep lifelong learning (left) and deep transfer learning (right). Lifelong learning retains

the knowledge learned while transfer learning exploits labeled data of one domain to learn in a new target domain.

Parisi et al. consider a different lifelong learning scenario

in [553]. They abandon the memory modules in [551] and

design a self-organizing architecture with recurrent neurons

for processing time-varying patterns. A variant of the Growing

When Required network is employed in each layer, to to

predict neural activation sequences from the previous network

layer. This allows learning time-vary correlations between

inputs and labels, without requiring a predefined number

of classes. Importantly, the framework is robust, as it has

tolerance to missing and corrupted sample labels, which is

common in mobile data.

Another interesting deep lifelong learning architecture is

presented in [554], where Tessler et al. build a DQN agent

that can retain learned skills in playing the famous computer

game Minecraft. The overall framework includes a pre-trained

model, Deep Skill Network, which is trained a-priori on

various sub-tasks of the game. When learning a new task,

the old knowledge is maintained by incorporating reusable

skills through a Deep Skill module, which consists of a Deep

Skill Network array and a multi-skill distillation network.

These allow the agent to selectively transfer knowledge to

solve a new task. Experiments demonstrate that their proposal

significantly outperforms traditional double DQNs in terms

of accuracy and convergence. This technique has potential to

be employed in solving mobile networking problems, as it

can continuously acquire new knowledge.

Deep Transfer Learning: Unlike lifelong learning, transfer

learning only seeks to use knowledge from a specific domain

to aid learning in a target domain. Applying transfer learning

can accelerate the new learning process, as the new task does

not require to learn from scratch. This is essential to mobile

network environments, as they require to agilely respond to

new network patterns and threats. A number of important

applications emerge in the computer network domain [57],

such as Web mining [555], caching [556] and base station

sleep strategies [210].

There exist two extreme transfer learning paradigms,

namely one-shot learning and zero-shot learning. One-shot

learning refers to a learning method that gains as much

information as possible about a category from only one or

a handful of samples, given a pre-trained model [557]. On the

other hand, zero-shot learning does not require any sample

from a category [558]. It aims at learning a new distribution

given meta description of the new category and correlations

with existing training data. Though research towards deep one-

shot learning [97], [559] and deep zero-shot learning [560],

[561] is in its infancy, both paradigms are very promising in

detecting new threats or traffic patterns in mobile networks.

VIII. FUTURE RESEARCH PERSPECTIVES

As deep learning is achieving increasingly promising results

in the mobile networking domain, several important research

issues remain to be addressed in the future. We conclude our

survey by discussing these challenges and pinpointing key

mobile networking research problems that could be tackled

with novel deep learning tools.

A. Serving Deep Learning with Massive High-Quality Data

Deep neural networks rely on massive and high-quality

data to achieve good performance. When training a large

and complex architecture, data volume and quality are very

important, as deeper models usually have a huge set of

parameters to be learned and configured. This issue remains

true in mobile network applications. Unfortunately, unlike

in other research areas such as computer vision and NLP,

high-quality and large-scale labeled datasets still lack for

mobile network applications, because service provides and

operators keep the data collected confidential and are reluctant

to release datasets. While this makes sense from a user privacy

standpoint, to some extent it restricts the development of deep

learning mechanisms for problems in the mobile networking

domain. Moreover, mobile data collected by sensors and

network equipment are frequently subject to loss, redundancy,

mislabeling and class imbalance, and thus cannot be directly

employed for training purpose.
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3D Mobile Traffic Surface 2D Mobile Traffic Snapshot

Fig. 21: Example of a 3D mobile traffic surface (left) and 2D

projection (right) in Milan, Italy. Figures adapted from [219]

using data from [564].

To build intelligent 5G mobile network architecture, ef-

ficient and mature streamlining platforms for mobile data

processing are in demand. This requires considerable amount

of research efforts for data collection, transmission, cleaning,

clustering, transformation, and annonymization. Deep learning

applications in the mobile network area can only advance if

researchers and industry stakeholder release more datasets,

with a view to benefiting a wide range of communities.

B. Deep Learning for Spatio-Temporal Mobile Data Mining

Accurate analysis of mobile traffic data over a geographical

region is becoming increasingly essential for event localiza-

tion, network resource allocation, context-based advertising

and urban planning [549]. However, due to the mobility of

smartphone users, the spatio-temporal distribution of mobile

traffic [562] and application popularity [563] are difficult

to understand (see the example city-scale traffic snapshot

in Fig. 21). Recent research suggests that data collected by

mobile sensors (e.g. mobile traffic) over a city can be regarded

as pictures taken by panoramic cameras, which provide a

city-scale sensing system for urban surveillance [565]. These

traffic sensing images enclose information associated with the

movements of individuals [469].

From both spatial and temporal dimensions perspective, we

recognize that mobile traffic data have important similarity

with videos or speech, which is an analogy made recently also

in [219] and exemplified in Fig. 22. Specifically, both videos

and the large-scale evolution of mobile traffic are composed of

sequences of “frames”. Moreover, if we zoom into a small cov-

erage area to measure long-term traffic consumption, we can

observe that a single traffic consumption series looks similar to

a natural language sequence. These observations suggest that,

to some extent, well-established tools for computer vision (e.g.

CNN) or NLP (e.g. RNN, LSTM) are promising candidate for

mobile traffic analysis.

Beyond these similarity, we observe several properties of

mobile traffic that makes it unique in comparison with images

or language sequences. Namely,

1) The values of neighboring ‘pixels’ in fine-grained traffic

snapshots are not significantly different in general, while

this happens quite often at the edges of natural images.

t

...

t + s

Mobile Traffic Evolutions
Video

Image

Speech Signal

Mobile Traffic 

Snapshot

Mobile Traffic 

Series

Zooming

Time

T
ra

ff
ic

 v
o
lu

m
e

Frequency

Amplitute

Longitude

L
a
ti
tu

d
e

LongitudeLongitude

L
a
ti
tu

d
e

L
a
ti
tu

d
e

Fig. 22: Analogies between mobile traffic data consumption

in a city (left) and other types of data (right).

2) Single mobile traffic series usually exhibit some period-

icity (both daily and weekly), yet this is not a feature

seen among video pixels.

3) Due to user mobility, traffic consumption is more likely

to stay or shift to neighboring cells in the near future,

which is less likely to be seen in videos.

Such spatio-temporal correlations in mobile traffic can be

exploited as prior knowledge for model design. We recognize

several unique advantages of employing deep learning for

mobile traffic data mining:

1) CNN structures work well in imaging applications, thus

can also serve mobile traffic analysis tasks, given the

analogies mentioned before.

2) LSTMs capture well temporal correlations in time series

data such as natural language; hence this structure can

also be adapted to traffic forecasting problems.

3) GPU computing enables fast training of NNs and together

with parallelization techniques can support low-latency

mobile traffic analysis via deep learning tools.

In essence, we expect deep learning tools tailored to mo-

bile networking, will overcome the limitation of tradi-

tional regression and interpolation tools such as Exponential

Smoothing [566], Autoregressive Integrated Moving Average

model [567], or unifrom interpolation, which are commonly

used in operational networks.

C. Deep learning for Geometric Mobile Data Mining

As discussed in Sec. III-D, certain mobile data has important

geometric properties. For instance, the location of mobile users

or base stations along with the data carried can be viewed

as point clouds in a 2D plane. If the temporal dimension is

also added, this leads to a 3D point cloud representation, with

either fixed or changing locations. In addition, the connectivity

of mobile devices, routers, base stations, gateways, and so on

can naturally construct a directed graph, where entities are

represented as vertices, the links between them can be seen as
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Fig. 23: Examples of mobile data with geometric properties (left), their geometric representations (middle) and their candidate

models for analysis (right). PointNet++ could be used to infer user trajectories when fed with point cloud representations of

user locations (above); A GraphCNN may be employed to forecast future mobile traffic demand at base station level (below).

edges, and data flows may give direction to these edges. We

show examples of geometric mobile data and their potential

representations in Fig. 23. At the top of the figure a group of

mobile users is represented as a point cloud. Likewise, mobile

network entities (e.g. base station, gateway, users) are regarded

as graphs below, following the rationale explained below. Due

to the inherent complexity of such representations, traditional

ML tools usually struggle to interpret geometric data and make

reliable inferencess.

In contrast, a variety of deep learning toolboxes for mod-

elling geometric data exist, albeit not having been widely

employed in mobile networking yet. For instance, PointNet

[568] and the follow on PointNet++ [102] are the first solutions

that employ deep learning for 3D point cloud applications,

including classification and segmentation [569]. We recognize

that similar ideas can be applied to geometric mobile data

analysis, such as clustering of mobile users or base stations, or

user trajectory predictions. Further, deep learning for graphical

data analysis is also evolving rapidly [570]. This is triggered

by research on Graph CNNs [103], which brings convolution

concepts to graph-structured data. The applicability of Graph

CNNs can be further extend to the temporal domain [571].

One possible application is the prediction of future traffic

demand at individual base station level. We expect that such

novel architectures will play an increasingly important role

in network graph analysis and applications such as anomaly

detection over a mobile network graph.

D. Deep Unsupervised Learning in Mobile Networks

We observe that current deep learning practices in mobile

networks largely employ supervised learning and reinforce-

ment learning. However, as mobile networks generate consid-

erable amounts of unlabeled data every day, data labeling is

costly and requires domain-specific knowledge. To facilitate

the analysis of raw mobile network data, unsupervised learn-

ing becomes essential in extracting insights from unlabeled

data [572], so as to optimize the mobile network functionality

to improve QoE.

The potential of a range of unsupervised deep learning tools

including AE, RBM and GAN remains to be further explored.

In general, these models require light feature engineering

and are thus promising for learning from heterogeneous and

unstructured mobile data. For instance, deep AEs work well

for unsupervised anomaly detection [573]. Though less popu-

lar, RBMs can perform layer-wise unsupervised pre-training,

which can accelerate the overall model training process. GANs

are good at imitating data distributions, thus could be em-

ployed to mimic real mobile network environments. Recent

research reveals that GANs can even protect communications

by crafting custom cryptography to avoid eavesdropping [574].

All these tools require further research to fulfill their full

potentials in the mobile networking domain.

E. Deep Reinforcement Learning for Mobile Network Control

Many mobile network control problems have been solved

by constrained optimization, dynamic programming and game

theory approaches. Unfortunately, these methods either make

strong assumptions about the objective functions (e.g. function

convexity) or data distribution (e.g. Gaussian or Poisson dis-

tributed), or suffer from high time and space complexity. As

mobile networks become increasingly complex, such assump-

tions sometimes turn unrealistic. The objective functions are

further affected by their increasingly large sets of variables,

that pose severe computational and memory challenges to

existing mathematical approaches.

In contrast, deep reinforcement learning does not make

strong assumptions about the target system. It employs func-

tion approximation, which explicitly addresses the problem

of large state-action spaces, enabling reinforcement learning

to scale to network control problems that were previously

considered hard. Inspired by remarkable achievements in

Atari [19] and Go [575] games, a number of researchers begin



IEEE COMMUNICATIONS SURVEYS & TUTORIALS 53

to explore DRL to solve complex network control problems,

as we discussed in Sec. VI-G. However, these works only

scratch the surface and the potential of DRL to tackle mobile

network control problems remains largely unexplored. For

instance, as DeepMind trains a DRL agent to reduce Google’s

data centers cooling bill,36 DRL could be exploited to extract

rich features from cellular networks and enable intelligent

on/off base stations switching, to reduce the infrastructure’s

energy footprint. Such exciting applications make us believe

that advances in DRL that are yet to appear can revolutionize

the autonomous control of future mobile networks.

F. Summary

Deep learning is playing an increasingly important role in

the mobile and wireless networking domain. In this paper, we

provided a comprehensive survey of recent work that lies at

the intersection between deep learning and mobile networking.

We summarized both basic concepts and advanced principles

of various deep learning models, then reviewed work specific

to mobile networks across different application scenarios. We

discussed how to tailor deep learning models to general mobile

networking applications, an aspect overlooked by previous

surveys. We concluded by pinpointing several open research

issues and promising directions, which may lead to valuable

future research results. Our hope is that this article will become

a definite guide to researchers and practitioners interested in

applying machine intelligence to complex problems in mobile

network environments.
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