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Deep Learning in MR Image Processing

INTRODUCTION

Recently, deep learning methods have shown great potential in various tasks that 

involve handling large amounts of digital data, including image (1), voice (2), and text 

data (3). In particular, image processing and computer vision applications employing 

deep learning have achieved remarkable success in applications including the denoising 

(4-6), recognition (1, 7, 8), detection, and segmentation (9, 10) of objects. In the field 

of MR imaging research, deep learning methods are also being increasingly applied 

in a wide range of areas to complement or replace traditional model-based methods. 

Although most studies on these methods have been conducted and evaluated in a 

limited condition so as to show their general applicability, deep learning methods have 

shown remarkable improvements in several MR image processing areas, such as image 

reconstruction from under-sampled k-space data, image quality improvement, and 

organ or lesion segmentation from MR images. With the rapid developments currently 

underway in deep learning, data management, and computing technologies, the role 

of deep learning in MR imaging research appears to be increasingly important. In this 

article, we provide an overview of deep learning applications in MR image processing. 

First, we briefly introduce the basic concepts of deep learning. Second, we review recent 

studies on various MR image processing applications. Third, we introduce popular tools 

for deep learning implementation. Finally, we conclude with limitations and future 
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Recently, deep learning methods have shown great potential in various tasks that 

involve handling large amounts of digital data. In the field of MR imaging research, 

deep learning methods are also rapidly being applied in a wide range of areas to 

complement or replace traditional model-based methods. Deep learning methods 

have shown remarkable improvements in several MR image processing areas such 

as image reconstruction, image quality improvement, parameter mapping, image 

contrast conversion, and image segmentation. With the current rapid development 

of deep learning technologies, the importance of the role of deep learning in MR 

imaging research appears to be growing. In this article, we introduce the basic 

concepts of deep learning and review recent studies on various MR image processing 

applications.
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directions of deep learning in MR image processing.

Deep Learning: a Brief Overview

Deep learning is a branch of machine learning based on 

the use of multiple layers to learn data representations, 

and can be applied to both supervised and unsupervised 

learning (11). These multiple layers allow the machine to 

learn multiple level features of data in order to achieve its 

desired function. Figure 1a presents a simplified version 

of a neural network, which has been the most widely 

used deep learning architecture over the last decade. Each 

layer of deep learning architecture consists of a set of 

nodes, and each node is represented by a digitized number. 

For example, a set of voxels in image data is often used 

as an input layer in MR image processing applications. 

Typically, the nodes of the previous layer are connected 

to the nodes of the next layer through the weighted sum 

with bias. In addition, a non-linear activation function, 

such as a rectified linear unit or a hyperbolic tangent, 

is applied to the calculated values. With appropriate 

selection of the activation function, this activation process 

adds non-linearity to the network and accelerates the 

learning process (12). The nodes of the previous layer can 

be connected to each node of the next layer either fully 

or locally, as shown in Figure 1b and c, respectively. A 

locally-connected layer often has multiple channels. Figure 

1d shows a locally-connected layer with two different 

channels. In this case, individual channels have their own 

Fig. 1. (a) Overall process of the learning process for the simplified version of the neural network, which is the most widely 
used deep learning architecture in image processing applications. The nodes of the previous layer can be connected to each 
node of the next layer in various ways. (b) Fully-connected layer. (c) Locally-connected layer. (d) Locally-connected layer 
with multiple channels.
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connections. A representative example of such a layer is a 

convolutional layer with multiple convolution kernels. For 

image data, these are related to the size of the receptive 

field. This connection has adjustable parameters for weight 

(w) and bias (b), and the number of parameters depends on 

the number of connected nodes as well as the parameter-

sharing method. The fully-connected layer can have a very 

large number of parameters to be optimized, because all 

of the nodes are connected with their weights and biases. 

By contrast, the convolutional layer (which is most widely 

used as a locally-connected layer based on single- or multi-

dimensional convolution operations in image processing 

applications) has a relatively small number of parameters, 

because this layer shares the parameters for the convolution 

kernels. In the case of the convolutional layer, the number 

of parameters is mainly determined by the number of 

channels. In particular, the deep learning architecture 

that contains multiple convolutional layers to learn data 

representation is called the convolutional neural network 

(CNN). For image processing applications, CNN is one of 

the most popular and effective deep learning methods 

used (11). The deep learning training process automatically 

sets the values of the parameters of each layer so as to 

generate the output data we seek from the input data. The 

backpropagation procedure is typically used to determine 

the parameters of the multiple layers of the neural network 

(13, 14). This procedure involves computing the gradients 

of the pre-determined objective functions with respect to 

the parameters, then updating the parameters based on 

these calculated gradients. For supervised learning with 

a

b

Fig. 2. Examples showing the ability 
of deep learning to generate realistic 
fake images. (a) Representative test 
images from the trained network 
for generating either pizza images 
from T1-weighted MR images or T1-
weighted MR images from pizza 
images.  (b)  Representative test 
images from the tr ained network for 
generating MR diffusion-weighted 
images from actual CT images. The 
network generated the realistic 
synthesized diffusion-weighted image 
from the actual CT image. However, 
this generated diffusion-weighted 
image does not include the pathologic 
information which appears on the 
corresponding actual diffusion-
weighted image. These two examples 
were generated using the generative 
adversarial networks, which are 
popular deep neural networks used for 
image-to-image translation tasks (18-
20).
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image processing applications, various error metrics (e.g., 

mean absolute error, mean squared error, and structural 

similarity) between the output and the ground truth can 

be used for the objective function. The overall training 

process can be summarized in the following six steps: 

1. Initialize parameters (w, b), 2. Forward pass (Input → 
Output), 3. Error calculation (Output, Ground truth → E), 

4. Backpropagation, 5. Update parameters (w, b), 6. Repeat 

steps 2-5 until E reaches an acceptable level. In this article, 

we briefly covered only a few important elements of the 

deep neural network, which is one of the representative 

architectures of deep learning. For further detail on the 

various deep learning architectures, refer to the previous 

studies (15, 16) focusing on deep learning architectures.

Based on the recent improvements in computational 

power and the large amount of curated data available, 

recent deep learning architectures can have very large 

numbers of layers and parameters. For example, GoogLeNet 

(17) has 22 layers with five million parameters and ResNet 

(7) has 152 layers with 60 million parameters. However, 

with these very high representational capacities, deep 

learning methods can suffer from the overfitting of results 

for insufficient training data. In addition, recent deep 

learning-based image processing methods have exhibited 

the ability to generate realistic fake images in various 

applications (18, 19). In medical image processing, this 

possibility should be carefully considered. Figure 2a shows 

these high representational capacities of deep learning 

methods. Using a cycle-consistent adversarial network (20) 

and thousands of MR and pizza images, we trained the 

network to generate either pizza images from T1-weighted 

MR images or T1-weighted MR images from pizza images. 

Interestingly, the network showed the ability to learn a 

relationship between two datasets that initially appeared 

to be physically unrelated. Similarly, we trained the network 

to generate MR diffusion-weighted images from actual CT 

images using the co-registered actual CT and diffusion-

weighted images. As shown in Figure 2b, the network 

generated the realistic synthesized diffusion-weighted 

image from the actual CT image. However, this generated 

diffusion-weighted image does not include the pathologic 

information which appears on the corresponding actual 

diffusion-weighted image. Note that this example is a 

simple experiment meant to demonstrate the ability of deep 

learning to generate a realistic fake image. This example 

does not demonstrate that deep learning cannot accomplish 

this task. Practically, it is very difficult to show the reliability 

of the information of the image generated by deep learning 

from the limited test data, but this is much more important 

than generating a realistic image in the field of medical 

image processing. When developing a deep learning-based 

method, using a rigorous evaluation process is essential 

to avoid overfitting to training data or the generation of 

fake information. In order to evaluate the performance of 

the network, it is generally recommended to split data into 

training, valid, and test sets. The training set data are used 

to determine the network parameters. In most cases, the 

network shows good performance for the training set after 

Fig. 3. Splitting data into training, valid, and test sets is generally recommended so as to avoid overfitting and evaluate the 
performance objectively. The optimally fitted network shows similarly good performances for all three data sets.
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an iterative learning process with the proper adjustment 

of the network structure and its hyperparameters, due to 

its very high capacity. Therefore, the separate validation 

set is required to predict the general performance of the 

network. The data in the validation set should not be fed 

into the network because the model should have the ability 

to apply external data not included in the training process. 

The network structure and its hyperparameters are typically 

adjusted by monitoring the performance of the network 

for the validation set. Eventually, the network was tuned 

to show good performances for both the training and 

validation sets. However, this still did not guarantee good 

performance for data not in the training and validation sets. 

For this reason, the test data set is also required, and should 

only be used to evaluate the performance of a completely 

trained network. If the training and validation sets show 

good results but the test set does not show good results, 

the network is considered to be overfitted. The optimally 

fitted network shows good or similar performances for 

all three data sets. Figure 3 summarizes data splitting for 

development and evaluation. In most MRI applications, it 

is difficult to collect sufficiently large amounts of training 

data to reflect the real world. Therefore, a researcher who 

wants to apply deep learning methods to MRI applications 

should carefully determine what data to collect, how much 

data to collect, and how to split the data.

For the training set, data augmentation is generally 

recommended in order to increase the robustness for input 

data variances. Like other image processing applications, 

various spatial transformations including rotating, flipping, 

shifting, and resizing in the image domain as well as 

adding randomly generated noises with proper probability 

distributions are commonly used to augment input data. 

Figure 4 shows a simple example of the effect of data 

augmentation on deep learning. We trained the deep neural 

network using 27 T1-weighted MR images as outputs and 

the corresponding Fourier domain data (k-space in MR) as 

inputs from a single subject in order to investigate whether 

the neural network could learn the 2D Fourier transform 

for general images. The networks without and with data 

augmentation were trained using MR data from a single 

subject and tested using the Fourier domain data of another 

MR image and a “Lena” image. Excluding augmentation, 

all parameters, such as learning rate and epoch, were the 

same across the two networks. In this example, the slightly 

modified architecture of automated transform by manifold 

approximation (21) was used for training and testing. Image 

rotating, flipping, and shifting, as well as the addition of 

Gaussian random noises were used for data augmentation. 

For both networks, the representative image of the training 

Fig. 4. Simple example of the effect of data augmentation on deep learning. Data augmentation is generally recommended 
in order to increase the robustness for input data variances. The slightly modified architecture of automated transform by 
manifold approximation (21) was used in this example.
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set shows similar reconstruction results. By contrast, 

the “Lena” image shows largely different reconstruction 

results for the two networks. Through the use of data 

augmentation, this network has learned 2D Fourier 

transform for general images to some extent. Although 

this simple example shows the potential of successful 

learning by using conventional data augmentation due to 

the explicit relationship between the input and output data, 

the characteristics of MR imaging should be considered 

when performing data augmentation in practical MR image 

processing applications. For example, the spatial sensitivities 

of the individual receive coils and the reconstruction 

methods for accelerated data are closely related to the 

noise patterns appearing on MR images. These noise 

patterns of MR images differ from those of natural images 

or other medical imaging devices. Physiological motions 

of a subject during data acquisition can also highly affect 

the noise patterns on MR images. Therefore, understanding 

the MR physics and data acquisition process is helpful 

for appropriate data augmentation in most MR image 

processing applications. In some cases, simulated data 

based on MR physics can be used to increase the diversity 

of training data. For example, parameter mapping from 

MR images is generally conducted through model fitting 

from the acquired MR images. Based on the model, infinite 

simulated signals can theoretically be generated and 

used for the training set. It would be effective to use an 

appropriate model to represent the MR data. However, it is 

still difficult in practice to solve most MR image processing 

problems in this way, due to various factors that are not 

included in the model. 

MR Image Processing Applications

Image Reconstruction
Brief History of MR Image Reconstruction

The concept of reconstructing images from nuclear 

magnetic resonance signals was developed using the spatial 

encoding capability of field gradient coils (22, 23). The 

encoding scheme first applies a spatially varying magnetic 

field, a so-called gradient field, in order to allocate a 

certain nuclear resonance frequency for a location. Then, 

each location of the signal is inversely speculated from 

the encoded frequency spectrum. In this process, we 

call the encoded signals in the spatial frequency domain 

‘k-space’. MRI reconstruction involves how to transform 

k-space into image domain. In the early history of MRI, the 

most basic and important link between the two domains 

was the Fourier transformation relationship. The Fourier 

transformation between the domains is based on one-to-

one matching, and thus the total number of k-space data 

points required to generate the image array is the same as 

the number of image array elements, in conventional MRI 

reconstruction.

Further spatial encoding possibility by using multi-coil 

data acquisition has been shown to lead to a substantially 

faster data acquisition time. Since the data of each channel 

are acquired simultaneously and have independent spatial 

sensitivity information, we can reduce the frequency 

encoding steps (i.e., decreasing k-space sampling rates). This 

type of fast data acquisition and subsequent reconstruction 

is referred to as ‘parallel imaging’. For the reconstruction, 

the sensitivity maps of individual coils were used to 

differentiate aliased images due to the reduced sampling 

rate in k-space (24-26). Parallel imaging has revolutionized 

MRI from two perspectives: First, it demonstrated the 

potential to go beyond Nyquist sampling theorem using 

additional information. Secondly, it improved the clinical 

usefulness of MRI by reducing the scan time.

Beyond the gradient field and multi-coil encodings, 

morphological priors for the reconstructed images have been 

utilized to innovate MRI reconstruction performance. One 

milestone study suggested that the wavelet transform of the 

natural images should be sparse, inspired by the JPEG2000 

compression standard (27). Under this assumption, rarely-

sampled k-space data can be reconstructed to ground-truth 

images by removing noisy artifacts. Unlike the multi-coil 

acceleration scheme, the procedure includes the concept of 

non-linear transformation, which may result in an improved 

signal-to-noise ratio. However, it also involves the risk 

of concealing image details beneath the morphological 

constraints.

Deep Learning for MR Image Reconstruction
A deep neural network has been used to imitate the 

conventional image reconstruction methods. The reasons for 

why deep learning is intensively tested for reconstruction 

fall into the following three categories: 1) to learn data-

driven prior, 2) to take advantage of high reconstruction 

speed, and 3) to improve and optimize the conventional 

reconstruction methods. In this section, we review how 

the deep learning method can cause differences in the 

categories as compared to the conventional reconstruction. 

Deep learning for the reconstruction mostly relies on data 

distribution to learn a function that maps input to output. 
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Identifying weights and biases in a neural network involves 

fitting parameters that best describe the data distribution. 

Therefore, we refer to deep learning as a data-driven 

approach. From the property, the neural network memorizes 

image features and regards these as the prior condition (i.e., 

most probable solution), which is ambiguous to be planted 

in the physics model (1, 28). This causes deep learning 

results to have seemingly nice quality and be robust to 

artifacts. On the other hand, their data-driven nature may 

become a drawback when the network is applied to data 

that was not involved in the training stage. 

Without a doubt, the most time-consuming process 

in iterative reconstructions for accelerated MR data 

reconstruction is calculating the gradient of the object 

function with respect to the variables (29). In the deep 

learning approach, it is not necessary to calculate the 

gradient for the forwarding step; the gradient calculation is 

only done for the back propagation step in network training. 

Additionally, the number of deep learning parameters is 

designed to be much smaller than the number describing an 

arbitrary mapping from images to images. This dimension 

reduction can be attributed to the rationale of manifold 

approximation. A recent study demonstrated the manifold 

property of human brain images and proposed a neural 

network that transforms arbitrarily encoded k-space into 

images (21). This manifold approximation was additionally 

validated in other studies (30). Another group proposed a 

concept of residual labeling to facilitate manifold learning 

and explained the principles of manifold learning in a 

theoretical manner (31, 32).

Another important application of deep learning is the 

optimization of nonlinear reconstruction. The recent state-

of-the-art algorithm of the accelerated data reconstruction 

uses a featured domain to formulate the image prior as an 

optimization target function. For example, most compressed 

sensing reconstructions enforce the sparsity of the wavelet 

coefficients (i.e., minimizing the L1-norm of the wavelet 

transform of images). However, it is difficult to determine 

which domain or norm criteria shows the most optimal 

performance. Hammernik et al. (33) proposed manipulating 

the neural network structure to follow the compressed 

sensing reconstruction procedure. The network, named the 

‘variational network’, allocates the activation functions 

and convolution kernels to be trained, making it so that 

we can find the best domain for sparsity enhancement and 

norm criteria for the reconstruction. The results outperform 

the conventional reconstruction methods and show 

good generalization potentials (34). As another example, 

Akcakaya et al. (35) suggested a neural network which 

replaces a linear k-space convolution kernel for parallel 

imaging reconstruction. In the image domain, several 

studies have formulated the same problem as de-aliasing 

Fig. 5. Tools for MRI image reconstruction. The intersection of the individual solution distributions from the tools may 
represent the most likely solution.
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tasks and used generative adversarial networks as well as 

conventional CNN to remove aliasing artifacts (36-39). In 

addition, a method that solves the parallel imaging problem 

in both k-space and image domains was proposed (40).

Further investigation is required to integrate the benefits 

of the deep learning and model-based approaches. A 

simple solution involves including model-based loss at the 

training phase of deep learning while the reconstruction 

time increases when using the customized loss function. 

Otherwise, one can merge deep learning-based loss to 

the optimization regularization terms (33, 41). Another 

solution may be cascading model-based optimization and 

deep learning solution. These opportunities need to be 

investigated further in order to take full advantage of deep 

learning in addition to model knowledge.

Image Quality Improvement
Deep learning has become a promising technology 

that has been pushing the boundary of image quality 

enhancement. In natural image processing applications, 

deep learning-based methods for quality improvement 

are developing very rapidly (42). In recent MR image 

applications, the methods used for natural images 

have been adequately modified to apply MR images 

by considering the principles in which MRI images are 

generated, although early studies have been conducted by 

applying the methods originating from the field of natural 

image processing without modifications. In this section, we 

review recent deep learning studies on MR image denoising, 

artifact correction, super-resolution, and other quality 

enhancement methods.

Denoising is one of the most important aspects of 

image quality improvement. In practice, generally, the MR 

signals are always perturbed by various unwanted noises, 

and image denoising can be considered as an inverse 

problem of finding the values of the signal minimizing 

noise contaminations. The conventional image denoising 

methods are model-based methods, followed by sparse 

coding, effective prior, and low-rank approaches (43-46). 

Combined with the knowledge of the conventional methods, 

the deep learning methods are reported to show superior 

performances. Jin et al. (47) suggested a CNN algorithm as 

an alternative to the regularized iterative algorithms based 

on the observation that the inverse problems defined by 

a convolution operator are iteratively solved by repeated 

convolutions and point-wise nonlinearities. Furthermore, 

Jifara et al. (4) and Zhang et al. (6) demonstrated that the 

residual learning framework, which involves training the 

network to separate the noise from a noisy observation, 

can boost the denoising performance. In addition, Lee et al. 

(48) also proposed a residual learning method for solving 

compressed sensing reconstruction by showing that the 

noisy artifact originating from the randomly under-sampled 

k-space has a topologically simpler manifold than that of 

the original images. Benou et al. (42) proposed an ensemble 

of voxel-wise DNNs for spatiotemporal denoising in DCE-

MRI. Kyathanahally et al. (49) proposed a deep learning 

approach for the detection and removal of ghosting 

artifacts in MR spectroscopy by training a huge simulated 

spectra database with and without ghosting artifacts. 

Spectrograms were fed to the CNN-structured network in 

order to allow for the detection of the ghosting artifacts, 

and an encoder-decoder network was designed for the 

removal of the artifacts. 

MRI has unique characteristics of artifacts due to its 

spatial encoding schemes and reconstruction algorithms. 

One of the most common artifacts in MRI is caused by 

various motions of a subject, which results in the pernicious 

construction of a k-space, leading to contamination of 

the entire image. Many techniques have been proposed 

to tackle this problem, and these can be categorized as 

either prospective or retrospective methods (50-55). The 

conventional techniques used additional motion detectors 

or external devices such as navigators (55) or motion 

tracking systems (52). Several methods have been proposed 

to use only the acquired k-space only by minimizing a cost 

function for the motion estimation (50, 51, 54). However, 

computational complexity has been a limiting factor of 

these techniques because of the high degree of freedom (i.e., 

six for a rigid motion) and the variety of motions that can 

occur. In order to overcome this, the deep learning methods 

that can address the computational challenge using data-

driven power have been applied for motion correction and 

detection. Several studies have demonstrated the feasibility 

of deep learning applications to the retrospective motion 

correction, indicating the reduction of motion artifacts 

in the brain (56-58), cervical spine (59), and liver (60). 

Figure 6 shows the results from the deep learning-based 

retrospective motion correction for the cervical spine 

gradient echo images (59). The common training schemes 

of previous studies were image-to-image approaches, using 

the CNN structures with a set of the motion-corrupted 

and motion-free images. Another study attempted to 

automatically detect motion artifacts through the binary 

classification of ‘motion’ or ‘no motion’ using CNN (61).

Image super-resolution is a well-known ill-posed 
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problem that can result in multiple outputs for a single 

input, with the objective of restoring high-resolution 

images from low-resolution images. Deep learning involves 

successfully replacing the conventional methods as a 

state-of-the-art algorithm to solve this problem in natural 

image applications. Deep learning also shows superior 

performance to the conventional interpolation methods in 

MRI applications in the brain (62-65) and musculoskeletal 

system (66). Pham et al. (62) used a landmark method 

named SRCNN and demonstrated the super-resolution 

applications using deep learning (62, 67). Kim et al. (65) and 

Shi et al. (63) proposed a CNN with a residual framework 

for training mapping between the low resolution image 

and the high frequency portions of the k-space (63, 65). In 

addition, Kim et al. (65) suggested incorporating images 

with different contrasts as well as using an adversarial 

network. A generative adversarial network (GAN) was also 

used in Chen et al. (64), who proposed a dense-net structure 

for generation network. Chaudhari et al. (66) used deep 

learning for generating thin-slice musculoskeletal images 

from those of higher slice thickness while maintaining high 

in-plane resolution, in order to reduce scan time. 

Deep learning also addresses the artifacts observed in 

specific pulse sequences. For example, a single-shot echo 

planar imaging (EPI) suffers from the so-called Nyquist (N/2) 

ghosting artifact, notably at high field. The Nyquist ghosting 

artifact is caused by the misalignments between odd and 

even k-space lines, mainly caused by eddy current-induced 

gradient delays and off-resonance. Lee et al. (70) proposed 

a reference-free EPI ghost correction method using a deep 

learning approach which has been reported to improve 

the image quality and decrease the computation time as 

compared to the conventional method. Deep learning can 

perform direct improvement of the image quality by using 

the data-driven power. Kim et al. (71) demonstrated that the 

CNN approach led to improvements in ASL perfusion images 

quality using a smaller number of subtraction images. 

The results were shown to outperform the conventional 

methods in the quantitative measurements. Ryu et al. (69)

showed that improved fluid attenuated inversion recovery 

(FLAIR) images can be synthesized with a combination 

of the generated images obtained from the synthetic 

MRI protocol, known as magnetic resonance imaging 

compilation (MAGIC) (68). The FLAIR images generated from 

the synthetic MRI protocol exhibit several common artifacts 

due to the imperfect model fitting (71). The deep learning 

Fig. 6. Retrospective motion correction using deep learning. Motion corrupted image (left), compensated images with 1D 
navigator (center), and deep learning approach (right). The second row shows the enlarged images of the cervical spinal cord 
region.
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method successfully corrected these artifacts, preserving the 

contrast of conventional FLAIR images, as shown in Figure 7.

Parameter Mapping
Quantitative MR parameter mapping is also an area where 

deep learning is actively applied due to its capability for 

function approximation. The measurable information that 

can be quantified from MRI is extensive. Examples include 

estimating the parameters from the analytical signal model 

and measuring the volume of lesions in the image. In this 

section, we limit our scope to the applications of the deep 

learning techniques in the model-based parameter mapping, 

since the measurement of the structural parameters has 

a strong association with the segmentation problems, as 

covered in the next section. Golkov et al. (72) proposed a 

q-space deep learning method which enables the estimation 

of diffusion kurtosis measured from twelve-fold less data. 

Bertleff et al. (73) proposed a neural network approach used 

for voxel-wise diffusion parameter mapping, which was 

found to have superior robustness and sensitivity to the 

state-of-the-art model fitting method. Both studies applied 

neural networks to voxel-wise estimation. An artificial 

neural network was designed as a multilayer perceptron 

and was trained to predict microstructural parameters from 

the acquired data. A similar approach was used to estimate 

the oxygen extraction fraction (OEF) from the gradient-

echo sample spin-echo (GESSE) sequence (74). With a given 

quantitative signal model, an artificial synthetic dataset was 

generated and used as a training set. In addition, due to its 

rapid forward processing time, this approach is a promising 

method that has great potential to be applied to the clinical 

use of quantitative MR. The multilayer perceptron model is 

also applicable to the MR relaxation parameters such as T1, 

T2, and proton density. Lee et al. (75) proposed a multilayer 

perceptron method for T2 mapping (Fig. 8) using a multi-

echo spin-echo sequence. In order to accurately estimate T2, 

the effects of B1 inhomogeneity were also considered, and 

the complexity of the model has been overcome using the 

proposed artificial neural network method, which requires a 

long processing time in the conventional manners (75). 

Fig. 7. Artifact correction for synthetic fluid attenuated inversion recovery (FLAIR) images using deep learning. Several 
artifacts are common on conventional model-based synthetic FLAIR images (68). The deep learning method suggested by 
Ryu et al. (69) successfully corrected these artifacts, thereby preserving the contrast of conventional FLAIR images (70).
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Recently, the deep learning technique was applied to 

overcome the limitations of the conventional reconstruction 

method of magnetic resonance fingerprinting (MRF), 

which uses variations in the pulse sequence parameters 

to generate unique signal evolutions for multi-parametric 

measurements in a single scan (76). The conventional 

MRF reconstruction method involves dictionary matching 

with the measured signal using the dictionary generated 

by simulating the magnetization evolution. In order 

to ensure reconstruction accuracy, a large size of the 

dictionary is necessary, but this requires memory and 

computational power, which are the limiting factors for a 

clinical application of MRF. Cohen et al. (77) proposed a 

deep learning approach based on the multilayer perceptron 

structure, which was trained with the dictionary to 

approximate the function which maps the measured signals 

to the multiple parameters. Compared to the conventional 

methods, dramatic reductions in reconstruction time as well 

as robustness to the noise were reported. 

Deep learning can also be used effectively in problems 

where it is not practical to obtain a gold standard reference. 

Quantitative susceptibility mapping (QSM), which involves 

estimation from phase images of gradient echo images, is a 

representative example (79). For QSM calculation, at least 

three independent scans with different head orientations 

are required in order to obtain a gold standard reference (80). 

To avoid this impractical scan issue, non-linear optimization 

methods have been proposed for the reconstruction of QSM 

from a single-scan using various prior information (79, 81-

83). A deep learning approach was proposed, which takes 

advantage of the deep neural network to map the gold 

standard QSM (as reconstructed from multiple scans) from 

a single orientation data (78). The U-net structure was 

modified to process the data with 3D computations, which 

supports the physical processing of the magnetic dipoles. 

The network architecture and representative test images 

from the network for QSM reconstruction are presented in 

Figure 9.

The use of deep learning fosters great potential in MR 

parameter mapping, demonstrating the ability to learn 

the direct mapping of the gold standard values with a fast 

reconstruction time. In addition, while the conventional 

parameter mapping methods have been preceded by the 

formation of the analytical models, the deep learning 

method indicates the potential for estimation with 

sufficient data generated by simulations of experiments, 

even without any analytical model. However, current 

deep learning studies reveal some limitations that hinder 

the practical use of deep learning methods in parameter 

mapping. The end-to-end property of the deep neural 

networks do not provide any clarity as to how they derive 

the results, or the corresponding accountability of their 

derivations. Furthermore, since the outcome of the network 

depends entirely on the training dataset, it is also difficult to 

predict how the network would operate on inputs that they 

have never encountered. This issue is practically important, 

Fig. 8. Multilayer perceptron method for T2 mapping using a multi-echo spin-echo sequence. The effects of B1 
inhomogeneity were also considered, and the complexity of the model has been overcome using the proposed method (75).
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because the boundaries and distributions of parameters 

for clinical data are difficult to define. The robustness over 

variable scan parameters (TR, TE, etc.) is also difficult, since 

the input of the network should be within the domain of 

the trained data. In order to overcome these drawbacks, 

attempts have been made to understand how the network 

works (84-86) and to generalize learning, including transfer 

learning (87-89) or interpretable deep learning (90, 91).

Image Contrast Conversion
Deep learning has also shown potential in the contrast 

conversion of various medical images. Contrast conversion 

involves transforming one type of medical image to another 

without actually acquiring the images. Once the contrast 

conversion has been completely learned, synthesizing one 

type of medical images with other types, having different 

contrasts or modalities, is made possible. For example, a 

CT image can be reconstructed with a MR image without 

Fig. 9. Deep neural network trained to map the gold standard QSM (COSMOS) reconstructed from multiple scans) from a 
single orientation phase data (78). 
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an actual scan of a CT protocol. It is difficult to completely 

replace the original CT images with the synthesized CT 

images for general purpose, but it may be useful for limited 

applications, such as attenuation correction for integrated 

MR-PET systems. Liu et al. (92) demonstrated that the 

generated synthetic CT images can be used to calculate 

attenuation maps for accurate PET quantification. Using 

the synthetic deep learned CT image to calculate the 

attenuation map outperforms other previous techniques 

using MR images alone, including atlas-based methods and 

segmentation-based methods for brain imaging. Research 

on the generation of accurate CT images with MR images 

is of great interest, and many related studies have been 

conducted (93-95). For example, Jun et al. (96) showed that 

contrast-enhanced 3D gradient recalled echo (CE 3D-GRE) 

images can be transformed into black-blood (BB) images. 

They also demonstrated that the sensitivity of the synthetic 

BB images is almost equivalent to that of the actual 

BB images, and interestingly, the synthetic BB images 

outperformed the actual images in terms of false positive 

lesion detection error. On the other hand, Gong et al. (97) 

showed that full dose gadolinium-enhanced MR images 

can be synthesized with low dose MR images. This study 

demonstrated the potential for reducing the necessary 

gadolinium dose for a patient using the deep learning 

method. Ryu et al. (98) showed the potential utility of the 

deep learning based synthesized magnetization-prepared 

rapid gradient-echo (MPRAGE) images from multiecho 

gradient-echo images by comparing the accuracies of the 

brain segmentation results between the synthesized and 

actual MPRAGE images. Figure 10 shows the representative 

test images of the input, output, and ground truth data for 

the deep neural network. 

In order to train the network to successfully perform 

contrast conversion, data pre-processing steps, including 

intensity normalization and co-registration, are crucial. 

Another important factor is the architecture of the deep 

neural network. For the image transformation, fully 

convolutional networks such as U-Net (99) are preferred 

over fully-connected networks, because they do not have 

fully-connected layers and thus allow for spatial invariance 

(100). Finally, the selection of the loss function highly 

affects the synthesized output images. Euclidean losses, 

called pixel-wise losses, such as mean squared error loss 

and mean absolute error loss, were conventionally used. 

However, these losses are reported to cause blurring in cases 

of uncertainty in the inference. Recently, loss functions 

mimicking human perceptions have also been proposed, 

such as perceptual loss (101) and generative adversarial 

network loss (GAN) (102), but using those loss functions 

Fig. 10. Synthesized magnetization-prepared rapid gradient-echo (MPRAGE) images from multiecho gradient-echo images. 
The deep neural network (3D U-Net) was used in this example (98).
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for medical images would require a more careful validation 

process. 

Image Segmentation
The segmentation of MR images is an essential step for 

the quantitative assessment of various applications such as 

identifying the margins of a lesion for surgical planning or 

measuring the volumes of the organs for a population study. 

The typical image segmentation algorithm depends on the 

spatial properties of image intensity values. Specifically, 

discontinuity and similarity are the key properties for the 

segmentation of a specific object. However, it is difficult 

to establish a generalized method for the intensity-based 

segmentation, because the image intensities of most MR 

images are not quantitative and are largely influenced 

by environmental factors such as imaging hardware, 

protocol, and noises. Although several successful automatic 

segmentation algorithms have been developed and used in 

specific applications, such as brain segmentation from T1-

weighted images (103, 104), these methods involve complex 

and extensive processing steps (which are sensitive to input 

variations) and often require manual interventions for 

abnormal cases. In addition, there is still a lack of robust 

algorithms available in many areas requiring segmentation 

tasks. Further, advances in deep learning architectures such 

as U-net (99) or DeepLab (9) and large amounts of image 

data are expected to solve the limitations of traditional 

methods and improve the performance in MR image 

segmentation applications. Recently, deep learning methods 

have shown the best performances in most contests 

dealing with MR image segmentations, such as the brain 

tumor segmentation challenge. Recent methods for MR 

image segmentations have mostly used 3D operations to 

reflect the object’s spatial context in 3D space. In order to 

increase robustness, ensemble methods using combinations 

of differently-constructed architectures have often been 

adopted for MR image segmentations. Kamnitsas et al. (105) 

proposed ensembles of multiple models and architectures 

for a robust brain tumor segmentation from MR images of 

four different contrast (FLAIR, T1, contrast-enhanced T1 and 

T2). They used the multiple 3D CNNs, which have different 

architectures and characteristics, in order to obtain more 

reliable estimates using the advantages of each model. 

Rajchl et al. (106), developed the deep learning-based brain 

segmentation tool from T1-weighted MR images using 

the ResNet architecture (7) as an encoder and multiple 

fully connecter networks as a decoder. As compared to the 

traditional methods, the method developed by Rajchl et al. 

(106) shows a remarkably fast processing time (90 seconds 

per a subject) with good reproducibility and robustness. In 

addition, deep learning-based methods are actively applied 

in various MR image segmentation applications such as 

brain tumors (107-109), prostate cancer (110-112), stroke 

lesions (105, 113), and knee cartilage (114-116).

Tools for Deep Learning

In this section, we introduce research tools for 

implementing deep learning algorithm for MR image 

processing applications. Various research tools have been 

used in the MRI research community, but MATLAB (https://

www.mathworks.com/) and Python (https://www.python.

org/) are currently the most popular, due to their easy 

interfaces and rich libraries. In recent years, it has become 

relatively easy to begin conducting a deep learning study, 

because several graphical process unit available deep 

learning libraries are actively distributed and updated for 

both the MATLAB and python interfaces. For the MATLAB 

interface, MatConvNet (http://www.vlfeat.org/matconvnet/) 

has been distributed for various CNN applications, and 

MATLAB has recently started to offer native support for 

deep learning libraries. For the Python interface, Tensorflow 

(https://www.tensorflow.org/) and Pytorch (https://pytorch.

org) are the most popular open-source deep learning 

libraries, and they are widely used in various research 

fields today. Interestingly, the deep learning algorithms 

implemented using these open-source deep learning 

libraries are also being shared by research communities 

worldwide. The deep learning technologies are developing, 

spreading, and being evaluated very rapidly with these 

open-source projects. 

In conclusion, this article, the basic concepts of 

deep learning have been briefly explained, and recent 

deep learning studies on various MR image processing 

applications have been reviewed. As is the case in other 

data processing fields, the role of deep learning is expected 

to become increasingly important in the field of MR image 

processing. In addition, deep learning is also currently being 

actively applied in the fields of MR image analysis and 

interpretation, such as computer-aided diagnosis. Advances 

in image processing area through deep learning will help 

areas such as computer-aided detection or diagnosis 

as well. Although deep learning methods have shown 

remarkable performances in many MR image processing 

applications, care should be taken in applying them due 
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to their unclear working mechanisms. In addition, it is 

important to build a database that contains fine quality 

and large amounts of data, since the performance of a deep 

learning method depends on the training dataset used. 

For clinical applications, analysis of how the deep learning 

method produces the outputs for various inputs from 

different imaging conditions including different scanners, 

pulse sequences, or reconstruction methods should be 

conducted. One of the most important goals of MRI is 

to acquire accurate information from the reconstructed 

images for the purpose of patient care or scientific research. 

Therefore, the development and evaluation of the deep 

learning-based methods should also go along with this 

primary goal. 
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