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Abstract: Optical coherence tomography angiography (OCT-A) provides depth-resolved visualiza-
tion of the retinal microvasculature without intravenous dye injection. It facilitates investigations
of various retinal vascular diseases and glaucoma by assessment of qualitative and quantitative
microvascular changes in the different retinal layers and radial peripapillary layer non-invasively,
individually, and efficiently. Deep learning (DL), a subset of artificial intelligence (AI) based on
deep neural networks, has been applied in OCT-A image analysis in recent years and achieved good
performance for different tasks, such as image quality control, segmentation, and classification. DL
technologies have further facilitated the potential implementation of OCT-A in eye clinics in an
automated and efficient manner and enhanced its clinical values for detecting and evaluating various
vascular retinopathies. Nevertheless, the deployment of this combination in real-world clinics is still
in the “proof-of-concept” stage due to several limitations, such as small training sample size, lack of
standardized data preprocessing, insufficient testing in external datasets, and absence of standard-
ized results interpretation. In this review, we introduce the existing applications of DL in OCT-A,
summarize the potential challenges of the clinical deployment, and discuss future research directions.

Keywords: optical coherence tomography angiography; image quality; artificial intelligence; deep
learning; medical image analysis; diabetic macular ischemia; diabetic retinopathy; retinal vascular
diseases; glaucoma

1. Introduction

Optical coherence tomography angiography (OCT-A), as the functional extension
of structural optical coherence tomography (OCT), is a novel imaging modality that can
provide high-resolution and depth-resolved angiographic flow images by utilizing mo-
tion contrast [1]. With the advantages of being non-invasive and more readily available,
OCT-A has opened a wealth of possibilities for investigating different types of vascular
damage, such as diabetic retinopathy (DR) [2], age-related macular degeneration (AMD) [3],
glaucoma [4], and retinal vein occlusion (RVO) [5], as it enables the assessment of microvas-
culature alterations in different vascular plexuses of the retina and optic nerve head. Taking
DR as an example, previous studies have validated OCT-A as an alternative to fluorescein
angiography (FA) for the assessment of DR-related pathological features, such as microa-
neurysms, capillary non-perfusion, and neovascularization [6]. Furthermore, quantitative
OCT-A metrics, such as vessel density and foveal avascular zone (FAZ) area, have been
correlated with the severity of DR (Figure 1) and visual acuity (VA) [7–9]. Longitudinal
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studies found that these quantitative metrics can help to predict DR progression and di-
abetic macular edema (DME) development [10,11]. With its reliable capacity for disease
detection and prediction, the uptake of OCT-A in clinics has been sustainably growing.
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Figure 1. Examples of a series of 3 × 3 mm2 superficial capillary plexus (SCP) and deep capillary
plexus (DCP) optical coherence tomography angiography (OCT-A) images illustrating different
severities of diabetic retinopathy. (A1–E1): SCP OCT-A images illustrating the alteration of the FAZ
area and the surrounding vasculature from no DR to PDR. (A2–E2): DCP OCT-A images illustrating
the alteration of the FAZ area and the surrounding vasculature from no DR to PDR. OCT-A: optical
coherence tomography angiography; SCP: superficial capillary plexus; DCP: deep capillary plexus;
FAZ: foveal avascular zone; DR: diabetic retinopathy; PDR: proliferate diabetic retinopathy.

Recently, research in OCT-A has been evolving in tandem with tremendous improve-
ment in image analysis driven by artificial intelligence (AI), particularly by deep learning
(DL) [12,13], a subfield of machine learning (ML), which is based on deep neural networks
(DNNs) with multiple processing layers to learn the feature representations with multi-
ple levels of abstraction in images [14,15]. With the availability of the large amount of
high-quality images, ophthalmology is especially well positioned to attain the benefits of
advances in DL, and has subsequently become a vital driving force behind the various appli-
cation of DL frameworks [16,17]. Notably, DL algorithms based on retinal photographs and
OCT images have made important breakthroughs, such as those in DR [18,19], AMD [20],
and glaucoma [21]. Although the implementation of OCT-A with DL is gaining attention,
it is still relatively scarce. How the combination of advanced DL approaches could further
enhance the clinical utility of OCT-A and optimize the clinical workflow remains as an
open question.

This review summarizes recent studies on DL-based OCT-A image analysis (Table 1),
discusses the potential challenges of the clinical deployment, and proposes future
research directions.

2. Deep Learning-Based Algorithms for OCT-A Image Quality Control
2.1. Image Quality Grading

The generation of artifacts during image acquisition is an inherent challenge for
any clinical imaging modalities, including OCT-A. There are different types of artifacts
present in OCT-A images (Figure 2), and the presence of artifacts could impede image
interpretation both qualitatively and quantitatively [22,23]. In most previous studies,
image quality grading was performed manually. However, it is a labor-intensive, time-
consuming, and resource-demanding task, which has been a significant limitation and



Diagnostics 2023, 13, 326 3 of 19

barrier to the application of OCT-A in clinical settings. Notably, current research has shown
the promise of DL-based automated image quality assessment. For example, Lauermann
et al. [24] developed a multilayer convolutional neural network (CNN) for classifying foveal-
center 3 × 3 mm2 superficial capillary plexus (SCP) OCT-A images as either sufficient or
insufficient quality. The developed network was trained by a total of 160 SCP OCT-A
images (sufficient group: 80; insufficient group: 80) and tested on 40 unseen images. The
proposed network attained a training accuracy of 97% and validation accuracy of 100% for
classifying the images into the binary classification. Yang et al. [25] developed a multitask
DL network to assess both 3 × 3 mm2 SCP and deep capillary plexus (DCP) OCT-A images.
By using more than 3500 SCP and DCP OCT-A images, respectively, for training, and
another 480 SCP and DCP OCT-A images, respectively, for testing, they reported the DL
network achieved areas under the receiver operating characteristic curves (AUROCs) above
0.982 for the gradability task, and AUROCs above 0.973 for the measurability task for both
SCP and DCP OCT-A images derived from two types of OCT-A devices. Likewise, in
order to fulfill the need for selecting qualified images for different settings, Dhodapkar
et al. [26] trained two separate networks based on 8× 8 mm2 SCP OCT-A images to classify
high-quality images, which were for research use, and low-quality images, which should
be excluded. They reported AUROCs above 0.97 for both networks. Remarkably, the
developed networks were further tested on 6 × 6 mm2 SCP OCT-A images with good
results (AUROCs > 0.85).
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Figure 2. Illustration of different kinds of artifacts in superficial capillary plexus (SCP) and deep
capillary plexus (DCP) optical coherence tomography angiography (OCT-A) images. (A–C) Artifacts
in SCP OCT-A images, namely, (A) movement artifact (red arrow); (B) defocus artifact; (C) shadow
artifact. (D–F) Artifacts in DCP OCT-A images, namely, (D) projection artifact (red arrow); (E) defocus
artifact; (F) shadow artifact.
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2.2. Image Reconstruction

The 3 × 3 mm2 scan is the most commonly used scanning protocol in recent OCT-A
studies as it preserves a higher resolution than other wider field scans (e.g., 6 × 6 mm2

scan) for studying microvascular changes. However, the interpretation of microvascular
alteration should not be limited to a 3 × 3 mm2 area as the pathological changes can also
manifest elsewhere (Figure 3) [27]. Therefore, it is conceivable that both wider field of
view and higher resolution should be well incorporated to better address the needs of the
clinical assessment. Notably, Gao et al. [28] proposed a DL-based angiogram reconstruction
network for reconstructing low-resolution 6 × 6 mm2 superficial vascular complex (SVC)
OCT-A images. In the experiment, they reported that the reconstructed images presented
reduced noise and enhanced connectivity when compared to the original ones. They also
concluded that the proposed network did not generate false flow signal at realistic noise
intensities during image reconstruction. Later on, they further developed another recon-
struction network for 6 × 6 mm2 intermediate capillary plexus (ICP) and DCP OCT-A
images [29]. Their results indicated that the reconstruction network also applied well to
the ICP and DCP as the newly developed model significantly reduced noise intensity and
improved vascular connectivity without generating false flow signal. Zhang et al. [30]
proposed a frequency-aware inverse-consistent generative adversarial network to improve
the resolution of 6 × 6 mm2 SCP OCT-A images by using unpaired 3 × 3 mm2 and 6 × 6
mm2 images. By enabling the frequency transformations to refine the high-frequency infor-
mation while retaining low-frequency information, their model successfully reconstructed
the OCT-A images and outperformed other state-of-the-art methods in terms of peak signal-
to-noise ratio (PSNR), structural similarity index measure (SSIM), and normalized mutual
information (NMI).
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3. Deep Learning-Based Algorithms for OCT-A Image Segmentation
3.1. Foveal Avascular Zone Area

The FAZ is a region surrounding the fovea which is devoid of retinal capillaries. It has
been one of the most reported metrics ever since the invention of OCT-A. The literature has
related the size and the intactness of the FAZ to the severity and progression of many retinal
diseases [9], as well as the deterioration of VA [31,32]. Since both the shape and intactness
of the FAZ carry important clinical implications, many studies have developed algorithms
for automated segmentation and measurement. For instance, by using eighty 1 × 1 mm2

OCT-A images from healthy volunteers, Prentašic et al. [33] trained and validated a DL
network for segmenting FAZ area, attaining a maximum mean accuracy of 0.83. Mirshahi
et al. [34] also developed a DL network for the segmentation and measurement of the FAZ.
Specifically, for the FAZ segmentation task, the proposed network achieved a mean dice
similarity coefficient (DSC) of 0.94 ± 0.04 when compared to the results produced by the
device’s built-in software, while for the FAZ measurement task, among the healthy subjects,
excellent agreements were reported between the device-based and manual measurement
(95% limits of agreement (LoAs) of −0.005 to 0.026 mm2) as well as between the DL and
manual measurements (95% LoAs of 0.000 to 0.009 mm2). Similarly, Guo et al. [35] also
proposed a DL network with an encoder–decoder architecture to automatically perform the
segmentation and quantification of the FAZ area in SCP under different brightness/contrast
settings. They reported a maximum mean DSC of 0.976 ± 0.01 when comparing the
automatic segmentation results against the ground truth, and a correlation coefficient
of 0.997 between ground truth and automatic segmentation results for calculating the
FAZ area.

3.2. Vessel Segmentation

Retinal vasculature is critical for the nourishment of retinal tissue to maintain the
normal function of the visual pathway. Pathological alterations in vascular structure have
not only been used for the detection and classification of different fundus diseases [36], but
also been linked with systemic diseases [37]. Studies have implemented OCT-A with DL to
facilitate an automatic vessel segmentation. Ma et al. [38] introduced a novel split-based
coarse-to-fine method for vessel segmentation in both SVC and deep vascular complex
(DVC) OCT-A images. The network consisted of a segmentation module to first produce
the preliminary confidence vessel map, and then further used a consecutive refining model
to refine and optimize the contour of the microvasculature. The model outperformed both
traditional and other state-of-the-art DL models by achieving the highest AUROC, accuracy,
kappa score, and dice coefficient for segmenting the vessel. Liu et al. [39] proposed a
disentangled representation DL model to facilitate the vessel segmentation across different
OCT-A devices. By enabling the DL model to learn the disentanglement of the anatomical
component (the microvasculature in images) and the local contrast component (the image
background noise diversities among different OCT-A devices), their model demonstrated
good performance for OCT-A vessel segmentation among different devices. Furthermore,
Guo et al. [40] proposed a 3D CNN to segment vessels in SVP, ICP, and DCP directly from
the angiographic volumetric data. Notably, their model was able to convert the data from
three dimensions to two dimensions by using a custom projection module for connecting
both the retinal layer segmentation and vasculature segmentation modules. The network
achieved F1 score > 0.90 in SVP, >0.70 in ICP, and >0.78 in DCP for the vessel segmentation.

3.3. Non-Perfusion Area

Non-perfusion area (NPA) is a quantitative biomarker useful for characterizing retinal
ischemia. The severity of retinal ischemia has been reported to not only impact anatomic
and functional outcomes [7], but also associate with the clinical course and responsiveness
to treatment [41,42]. With the attempt to facilitate and compare the efficiency of automated
detection of NPA, Nagasato et al. [43] conducted research to compare the diagnostic
ability among the DNN, support vector machines (SVMs), and seven ophthalmologists for
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distinguishing RVO with NPA from normal controls in both SCP and DCP OCT-A images.
They reported that the performance of the DNN was significantly better than that of SVMs
in mean AUROC, sensitivity, specificity, and average required time (all p < 0.01), as well
as outperformed ophthalmologists in terms of AUROC and specificity (all p < 0.01). Guo
et al. [44] applied a DL-based algorithm for the detection and quantification of NPA across
eyes of healthy subjects compared to patients with different DR severities on widefield
OCT-A images constructed by a montage of nasal, macular, and temporal scans. The
algorithm showed good agreement with manual delineation (average F1 score > 0.78) for
NPA segmentation across all scans. In addition, they demonstrated that NPA measured in
the montage widefield images correlated with both VA and DR severity significantly, and
its diagnostic accuracies for distinguishing any DR, referable DR, and severe DR were even
superior to NPA measured from the traditional macular scan (all p < 0.0001).

3.4. Neovascularization

The accurate identification and segmentation of choroidal neovascularization (CNV)
are essential for the diagnosis and management of chorioretinopathies [45], such as exuda-
tive AMD and myopic CNV, as they require urgent referral for timely intervention. Wang
et al. [46] developed a fully automated algorithm for the detection and segmentation of
CNV in OCT-A images, with a total of 1676 scan including follow-up scans used for training
and testing. During testing, their algorithm attained a 100% sensitivity and 95% specificity
for differentiating CNV cases from the non-CNV controls. Additionally, an intersection
over union (IoU) of 0.88 was reported between the human graders and the algorithm for
the segmenting the CNV membrane. Likewise, Thakoor et al. [47] developed a hybrid
3D (OCT-A volume scans)–2D (OCT-B scans) CNN to facilitate a multiclass categorical
AMD classification with a total of 346 eyes (97 non-AMD, 169 non-neovascular AMD,
and 80 neovascular AMD) enrolled for training, validation, and testing. They reported an
accuracy up to 77.8% for classifying different stages of AMD, illustrating the tremendous
potential of DL algorithms concatenating multiple imaging modalities to expedite the
screening for early- and late-stage AMD patients.

4. Deep Learning-Based Algorithms for OCT-A Image Classification
4.1. The Classification of Artery and Vein

The differentiation of artery–vein (AV) analysis can not only provide valuable infor-
mation for retinal diseases, but also new insights on systemic diseases. For example, the
narrowing of retinal arteriole has been reported to associate with hypertension, while both
arteriolar and venular tortuosity have been shown to relate to DR progression [48–52]. As
OCT-A images are extensively reported to reveal subtle microvascular changes, recent
studies have combined both DL and OCT-A to facilitate the AV classification. For example,
Alam et al. [53] developed a fully CNN based on modified U-shaped architecture to dif-
ferentiate arteries and veins in OCT-A images, with a transfer learning process also being
integrated to compensate for a limited dataset. They reported their algorithm achieved an
average accuracy of 86.75%, a mean IoU of 70.72%, and an F1 score of 82.81% on the test
data, of which outperformed other state-of-the-art models, as well as the model without
using transfer learning. Gao et al. [54] further proposed a CNN for AV classification in
montaged widefield OCT-A images. Specifically, they used only 6 × 6 mm2 OCT-A images
from the nasal, macula, and temporal area for training and validating the algorithm, and
testing on both 6 × 6 mm2 and 9 × 9 mm2 images. The proposed algorithm attained an F1
score > 94.1% and IoU > 89.2% for the AV classification across two devices and different
scan sizes.

4.2. The Classification of Diabetic Retinopathy Severity

In addition to retinal photograph-based algorithms, DL has also been making remark-
able breakthroughs with several OCT-A-based algorithms also being built to enhance DR
classification and management. For example, by enlisting diabetic eyes ranging from no
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DR to different severities of DR, Ryu et al. [55] developed a fully automated classification
algorithm to identify the onset and referable status of DR in OCT-A images. The proposed
algorithms achieved AUROCs above 0.93, and accuracies, sensitivities, and specificities all
above 85% for detecting the onset of DR and referable DR, both in the internal validation
and external testing. Le et al. [56] developed a CNN implemented with a transfer learning
process for retraining the model to perform a trinary classification, namely, healthy, diabetic
mellitus (DM) but with the absence of DR, and with the presence of DR, on OCT-A images.
Their model also attained good performance with a cross-validation accuracy of 87.27%,
sensitively of 83.76%, and specificity of 90.82% for differentiating the trinary outcomes, and
AUROCs all above 0.97 across the binary classification among healthy, DM but with the
absence of DR, and with the presence of DR. In order to utilize information both from OCT
and OCT-A, Zang et al. [57] developed an automated model to produce three classification
levels to facilitate the clinical diagnosis of different stages of DR. The first level of the
model was designed to classify non-referable and referable DR; the second level was to
differentiate no DR, non-proliferative DR (NPDR), and proliferative DR (PDR); and the
third level was to perform a full DR classification, namely no DR, mild and moderate
NPDR, severe NPDR, and PDR. They reported overall classification accuracies of 95.7%,
85.0%, and 71.0%, respectively, for the three classification levels.

4.3. The Classification of the Presence or Absence of Diabetic Macular Ischemia

Previous studies have reported that the severity of macular ischemia is associated with
irreversible visual deterioration, as well as the treatment response following anti-VEGF
therapy in eyes with concomitant DME [42]. Yang et al. [25] developed a multitask DL
system to first assess the image quality, and then classify the presence or absence of diabetic
macular ischemia (DMI) in both SCP and DCP OCT-A images. In order to train the model
to perform “DMI assessment” based on the ETDRS protocols, they defined the presence of
DMI as OCT-A images exhibiting disruption of FAZ and/or additional areas of capillary
nonperfusion in the macula, while the absence of DMI was classified as images exhibiting
intact FAZ outline and normal distribution of vasculature (Figure 4). Their model achieved
AUROCs > 0.939 and areas under the precision–recall curves (AUPRCs) > 0.899 for the DMI
assessment across three external validation datasets compromising two different types of
OCT-A devices [58].
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metrics [61]. Specifically, the DL model was trained and tested on 4.5 × 4.5 mm2 radial 
peripapillary capillary OCT-A optic nerve head (ONH) images, and further compared 
with separate GBC models trained and tested on standard OCT-A and OCT measure-
ments. The adjusted AUPRC for classifying healthy and glaucoma eyes was significantly 
improved by using the DL-based CNN analysis of OCT-A metrics in comparison to the 
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ML models, Schottenhamml et al. [62] demonstrated that by training the CNN using 3 × 3 
mm2 OCT-A images of different retinal projections (of the whole retina, SVC, ICP, and 

Figure 4. Examples of optical coherence tomography angiography (OCT-A) images in classifications
of diabetic macular ischemia (DMI) on superficial capillary plexus (SCP) and deep capillary plexus
(DCP). DMI classification from left to right: no DMI on SCP (A), DMI on SCP (B), no DMI on DCP
(C), DMI on DCP (D). OCT-A: optical coherence tomography angiography; SCP: superficial capillary
plexus; DCP: deep capillary plexus; DMI: diabetic macular ischemia.

4.4. The Classification of Healthy Eyes and Glaucoma

Glaucoma is among the leading causes of irreversible vision loss globally. Earlier
OCT-A studies have revealed that in comparison to healthy eyes, glaucoma eyes showed
significant attenuations in optic disc perfusion and peripapillary vessel density [59,60].
These alterations were not only associated with worse structural and functional glaucoma-
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tous measurements, but also provide predictive values for glaucoma progression [4,60]. Of
note, Bowd et al. has compared a CNN to conventional ML, i.e., gradient-boosting classi-
fiers (GBCs), for classifying healthy and glaucomatous eyes based on OCT-A metrics [61].
Specifically, the DL model was trained and tested on 4.5 × 4.5 mm2 radial peripapillary
capillary OCT-A optic nerve head (ONH) images, and further compared with separate
GBC models trained and tested on standard OCT-A and OCT measurements. The adjusted
AUPRC for classifying healthy and glaucoma eyes was significantly improved by using the
DL-based CNN analysis of OCT-A metrics in comparison to the conventional GBC analysis
(p ≤ 0.01). On the other hand, instead of comparing DL and ML models, Schottenhamml
et al. [62] demonstrated that by training the CNN using 3 × 3 mm2 OCT-A images of
different retinal projections (of the whole retina, SVC, ICP, and DCP), the CNN performed
similarly well to, or even better than, the handcrafted methods for distinguishing glauco-
matous eyes from healthy controls, especially when using features from the whole retina
projection and the SVC projection.

5. Discussion

Ever since OCT-A was introduced in 2016, there has been a huge surge in literature
and evidence indicating how OCT-A metrics might assist the diagnosis and staging for
several retinal vascular diseases and yield prognostic values for disease progression and
treatment response. However, with the complexity of the 3D information captured by
OCT-A with the growing size of datasets, manual delineation, classification, and analysis
can be a time-consuming and labor-intensive task and therefore make the widespread
application of OCT-A in clinics rather infeasible. In recent years, DL-based models have
been implemented with OCT-A to further fulfill its potential in image quality control,
segmentation, and classification. Nevertheless, it should be noted that almost all studies
were still in the “proof-of-concept” stage without being evaluated in real-world settings.
In addition, there are substantial issues in both clinical and technical domains that should
be further considered and evaluated before using OCT-A-based models in real-world
clinical settings.

From the clinical perspective:

1. The nomenclature of OCT-A metrics should be further standardized.

Although quantitative OCT-A metrics might provide important clinical values, the
diversified terms used in the current literature could be confusing and even misleading. For
example, different terms were defined with the same definition, as research used perfusion
density [63] and vessel density [64] to indicate the percentage of area occupied by perfused
binarized vessels for quantifying the perfusion status of the retina. In addition, OCT-A
metrics are not uniformly used across all devices. Taking FAZ area measurement as an
example, Zeiss Angioplex offers the analysis of FAZ parameters such as circularity, size,
and area, while Optovue enables the assessment differently by including FAZ area, perime-
ter, and AI/FD (circularity index/FD-300 (vessel density 300 µm from the fovea)) [65].
Moreover, various retinal segmentation strategies further contribute to the heterogeneity as
some devices define the middle of the inner nuclear layer (e.g., Optovue), while others use
the top of the inner nuclear layer (e.g., Topcon) as the boundary to segment DCP. All these
above-mentioned issues make the homogenous description and comparison of OCT-A data
among different devices infeasible. With more and more efforts being invested for stan-
dardizing the OCT-A nomenclature internationally [66,67], this will further facilitate the
feasibility of the OCT-A-based algorithms being used in both clinics and scientific research.

2. The normal range of OCT-A metrics should be established.

Besides the standardization of the nomenclature, efforts should also be made for
establishing the normal ranges for different OCT-A metrics. Although recent DL studies
developed algorithms for automatically quantifying FAZ area and vessel density, such
quantitative metrics could only be considered as a potential clinical endpoint when there is
a reference range; otherwise, it would be baseless to claim any value that is out of range or
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even indicating abnormalities [42]. Additionally, setting up the normal range of OCT-A
metrics could further facilitate the establishment of a severity grading scale for retinal
diseases/abnormalities, such as for DR/DMI. Several studies have designed DL models to
classify different severities of DR [68], or even distinguish eyes without DR from normal
controls [69]. Additional studies would be more convincing if the changes in metrics, such
as the decrease in vessel density, the increase in NPA, and the enlargement of FAZ area,
can be normalized and quantitatively correlated with the severity of DR. With the normal
range of OCT-A metrics across different devices being established, it will provide more
insights on how to deploy OCT-A with DL to detect, stage, or even triage patients early for
a more personalized intervention.

From the technical perspective:

1. The training sample size should be expanded to avoid biased models.

It is noticeable that most training sample sizes of the existing OCT-A-based DL models
were relatively small, especially when compared to those trained with OCT or retinal
fundus photographs. A diversified dataset is extremely important to avoid overfitting
during model training, as well as to improve the generalizability of the algorithm to
unseen datasets. Different data augmentation methods [70], such as cropping, rotation,
and color jittering, have been widely used to enlarge the training sample size in previous
studies. More recent studies have further used advanced DL technologies, such as transfer
learning [71] and low-shot learning [72], to address this issue. In the future studies, the
training sample size would be one of the important evaluation metrics for the robustness
of algorithm, and new explorations in the computer science domain should be expected to
overcome this issue.

2. External testing should be performed with data privacy and security being
fully addressed.

To date, most of the DL models for OCT-A image analysis were trained and validated
on datasets from a single center without further conducting external testing. Nevertheless,
simply relying on the internal evaluation results might not provide comprehensive assess-
ment (e.g., generalizability) of the model performance. One challenge for external testing is
the lack of publicly available OCT-A data. Meanwhile, sharing data among institutions
might raise privacy and data security issues. Currently, a new learning paradigm, named
federated learning (FL) [73], might be used to bridge this gap. Different from traditional
training methods pooling all data from multiple institutions into a central source, FL en-
ables a central server to distribute models to be trained independently at the different
institutions, while at the same time updating the global model by aggregating the charac-
teristics (e.g., parameters and gradients) of the local models. It could be used to address
the problem of data privacy and security as patients’ data will not be transferred beyond
the firewalls of their own institutions.

3. Domain shift should also be handled properly among different OCT-A devices to
increase model robustness.

As mentioned previously, various OCT-A devices use different imaging protocols
and segmentation methods for evaluating microvasculature in different capillary plexuses.
These domain shift issues impose pertinent challenges for real-world application of how
to overcome the diversities in devices and standardize them into one framework in a
device-agnostic manner. Recently, innovative techniques, such as domain adaptation [74],
image to image translation [75], and image disentanglement [39], have been proposed to fill
this gap. With more and more advanced techniques in computer science being proposed
to address and alleviate the inherited variances of different devices, it can be expected
that future DL algorithms will also attain robustness for OCT-A image analysis across
different devices.

4. The value of using three-dimensional volumetric OCT-A scans is worth
further exploration.
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Most of the current DL algorithms were trained by 2D en face OCT-A images although
OCT-A is able to provide 3D volumetric data, which contain much more information than
the 2D images. Several research groups have explored the potential value for training the
algorithms based on the volumetric data, and found that information hidden in the 3D
images might actually provide added value to improve accuracy for segmenting features
in DME [76], and classifying disease severity for DR [47]. However, it should be noted
that computation time and memory might also increase tremendously when processing 3D
volumetric data. Therefore, in order to further utilize the 3D data without increasing the
computational cost, more sophisticated techniques, such as weakly supervised learning [77],
might be used to deal with this hurdle. Future algorithms based on OCT-A volumetric scans
could be expected to provide more important insights both theoretically and clinically.

5. The interpretability of the output from the DL algorithm should be further improved.

As DL models extract and learn features automatically without handcrafted feature
designing, it is quite difficult to reveal and explain the decision process (i.e., “black box”
issue). Many DL studies used activation maps or salient maps to generate heatmaps for
highlighting the specific areas potentially related to the location of pathologies or the
locations of the most significant features for identification [78]. More recently, there is a
subdiscipline called explainable/interpretable AI (XAI) being set up to contend with the
concept of the “black box” [79]. Future research might be conducted to further improve the
interpretability of the OCT-A based DL models and evaluate whether the output can be
considered as appropriate for a given imaging scenario.

6. Conclusions

The application of the DL-based OCT-A image analysis is both accurate and efficient
regarding image quality control, segmentation, and classification. It is a very promising
combination which sheds light on establishing the new and robust paradigm for staging of
retinal diseases, such as an updated diabetic retinal disease (DRD) staging system. More
importantly, it might facilitate routine clinical use of OCT-A for early detection, interven-
tion, and management of retinal diseases. Future research is crucial in tackling existing
challenges before real-world deployment, such as overcoming the domain shift among
different devices, enhancing the interpretability and transparency of models’ outputs, as
well as improving the generalizability of the models with patients’ privacy issues being
fully addressed.

7. Literature Search

We searched databases of PubMed, Medline, Web of Science, Google Scholar, and Sco-
pus for studies published in English up to 31 August 2022, using these keywords: “optical
coherence tomography angiography”, “artificial intelligence”, “machine learning”, “deep
learning”, “deep neural network”, and “convolutional neural network”. The reference lists
from the selected articles were checked to obtain additional relevant articles not included
in the databases.
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Table 1. Summary of existing deep learning models with the combination of optical coherence tomography angiography.

Authors, Year Input Output Datasets Imaging Device Model Data
Set-Up Performance Visualization Generalizability

Validation

Image quality grading

Lauermann
et al., 2019
[24]

3 × 3 mm2 SCP
Sufficient vs.
Insufficient

(1) Training and
validation: 80 images for
both groups,
respectively
(2) Testing dataset: 20
images for both groups,
respectively

Optovue CNN
(TensorFlow)

Pre-training+
training +testing

Training accuracy 97%,
validation accuracy 100%,
and cross entropy 0.12

\ \

Yang et al.,
2022 [25]

3 × 3 mm2 SCP
and DCP

Ungradable;
gradable but
unmeasurable;
gradable and
measurable

(1) Training and
validation: over 3500
SCP and DCP images,
respectively
(2) Testing: 480 SCP and
DCP images,
respectively

Triton and
Optovue

CNN
(DenseNet)

Training +
tuning +
primary
validation +
external
validation

AUROC > 0.948 and
AUPRC > 0.866 for the
gradability assessment,
AUROC > 0.960 and
AUPRC > 0.822 for the
measurability assessment

CAM Two external
validation datasets

Dhodapkar
et al., 2022
[26]

6 × 6 and 8 × 8
mm2 SCP

High quality vs.
low quality

(1) Training and
validation: 347 SCP
scans
(2) Testing: 32 SCP scans

Zeiss CNN
(ResNet152)

Training +
tuning +
primary
validation +
external
validation

AUROC = 0.99 (95%CI
0.98–1.00) for low-quality
image identification and
AUROC = 0.97 (95%CI
0.96–0.99) for high-quality
image identification

CAM One external
validation dataset

Image reconstruction

Gao et al.,
2020 [28]

3 × 3 and 6 × 6
mm2 SVC

Reconstructed
HR images

(1) Training: 210 paired 3
× 3 and 6 × 6 mm2 SCP
images
(2) Testing: 88 paired 3 ×
3 and 6 × 6 mm2 SCP
images

Optovue
CNN
(self-developed
architecture)

Training +
testing

Significantly lower noise
intensity, stronger contrast,
and better vascular
connectivity than the
original images

Reconstructed
HR 6 × 6 mm2

SCP images
\

Gao et al.,
2021 [29]

3 × 3 and 6 × 6
mm2 ICP, DCP

Reconstructed
HR images

(1) Training and
validation: 173 paired 3
× 3 and 6 × 6 mm2 ICP
and DCP images
(2) Testing: 101 paired 3
× 3 and 6 × 6 mm2 ICP
and DCP images

Optovue
CNN
(self-developed
architecture)

Training +
validation +
testing

Significantly reduced noise
intensity, improved
vascular connectivity, and
enhanced Weber contrast
when compared to the
original images

Reconstructed
HR 6 × 6 mm2

ICP and DCP
images

\
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Table 1. Cont.

Authors, Year Input Output Datasets Imaging Device Model Data
Set-Up Performance Visualization Generalizability

Validation

FAZ segmentation

Zhang et al.,
2022 [30]

3 × 3 mm2 and 6
× 6 mm2 SCP

Reconstructed
HR images

(1) Training: 296 paired
HR and LD images
(2) Testing: 279 HR
images

Optovue GAN Training +
testing

Improved PSNR, SSIM,
and normalized mutual
information

Reconstructed
HR 6 × 6 mm2

SCP images
\

Prentašic et al.,
2016 [33] 1 × 1 mm2 images

Segmentation
map

(1)Training: 2/3 out of
80 images
(2) Testing: 1/3 out of 80
images

Unspecified
prototype

CNN
(self-developed
architecture)

Three-fold
cross-validation

A maximum mean
accuracy of 0.83 when
comparing the automated
results with the manually
segmented ones

FAZ
segmentation
map

\

Mirshahi et al.,
2021 [34] 3 × 3 mm2 images

Segmentation
map

(1) Training and
validation: 126 images
(2) Testing: 37 images

Optovue CNN
(ResNet50)

Training +
validation +
testing

A mean DSC of 0.94 ± 0.04
when compared to the
results produced by the
device’s built-in software

FAZ
segmentation
map

\

Guo et al.,
2019 [35] 3 × 3 mm2 SCP

Segmentation
map

(1) Training: 4/5 out of
405 images
(2) Testing: 1/5 out of
405 images

Zeiss CNN
(U-Net)

Five-fold
cross-validation

A maximum mean DSC of
0.976 ± 0.01 when
comparing the automatic
segmentation against the
ground truth

FAZ
segmentation \

Vessel segmentation

Ma et al., 2021
[38]

3 × 3 mm2 SVC,
DVC angiograms

Segmentation
map

(1) Training: 180 images
from two datasets
(2) Testing: 49 images
from two datasets

Optovue CNN
(ResNet)

Training +
testing

The proposed OCT-A-Net
yielded better vessel
segmentation performance
than both traditional and
other deep learning
methods

Vessel
segmentation
map

\

Liu et al., 2022
[39] 3 × 3 mm2 SVP

Segmentation
map

(1) Training: 330 scans
for disentanglement, 207
scans for segmentation
(2) Testing: 124 scans for
segmentation

Optovue;
Cirrus;
Triton;
Heidelberg

CNN
(self-developed
architecture)

Training +
testing

The proposed mode
achieved AUROC > 0.945,
ACC > 0.924, kappa >
0.743, DSC > 0.788 for
vessel segmentation in
different validation
datasets.

Vessel
segmentation
map

Three external
validation datasets

Guo et al.,
2021 [40]

2 × 2 mm2

volumetric scans
Segmentation
map

(1) Training and
validation: 76 cases
(2) Testing: 12 cases

Unspecified CNN
(U-Net)

Training +
validation +
testing

F1 score > 90% for vessel
segmentation in the SVP

Vessel
segmentation
map

\
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Table 1. Cont.

Authors, Year Input Output Datasets Imaging Device Model Data
Set-Up Performance Visualization Generalizability

Validation

Non-perfusion area segmentation

Nagasato
et al., 2019
[43]

3 × 3 mm2 SCP
and DCP

Distribution
map

A total of 144 normal
controls and 174 RVO
OCT-A images were
included

Unspecified CNN
(VGG-16)

Eight-fold
cross-validation

The mean AUROC,
sensitivity, specificity, and
average required time for
distinguishing RVO OCT-A
images with an NPA from
normal OCT-A images were
0.986, 93.7%, 97.3%, and
176.9 s

CAM \

Guo et al.,
2021 [44]

6 × 6 mm2

volumetric scans
Distribution
map

A total of 978 volumetric
OCT-A scans Optovue CNN

(U-Net)
Five-fold
cross-validation

A mean standard deviation
F1 score of 0.78 ± 0.05 in
nasal, 0.82 ± 0.07 in macular,
and 0.78 ± 0.05 in
temporal scans

NPA
distribution
map

\

Neovascularization segmentation

Wang et al.,
2020 [46]

OCT-A volumetric
scans

Segmentation
map

(1) Training: 1566 scans
(2) Testing: 110 scans Optovue

CNN
(self-
developed
architecture)

Training +
testing

All CNV cases were
diagnosed from non-CNV
controls with
100% sensitivity and 95%
specificity. The mean
intersection over union of
CNV membrane
segmentation was as high as
0.88

Saliency map \

Thakoor et al.,
2021 [47]

OCT-B scans and
OCT-A volumetric
scans

Non-AMD,
non-
neovascular
AMD, and
neovascular
AMD

(1) Training and
validation: 277 cubes/B
scan images
(2) Testing: 69 cubes/B
scan images

Unspecified

CNN
(self-
developed
architecture)

Training +
validation +
testing

The hybrid 3D–2D CNNs
achieved accuracy up to
77.8% in multiclass
categorical classification of
non-AMD
eyes, eyes having
non-neovascular AMD, and
eyes having
neovascular AMD

CAM \
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Table 1. Cont.

Authors, Year Input Output Datasets Imaging Device Model Data
Set-Up Performance Visualization Generalizability

Validation

The classification of artery and vein

Alam et al.,
2020 [53]

6 × 6 mm2

OCT/OCT-A
images

Artery–vein
map A total of 50 images Optovue CNN

(U-Net)
Five-fold cross
validation

The AV-Net achieved an
average accuracy of 86.71%
and 86.80%, respectively,
for artery and vein on the
test data, mean IOU was
70.72%, and F1 score was
82.81%

Artery–vein
map \

Gao et al.,
2022 [54]

Montaged
wide-field
OCT-A

Artery–vein
map

(1) Training: 240
angiograms
(2) Testing: 302
angiograms

Optovue CNN
(U-Net)

Training +
testing

For classification and
identification of arteries,
the algorithm achieved
average sensitivity of
95.3%, specificity of 99.6%,
F1 score of 94.2%, and IoU
of 89.3%. For veins, the
algorithm achieved
average sensitivity of
94.4%, specificity of 99.7%,
F1 score of 94.1%, and IoU
of 89.2%

Artery–vein
segmentation
results

One external
validation dataset

The classification of different DR severities

Ryu et al.,
2021 [55]

Both 3 × 3 and 6
× 6 mm2 SCP and
DCP

DR vs. non-DR;
referable DR vs.
non-referable
DR

(1) Training: 240 sets of
images (comprising both
3 × 3 and 6 × 6 mm2)
(2) Testing: 120 sets

Optovue CNN
(ResNet)

Training +
testing

The proposed CNN
classifier achieved an
accuracy of 91–98%, a
sensitivity of 86–97%, a
specificity of 94–99%, and
AUROCs of 0.919–0.976

CAM \

Le et al., 2020
[56]

6 × 6 mm2

SCP and DCP
Healthy, no DR,
and DR eyes

(1) Training and
validation: 131 OCT-A
images
(2) Testing: 46 OCT-A
images

Optovue CNN
(VGG-16)

Training +
internal
validation +
external testing

The cross-validation
accuracy of the retrained
classifier for differentiating
among healthy, no DR,
and DR eyes was 87.27%,
with 83.76% sensitivity
and 90.82% specificity. The
AUC metrics for binary
classification of healthy, no
DR, and DR eyes were 0.97,
0.98, and 0.97, respectively.

\ One external
testing dataset
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Table 1. Cont.

Authors, Year Input Output Datasets Imaging Device Model Data
Set-Up Performance Visualization Generalizability

Validation

Zang et al.,
2021 [57] 3 × 3 mm2 images

Three-level
classifiers

A total of 303 eyes from
250 participants Optovue

CNN
(self-developed
architecture)

Ten-fold
cross-validation

The overall classification
accuracies of the three
levels were 95.7%, 85.0%,
and 71.0%,
respectively

CAM \

The classification of the presence or absence of diabetic macular ischemia

Yang et al.,
2022 [25]

3 × 3 mm2 SCP
and DCP

DMI vs. no DMI

(1) Training: 3307 SCP
and 3135 DCP images
(2) Testing: 421 SCP and
408 DCP images

Triton and
Optovue

CNN
(DenseNet)

Training +
tuning +
primary
validation +
external
validation

For DMI detection, the DL
system achieved AUROCs
of 0.999 and 0.987 for SCP
and DCP, respectively, in
primary validation, and
AUROCs > 0.939 in
external datasets

CAM Two external
testing datasets

The classification of normal and glaucoma cases

Bowd et al.,
2022 [61]

4.5 × 4.5
ONH

Glaucoma vs.
no glaucoma

A total of 130 eyes of 80
healthy individuals and
275 eyes of 185
glaucoma patients

Optovue CNN
(VGG-16)

Five-fold
cross-validation

The adjusted AUPRC
using CNN analysis of en
face vessel density images
was 0.97 (95%CI: 0.95–0.99)

\ \

Schottenhamml
et al., 2021
[62]

3 × 3 mm2 SVC,
ICP, and DCP

Glaucoma vs.
no glaucoma

259 eyes of 199 subjects,
75 eyes of 74 healthy
subjects, and 184 eyes of
125 glaucoma patients

Heidelberg
CNN
(DenseNet and
ResNet)

Five-fold
cross-validation

The DL model attained
AUROC of 0.967 on the
SVP projection for
differentiating glaucoma
patients, which is
comparable to the best
reported values in the
literature

CAM \

ACC = accuracy; AMD = age-related macular degeneration; AUPRC = area under the precision recall curve; AUROC = area under the receiver operating characteristic curve; CAM = class
activation map; CI = confidence interval; CNN = convolutional neural network; CNR = contrast-to-noise ratio; DCP = deep capillary plexus; DL = deep learning; DMI = diabetic macular
ischemia; DenseNet = dense convolutional network; DR = diabetic retinopathy; DSC = dice similarity coefficient; DVC = deep vascular complex; EAA = extrafoveal avascular area; FA =
fluorescein angiography; GAN = generative adversarial network; HR = high resolution; ICP = intermediate capillary plexus; IOU = intersection over union; LD = low resolution; NPA =
non-perfusion area; OCT = optical coherence tomography; OCT-A = optical coherence tomography angiography; ONH = optic nerve head; PSNR = peak signal-to-noise ratio; ResNet =
residual neural network; RVO = retinal vein occlusion; SCP = superficial capillary plexus; SVC = superficial vascular complex; VGG = visual geometry group.
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