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This Perspective provides examples of current and future applications of deep learning in pharmacoge-

nomics, including: identi�cation of novel regulatory variants located in noncoding domains of the genome

and their function as applied to pharmacoepigenomics; patient strati�cation from medical records; and

the mechanistic prediction of drug response, targets and their interactions. Deep learning encapsulates

a family of machine learning algorithms that has transformed many important sub�elds of arti�cial in-

telligence over the last decade, and has demonstrated breakthrough performance improvements on a

wide range of tasks in biomedicine. We anticipate that in the future, deep learning will be widely used

to predict personalized drug response and optimize medication selection and dosing, using knowledge

extracted from large and complex molecular, epidemiological, clinical and demographic datasets.
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Machine learning is a fundamental concept of artificial intelligence (AI), and is a key component of the ongoing big

data revolution that is transforming biomedicine and healthcare [1–3]. Unlike many ‘expert system’-based methods in

medicine that rely on sets of predefined rules about the domain, machine learning algorithms learn these rules from

data, benefiting directly from the detail contained in large, complex and heterogeneous datasets [4]. Deep learning

is one of the most successful types of machine learning techniques that has transformed many important subfields

of AI over the last decade. Examples include data modeling and analytics, computer vision, speech recognition and

natural language processing (NLP). Deep learning demonstrated breakthrough performance improvements over

pre-existing techniques on a wide range of complex tasks across multiple biomedical research domains spanning

from basic clinical to translational [5].

The deep learning methods landscape encompasses a variety of biologically inspired models that can be applied

directly to raw data, automatically learn useful features and make a prediction without a need to form a hypothesis [5].

While biomedical applications of deep learning are still emerging, they have already shown promising advances over

the prior state-of-the-art in several tasks [6–8]. We anticipate deep learning algorithms to have a substantial impact

on pharmacogenomics, pharmaceutical discovery and more generally, on personalized clinical decision support in

the near future.

Pharmacogenomics focuses on the identification of genetic variants that are correlated with drug effects in

populations, cohorts and individual patients. It has traditionally straddled the intersection of genomics and

pharmacology, with the greatest impact on clinical practice in oncology [9], psychiatry [10], neurology [11] and

cardiology [12]. Pharmacogenomics offers promise for applications such as medication optimization for patients based

on genotype in diagnostic testing, value as a companion diagnostic and drug discovery and development. However,
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Figure 1. Pharmacogenomics and pharmacoepigenomics for phenotype-driven therapy. Pharmacogenomics and pharmacoepigenomics

will be facilitated by various data sources that include not only traditional ‘omics’ databases, but also: growing knowledge in

epigenomics, including novel variant and their functional annotation; pharmacological data, including new therapeutics, drug

interactions and dosing guidelines; and patient data, including clinical, socio-economic and information about the environment.

Partially adapted with permission from [20] (2012) under CC BY 3.0 license.

physicians, caregivers, patients and pharmaceutical and biotechnology companies have all been slow to adopt

pharmacogenomics, despite recommendations by the US FDA [13]. Recently, however, pharmaceutical companies

that are faced with rising costs and resource investments required for drug development have begun to recognize

the potential of genomics for drug discovery, and to a lesser extent, for stratification of participants in clinical trials

to mitigate adverse events (AEs) and increase efficacy [14,15]. In addition, the adoption of pharmacogenomic testing

for optimization of medication selection in psychiatry has shown promise for the clinical utility [10,16].

Historically, the exome has provided a rich source of single variants for genotyping in pharmacogenomics, with

a focus on genes that encode ADME (absorption, distribution, metabolism, excretion), including DMET (drug

metabolizing enzymes and transporters) proteins. More recently, the noncoding regulatory genome is proving to

be the next domain for the discovery of new pharmacogenomic variants that will provide clinical utility [17]. This

new research lies at the heart of the new field of ‘Pharmacoepigenomics’, which is the corresponding emerging

subdomain of pharmacogenomics that focuses on studying the role of the epigenome in drug response [18]. However,

these new variant discovery methods and their potential corresponding drug development processes can be very time

consuming, where large trials are needed to assess clinical efficacy, toxicity and safety [19]. Moreover, the continuing

growth of other types of collected data that can improve phenotype-driven therapy via pharmacogenomics also

poses a number of challenges for accurate treatment response and outcome prediction (Figure 1).

Extracting usable knowledge from large databases requires advanced computational methods that can find pat-

terns, conduct prediction, detection and classification [2,3] along with visual data analytics [21,22]. Current approaches

for knowledge extraction in pharmacogenomics include statistical methods [23,24], machine learning [24,25] and re-

cently, deep learning. Therefore, new deep-learning-based predictive analytic methods are desirable to accelerate
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Figure 2. Feature extraction versus representation learning.(A) Raw input data are often high-dimensional and

related to the corresponding label in a complicated way, which is challenging for many conventional machine

learning algorithms (left plot). Alternatively, higher-level features extracted using a deep model may be able to

better discriminate between classes (right plot). (B) Deep networks use a hierarchical structure to learn increasingly

abstract feature representations from the raw data recommendation.

Adapted with permission from [7] (2016) under CC BY 3.0 license.

the discovery of new pharmacogenomic markers, forecast drug efficacy in stratified cohorts of patients to minimize

potential adverse effects of drugs and to maximize the success of treatment.

In this Perspective, we provide examples of current and potential future applications of AI, and more specifically

deep learning, in pharmacogenomics and pharmacoepigenomics to illustrate the utility and the future potential

of these methods. It should be recognized that this Perspective provides an overview of selective pharmacogenomic

applications, and is not intended to provide an authoritative and rigorous evaluation of the technical foundations

of these methods. In addition, like other machine learning methods, deep learning techniques are prone to error

if not grounded in computational, statistical and experimental expertise [6]. Indeed, proper controls and perfor-

mance metrics are critical for the performance evaluation of such models [26]. For those seeking extensive reviews,

there are a number of existing deep learning application-focused review articles in computational biology [6,7,27],

pharmacology and drug discovery [28–32] and other areas of biomedicine [8]. The most successful applications of

deep learning require expertise in both the methodology and in the subject matter under investigation, in this case,

pharmacogenomics. Thus, we have two synergistic objectives – to increase awareness while stimulating dialogue

among pharmacogenomics and pharmacology researchers about promising future applications of this powerful

machine learning computational methodology.

Opportunities & challenges for deep learning applications

Methodological advantages of deep learning

Conventional machine learning algorithms are typically limited in their ability to process raw data [5]. Their

performance heavily depends on the extraction of relevant representations or features that require careful engineering

and considerable domain expertise (Figure 2A). In the past, biomedical datasets have typically been limited by sample

size, and since often many more features could be measured, the performance of conventional machine learning

algorithms degraded when useful information was buried in an excess of extracted features. This posed a challenge

for the determination and extraction of the optimal feature set for the problem under examination. Two related

and widely-used solutions are used to overcome this limitation: dimensionality reduction methods that shrink the

feature space to the set of most informative components [24]; and feature selection methods that identify a relatively

small number of features that can accurately predict an outcome [25]. While many of these general-purpose methods

already exist, they are not necessarily optimized for pharmacogenomic biomarker discovery. This and other related

pharmacological research applications require careful experimental design and choice of validation techniques.

Overall, limitations of conventional machine learning methods include the need for extensive human guidance,

painstaking feature handcrafting, careful data preprocessing and the above-mentioned dimensionality reduction to

achieve top performance.

In contrast, deep learning methods model data by learning high-level representations with multilayer compu-

tational models such as artificial neural networks (ANNs) [5]. While classic feed-forward ANNs might serve as
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drop-in replacement for other machine learning models and require input preprocessing and feature extraction,

deep learning architectures, such as convolutional neural networks (CNNs), allow the algorithm to automatically

learn features from raw and noisy data. Deep neural networks rely on algorithms that optimize feature engineering

processes to provide the classifier with relevant information that maximizes its performance with respect to the

final task. Such deep learning models can be thought of as automated ‘feature learning’ or ‘feature detection’,

which facilitates learning of hierarchical, increasingly abstract representations of high-dimensional heterogeneous

data [5], also known as ‘representation learning’ (Figure 2B). Some common deep learning methods include deep

feed-forward ANNs, CNNs, recurrent neural networks (RNNs), stacked autoencoders, deep belief networks and

deep reinforcement learning techniques [5–7,27]. In biomedicine, these models are capable of unguided extraction

of highly complex, nonlinear dependencies from raw data such as raw sequence data [8].

Recent applications of deep learning in biomedicine have already demonstrated their superior performance

compared with other machine learning approaches in a number of biomedical problems [8], including those in

image analysis [33–36], genomics [7,27], as well as drug discovery and repurposing [30,31]. This great success of deep

learning models in many tasks is thought to be enabled by the explosive growth of volume of raw data along with

significant progress in computing, including the use of powerful graphical processing units that are specifically

well-suited for the optimization of deep learning models.

Figure 3 shows an idealized collective example of deep learning applications in pharmacogenomics. First, deep

neural networks are trained on various existing datasets and/or their combinations. Depending on the type of

data and a task in hand, prediction outcomes for a dataset can be known (supervised learning), partially known

(semisupervised learning) or not known at all (unsupervised learning). Due to the flexibility of architectures, neural

networks are capable of multimodal learning, in other words, jointly learning from a number of different datasets

and data types without explicit definition of common features [37]. For example, Chaudhary et al. [38] trained a deep

autoencoder model jointly on RNA-seq, miRNA-seq and methylation data from The Cancer Genome Atlas to

predict subgroups of hepatocellular carcinoma patients. Moreover, deep networks can be used in a multitask learning

regime by learning multiple objectives simultaneously and providing a number of outputs such as prediction of

the regulatory function of a sequence, pathway mapping, disease and ADE mark identification, drug efficacy and

dosage recommendation [31].

Challenges & limitations of deep learning

Deep learning is a very fast-paced research domain and although its potential utility is impressive, there are several

challenges associated with the practical usage of these models. Typically, CNNs are complex, heavily parameterized

models, with little theoretical guarantees of performance or proven ways to construct effective problem-specific

architectures. Due to their complexity, time-consuming training process and high representational power, such

models should be used in cases when sufficient volumes of input data are available and conventional machine

learning fails to provide an effective, simpler solution. For biological and clinical applications, adoption of deep

learning is slower due to a few reasons, including skepticism arising from the data and hardware requirements, as well

as the ‘black-box’ nature of these algorithms, which specifically challenges the notion of model interpretability [5,8].

Below we discuss some of these challenges in more detail.

Data requirements

While most successful deep learning applications relied on large labeled data, many biological and clinical datasets

until recently were limited by amount of available labeled samples compared with the big data analytics applications

such as natural image processing and NLP. Over time, as the number of samples increases and the number of relevant

high-quality labeled datasets expands, the wealth of pertinent pharmacogenomics data that can be used for analytics

will begin to resemble a big data challenge on par with contemporary applications in other domains. The rich variety

of heterogeneous data types in pharmacogenomics can improve the utilization of highly flexible deep networks that

can deal with sparse, high-dimensional, multimodal data. The real power of deep learning in a domain such as

pharmacogenomics will be realized when it is combined with a prior domain knowledge [8], such as gene networks

or pathways; a relevant example being used for the prediction of the pharmacological properties of drugs using

transcriptomic data combined with pathway information [39]. Multimodal, multitask and transfer learning are often

used to alleviate data limitations to some extent. Transfer learning approaches include training a deep network on a

large existing dataset, and then using this preinitialized model to learn from a smaller dataset, which typically leads

to improved performance [8]. When training data is not (fully) labeled, various semisupervised techniques can be
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Figure 3. An idealized example of deep learning applications to a number of common problems in pharmacogenomics, including

prediction of pharmacoepigenomic phenotypes, novel regulatory variants and their function and strati�ed clinical decision support.(A)

First, deep neural networks are trained on various existing datasets and/or their combinations with known outcomes. (B) To perform

prediction, unseen data of the same format as training samples are given to trained networks as inputs. (C) At the prediction step, a

model produces outcome(s) that it was trained to predict during the training phase, for example, personalized drug response, probability

of adverse events or novel pharmacogenomic variants and their pathway mapping. (D) Validation of the predicted responses occurs when

true outcomes become available on various population strati�cation levels. For example, it can be individual patient treatment response,

clinical trial results or new pharmaceutical study results. Data with observed true outcomes can again be used as a training set via a

feedback loop, as shown.

EHR: Electronic health records.

employed [8,34,40]. Data quality is another important concern in deep learning applications. Although deep learning

models can be trained directly on raw data, low quality datasets may require additional preprocessing and cleaning.

Publicly sharing the preprocessing code (e.g., Basset [41]) and cleaned data (e.g., MoleculeNet [42]) is important to

expedite further research and practical applications.

Overfitting in deep learning

A trained machine learning model may represent some attributes of the dataset that do not accurately reflect their

underlying relationships. This problem may be magnified as the size of the feature or parameter set is increased

relative to the size of the input sample set. Such models exhibit poor predictive performance, as they over-represent

minor variations in the training data. Overfitting is an issue of trade-off between generalization and approximation

of the training data in a model. A model can underfit high-dimensional, heterogeneous dataset with complex

hidden patterns if the model’s representational power is low, which is often the case, for example, for linear models.

Although overfitting is a common issue in machine learning, it is more likely to affect complex models, especially

when there are not enough samples in the training set, learning is performed for too long or where training examples

are rare, causing the learner to follow the patterns in training data too closely. In the case of deep learning, overfitting

is often a threat due to the high representational power of a model, which leads to the ability to ‘memorize’ the

whole training set very efficiently. Thus, deep learning methods require careful choice of model architecture and
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Figure 4. A re-evaluation of a previously published study con�rms the advantages of the precision-recall curve plot

over the receiver operating characteristic plot in an imbalanced binary classi�cation task. ROC and PRC plots show

the performances of six different tools, MiRFinder (red), miPred (blue), RNAmicro (green), ProMiR (purple) and

RNAfold (orange) for microRNA (miRNA) gene discovery from MiRFinder study [45]. The re-analysis used two

independent test sets, T1 and T2. The four plots are for (A) ROC on T1, (B) PRC on T1, (C) ROC on T2 and (D) PRC on T2.

PRC: Precision-recall curve; ROC: Receiver operating characteristic.

Adapted with permission from [44] C© Saito, Rehmsmeier (2015) published by PLoS under CC BY 4.0 license.

hyperparameters. Although there are specific methods to prevent overfitting [5,7], in general, the trained model

should exhibit robust performance on test data using relevant properties of the trained data. For more detailed

description of overfitting and model selection, see [43].

Preventing overfitting also requires a very careful design of the model evaluation scheme, including usage of

cross-validation techniques, normalization by subjects, etc. Validation metrics may include mean absolute error or

root-mean-square error (sample standard deviation of the differences between predicted and observed outcomes)

for regression; accuracy; precision (also known as positive predictive value – the fraction of retrieved instances

that are relevant); recall (sensitivity – the fraction of relevant instances that are retrieved); precision-recall curve

and area under the precision-recall curve; receiver operating characteristic and area under the receiver operating

characteristic curve (AUC); and mean average precision, for ranking [26,44]. Although some of these may seem

intuitive, correct determination requires great care, and is often fraught with sources of error that are not easily

understood, except in the context of the problem under study. For example, while the AUC plot is a common

visual method for classification performance evaluation, it is not the most informative when classes are represented

largely by a different number of samples in the dataset [44], which is a common situation in pharmacogenomics;

see Figure 4. One test of the quality of the trained machine learning model is its ability to faithfully generalize into

varying test sets that constitute different manifestations of the same problem.

Interpretability of deep learning models

As applications of deep learning models in biomedicine emerge, the question of interpreting a model’s outputs

receives more attention from the domain experts and practitioners [8]. Unfortunately, the opinion that deep

learning models are uninterpretable ‘black boxes’ still prevails outside of machine learning community. However,

multiple different methods for deep learning model interpretation have been developed in recent years, including

perturbation and back-propagation techniques to evaluate example-specific importance scores, exaggeration of
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Table 1. Table of associations between epigenomic elements and corresponding histone modi�cations.

Element Histones modi�cations

Transcriptional start site H3K27ac, H3K4me3, open euchromatin

Active promoter H3K27ac, H3K4me3, open euchromatin

Enhancer H3K27ac, H3K4me1, H2A.Z, euchromatin

Gene body, toward 3′ end H3K79me2/3, H3K36me3

Large introns H3K9ac, H3K18ac, H3K36me1

Translation H3K4me1, H3K79me1

Strong polycomb repression H3K9me2,3, H3k27me2/me3

hidden representations, activation maximization and other methods [6,8]. In addition, recent studies distinguish

between interpreting a model and interpreting its decision, arguing that although interpreting a complex model is

hard, often users only want an explanation for the prediction made by the model for a given example [46]. While

most applications that motivated model interpretability techniques come from computer vision problems, there is

a growing body of research that considers these methods in the life science and biomedical research context.

For example, DeepSEA [47] and DeepBind [48], deep learning-based algorithmic frameworks for predicting the

chromatin effects of sequence alterations introduced individual virtual mutations in the input sequence to evaluate

the change of the corresponding output (see also Table 2). A similar approach was used by Umarov et al. [49],

where the sequence within each sliding window was substituted with a random sequence to estimate its effect on

the result. In order to assess the change in predicted sequence accessibility, the Basset framework [41] implemented

insertions of known protein-binding motifs into the centers of input sequences. DeepLIFT [50] allows computing

feature importance scores based on explaining the difference of the output from some ‘reference’ output in terms

of differences of the inputs from their ‘reference’ inputs. Lanchantin et al. [51] applied activation maximization to

genomic sequence data to demonstrate patterns learned by an individual neuron in a network. Deming et al. [52]

applied the attention mechanism to models trained on genomic sequence. Attention mechanisms provide insight

into the model’s mechanism of prediction by revealing which portions of the input are used by different outputs.

While the interpretability of deep neural networks does not match that of most Bayesian models, recent devel-

opments in this area make it possible to interpret deep learning models, as well as many other commonly used

machine learning algorithms such as support vector machines with nonlinear kernels or ensemble methods such as

Random Forests [8]. For more detailed discussion of interpretability, we refer the reader to Ching et al. [8].

Identi�cation of regulatory pharmacoepigenomic variants, drug target discovery & patient

strati�cation

Inference of pharmacoepigenomic variants: the biology & machine learning

The noncoding human genome consists of a wealth of elements that regulate gene expression, and it accounts for

the largest untapped potential source of drug targets and missing pharmacogenomic variation that has yet to be

fully exploited [18]. Previous studies [66,67] demonstrate that psychotropic drugs such as valproic acid and lithium

exert their impact in the human CNS through chromatin interaction pathways [67,68], regulating transcriptional

networks that are constrained by the spatial and temporal dimensions of the 4D nucleome [18,69]. This led to the

recognition that over 90% of the pharmacogenomic SNPs associated with drug efficacy and AEs in genome-wide

association studies (GWAS) are located within enhancers, promoters and intron regions and impact their regulatory

function. Coupled with a paucity of coding variation, this certainly contributes to drug response and comprises as

yet uncharacterized pharmacogenomic variance requiring further exploration.

Results from the 4D nucleome program, funded by the US NIH, have led to the realization that significant

molecular variation, which accounts for human differences in medication response and AEs are likely based on

the intricate organization of the spatial genome [18,69]. Spatial and temporal morphological changes in the nucleus

and nucleoli are associated with the underlying reorganization of the chromatin architecture in 3D and 4D

(time dimension added) [70,71]. Cell-type-specific activation of topologically associated domains (TADs), which are

defined areas within chromosome territories (chromosomes) and which provide a foundation for regulation of gene

expression, while other nuclear zones of transcriptional regulation include repression (silencing) of gene expression

within lamina-associated domains at the nuclear periphery (Figure 5) [72]. Nuclear pore complexes control the flow

of molecular transport, splicing and are transcriptional hubs. Nucleoli are surrounded by heterochromatin and

future science group www.futuremedicine.com 635



Perspective Kalinin, Higgins, Reamaroon et al.

Table 2. Examples of open-source deep learning software applications for the discovery of epigenomic regulatory

interactions and variant annotation.

Software Source code Description Ref.

DeepSEA http://deepsea.princeton.edu Predicts the noncoding variant effects de novo from sequence by

directly learning a regulatory sequence code from large-scale

chromatin pro�le data, enabling prediction of chromatin effects of

sequence alterations with single-nucleotide sensitivity

[47]

DeepBind http://tools.genes.toronto.edu/deepbind/ Predicts potential TFBSs and RBP binding sites; both in vitro and in

vivo, outperforming 26 previously tested algorithms

[48]

deepnet-rbp https://github.com/thucombio/deepnet-rbp Predicts RBP binding sites taking (predicted) RNA tertiary structural

information into account

[53]

Basset www.github.com/davek44/Basset Predicts DNA accessibility, simultaneously learning the relevant

sequence motifs and the regulatory logic with which they are

combined to determine cell-speci�c DNA accessibility. Predictions

for the change in accessibility between variant alleles are greater

for GWAS in SNPs that are likely to be causal relative to nearby

SNPs in linkage disequilibrium with them

[41]

DanQ https://github.com/uci-cbcl/DanQ Uses the same features and data as the DeepSEA framework,

outperforming DeepSEA for 97.6% of the targets

[54]

DeepChrome https://github.com/QData/DeepChrome Predicts gene expression from histone modi�cation signals and

enables the visualization of the combinatorial interactions among

histone modi�cations via a novel optimization-based technique

that generates feature pattern maps from the learned deep model

[55]

TFImpute https://bitbucket.org/feeldead/t�mpute Predicts cell-speci�c TF binding for TF-cell line combinations using

an MTL setting to use information across TFs and cell lines

[56]

Rambutan https://github.com/jmschrei/rambutan Predicts Hi-C contacts at 1 kb resolution using nucleotide sequence

and DNase I assay signal as inputs. Predicted contacts exhibit

expected trends relative to histone modi�cation ChIP-seq data,

replication timing measurements and annotations of functional

elements such as enhancers and promoters

[57]

CpGenie https://github.com/gifford-lab/CpGenie/ Produces allele-speci�c DNA methylation prediction with

single-nucleotide sensitivity that enables accurate prediction of

meQTLs. Contributes to the prediction of functional noncoding

variants, including eQTLs and disease-associated mutations

[58]

DeepCpG https://github.com/cangermueller/deepcpg Identi�es known and de novo sequence motifs that are predictive

for DNA methylation levels or methylation variability, and to

estimate the effect of single-nucleotide mutations

[59]

iDeep and iDeepS www.csbio.sjtu.edu.cn/bioinf/iDeep/

https://github.com/xypan1232/iDeepS

Predicts RBP binding sites by multimodal learning from

multiresource data, e.g., sequence, structure, domain-speci�c

features and formats. Allows one to automatically capture the

interpretable binding motifs for RBPs

[60]

[61]

FactorNet https://github.com/uci-cbcl/FactorNet Predicts TFBS by leveraging a variety of features, including

genomic sequences, genome annotations, gene expression and

single-nucleotide resolution sequential signals, such as DNase I

cleavage data

[62]

Basenji https://github.com/calico/basenji Predicts cell type-speci�c epigenetic and transcriptional pro�les in

large mammalian genomes from DNA sequence alone. Identi�es

promoters and distal regulatory elements, and synthesizes their

content to make effective gene expression predictions. Model

predictions for the in�uence of genomic variants on gene

expression that align well to causal variants underlying eQTLs in

human populations; and can be useful for generating mechanistic

hypotheses to enable GWAS loci �ne mapping

[63]

Concise https://github.com/gagneurlab/concise Predicts RBP binding sites using a spline transformation-based

neural network module to model distances from regulatory

sequences to genomic landmarks

[64]

DeepATAC https://github.com/hiranumn/deepatac Predicts binding locations from both DNA sequence and chromatin

accessibility as measured by ATAC-seq, outperforming current

approaches including DeepSEA

[65]

ChIP-seq: Chromatin immunoprecipitation-sequencing; eQTL: Expression quantitative trait locus; GWAS: Genome-wide association study; meQTL: Methylation quantitative trait

locus; MTL: Multitask learning; RBP: RNA binding protein; TFBS: Transcription factor binding site.
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Figure 5. Overview of different spatial regions that determine transcriptional state in the 3D nucleome. These include the fundamental

unit of transcription, the TADs and larger transcriptional hubs, embedded in CTs. Active TADs tend to be located at the periphery of CTs.

Enhancer–promoter looping in chromatin is an example of how distant regions in linear DNA sequence come together for regulation of

gene expression. Heterochromatin located in perinucleolar and in LADs, associated with histone marks such as H3K9me2/3, correlates

with repression of gene expression. Interchromosomal interactions de�ne one type of spatial trans-interaction.

CT: Chromosome territory; LAD: Lamina-associated domain; TAD: Topologically associated domain.

Adapted with permission from [72] C© Elsevier (2017).

help to serve as an organizing scaffold for chromosome territories. Interchromosomal spatial contacts provide a

mechanism for gene regulation between adjacent chromosomes, while chromatin loops within TADs provide one

way in which enhancers and promoters regulate gene expression, both in cis and in trans. The cytoskeleton spans

the nucleus via SUN and CASH proteins and may exert drug-induced mechanical control of gene expression. Large

transcriptional hubs contain multiple chromatin interaction loops and TADs.

The pharmacoepigenome can be defined as noncoding, regulatory regions of the genome that play an active

role in the determination of medication efficacy, dose requirement and AE profile [18]. The pharmacoepigenome

contains gene regulatory elements such as enhancers and promoters. Since variation in noncoding regions in the

human genome accounts for over 80% of the genetic contribution to disease risk, apart from the few known

common single variants that cause Mendelian disorders [17], it is likely that variations in complex traits such as drug

response and susceptibility to adverse drug events are also controlled by the noncoding genome [66]. Subsumed in

this set is treatment-resistance, for example, regulatory noncoding elements power chemotherapeutic habituation to

vemurafenib in 90% of melanoma patients [73], and resistance to two or more antiepileptic drugs in approximately

30% of patients with epilepsy [74].
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Figure 6. Selected histone modi�cations used in current applications for prediction and classi�cation of noncoding variants that detect

gene regulatory elements. Distribution of histone modi�cations and other characteristics of epigenomic regulatory elements;.

To infer attributes of noncoding regulatory SNPs and predict their impact on a phenotype, machine learning as

well as probabilistic methods has been proposed. For example, to determine putative chromatin state annotation,

applications based on Hidden Markov Models are still prevalent and are used to predict regulatory elements

including promoters, enhancers, transcription start sites and gene bodies – among others. from SNPs found in

genetic association studies [6]. These applications incorporate features such as histone marks that are characteristic

of specific regulatory elements (see Table 1 & Figure 6), localization of regulatory elements in open chromatin as

indicated by DNase I hypersensitivity, disruption of transcription factor binding sites and quantitative trait loci.

Several machine learning applications have been developed for predicting the impact of noncoding SNPs in

GWAS on phenotypes; however fewer than 40% of GWAS publications from 2015 utilized these tools [75]. Table 2

lists some examples of deep learning software that scores features, such as DNase I hypersensitivity for prioritization

of regulatory function and protein annotation of chromatin loops, to predict functional enhancer–promoter

interactions and drug–target inference.

Deep learning applications for detection of regulatory elements within the noncoding genome are beginning

to emerge [7,8,76]. Most existing applications are based on CNN architecture, trained either from k-mers [77,78] or

directly from genomic sequence data. For example, DeepSEA [47] is one of the first deep-learning-based algorithmic

frameworks for predicting the chromatin effects of sequence alterations with single nucleotide sensitivity. In

addition, it is trained on diverse sets of chromatin profiles from ENCODE and Roadmap Epigenomics Consortium

projects [17,79]. DeepSEA can accurately predict the epigenetic state of a sequence, including transcription factor

binding, DNase I sensitivities and histone marks in multiple cell types. In addition, it can further utilize its

capabilities to predict the chromatin effects of sequence variants and prioritize regulatory variants. In another

example, the DeepBind algorithm was implemented based on a deep CNN to calculate the ability of nucleotide

sequences to bind transcription factors and RNA-binding proteins in order to characterize the effects of single point

mutations on binding properties in various diseases [48]. More recently, the Basset CNN model was used to predict
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DNA accessibility within noncoding regions [41]; and is intended to predict allele-bias in DNA accessibility, which

is indicative of causal variants. DNase-Seq data from 164 cell types that had been mapped by ENCODE and the

Roadmap Epigenomics Consortium was used to create Basset. The Basset CNN learned both protein–DNA binding

motif information, as well as the underlying regulatory knowledge that determines cell-specific DNA accessibility.

In the analysis of GWAS SNPs that were determined to be casual autoimmune variants, Basset demonstrated

that it could discriminate causal from noncasual SNPs in high linkage disequilibrium. In contrast to inference of

regulatory elements using annotation based on predefined feature sets, models such as DeepSEA and Basset do not

take handcrafted, preprocessed features. Instead, they adaptively learn them from raw sequence data during the

training phase. This, combined with high expressive power, allows deep learning to outperform traditional machine

learning models. More accurate prediction of noncoding variants and their functional annotations with deep

learning methods promises to enable better understanding of pharmacoepigenomic variation and more accurate

prediction of drug response and AEs.

Other recent applications of deep learning models to prediction of regulatory elements and their interactions

with the state-of-the-art performance include: enhancer prediction [80–82]; classification of gene expression using

histone modification data as input [55]; prediction of DNA methylation states from DNA sequence and incomplete

methylation profiles in single cells [59]; prediction of enhancer–promoter interactions from genomic sequence [83];

prediction of DNA-binding residues in proteins [84]; global transcription start prediction [85]; and improved

prediction of the impact of noncoding variants on DNA methylation [58,85]. In 2016, Google and Verily Life

Sciences published a preprint describing ‘DeepVariant’ – a deep learning-based universal SNP and small indel

variant caller. DeepVariant won the ‘highest performance’ award for the SNPs in the FDA-sponsored variant calling

‘Truth Challenge’ in May 2016 [86]. Recently, an updated, open-source version of DeepVariant has been further

evaluated on a diverse set of additional tests by DNAnexus [87]. These tests showed that application of a general

deep learning framework exceeded the accuracy of traditional methods for SNP and indel calling that has been

developed over the last decade. Deep neural networks also demonstrated the ability to outperform conventional

machine learning techniques in SNP–SNP interaction prediction [88,89].

The application of AI for patient strati�cation

The FDA provided guidance in 2013 [90] that pharmacogenomic testing should be used in early-phase clinical

trials for the identification of populations, cohorts and individuals “that should receive lower or higher doses of

a drug, or longer titration intervals, based on genetic effects on drug exposure, dose-response, early effectiveness

and/or common adverse reactions”. Although this approach has not been widely adopted by pharmaceutical

companies, in part, for fear of reducing its potential market size and a lack of available large genomic data resources,

applications of AI methods for patient stratification using clinical data are beginning to see usage and adoption [91].

The industry seems to be moving towards the direction of developing proprietary machine learning algorithms to

stratify patients using both unstructured and structured data obtained from the client’s electronic health records

(EHRs), which can be applied to both clinical research in academia as well as clinical trials in pharmaceutical

research. By leveraging genomic data, and information from HapMap and 1000 Genomes Project [92], ethnicity

stratification can be performed on population, cohort and other levels. This can be further extended by using EHRs

for improved patient stratification, potentially leading to more precise risk models designed to advance clinical and

translational research. Indeed, AI continues to rapidly advance in the biomedical research domain, with examples

of deep-learning-based methods recently gaining FDA clearance for the clinical usage with cardiac MRIs [16].

Patient stratification involves the complex integration of heterogeneous biomedical, demographic and sociometric

data to categorize patients into subpopulations for design of clinical trials and clinical practice. In this context, data

mining of EHRs has been proposed as an efficient relevance-based method to potentially identify eligible patients

for clinical trials [93]. Despite not being designed for usage in research, substantial amounts of data within EHRs,

such as surrogate disease phenotypes imputed from International Classification of Diseases (ICD) codes, have

effectively been proven for use through several notable studies in GWAS and phenome-wide association studies

analysis [94]. Furthermore, studies on EHR-linked DNA biorepositories have successfully shown that integration

of such pharmacogenomic and sociometric data can be useful in predictive modeling for optimizing dosage and

reducing dosing error [94]. By using clinically available information, such as age, gender and education, healthcare

providers and clinical researchers can identify better treatment options and patient responses to maximize efficacy

and cost–effectiveness [94,95], as shown in Figure 1.
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Table 3. Examples of recently published research and open-source deep learning software for applications of

arti�cial intelligence in patient strati�cation and patient care coordination.

Software Source code Description Ref.

Deep Patient https://github.com/staplet14/DeepPatient

https://github.com/natoromano/deep-patient

Learns a general-purpose patient representation from EHR data in

unsupervised manner that is broadly predictive of health status as

assessed by predicting the probability of patients to develop

various diseases. Results signi�cantly outperforming those

achieved using representations based on raw EHR data and

alternative feature learning strategies

[96]

DeepCare https://github.com/trangptm/DeepCare Predicts unplanned readmission and high-risk patients for the

diabetes and mental health patient cohorts using EHR data

including diagnosis, procedure and medication codes. Outperforms

SVM, random forests, ‘plain’ RNN and LSTM with logistic regression

[99]

Doctor AI https://github.com/mp2893/doctorai Implements a generic predictive model that covers observed

medical conditions and medication uses from longitudinal

time-stamped EHR data. Performance was judged on classi�cation

of the �nal diagnosis (aggregated to 1183 unique ICD-9 codes) and

prediction of medical order (grouped into 595 unique GPI codes)

[100]

MIMIC trajectories https://github.com/EpistasisLab/MIMIC trajectories Learns meaningful representations from a longitudinal sequence

of a patient’s interactions with the healthcare system (care events)

in both unsupervised and supervised settings that are shown to be

useful for patient survival prediction

[101]

EHR: Electronic health record; GPI: Generic product identi�er; LSTM: Long short-term memory network; RNN: Recurrent neural network; SVM: Support vector machine.

However, there are several challenges associated with the effective integration of EHR data for pharmacoge-

nomics applications. For example, due to high dimensionality of the EHR data structure, noise, heterogeneity,

sparseness, incompleteness, random error and systematic biases [96], extraction of relevant clinical phenotypes may

require extensive feature engineering and advanced computational models beyond traditional machine learning

methodologies. Ongoing research in this domain and recent advances in deep learning demonstrate the potential

of deep learning to overcome these challenges and learn patient data representations that are useful for treatment

response and outcome prediction [91]. Recent applications in this area include extraction of general-purpose patient

representations from EHRs, often performed with generative models trained either on static or temporal data [91].

These models are capable of uncovering patterns in sparse, complex, heterogeneous datasets and producing sur-

rogate imputed patient phenotypes. For example, there are both unsupervised, for example, Deep Patient [96],

and semisupervised, for example, Denoising Autoencoder for Phenotype Stratification [40], models that rely on a

stacked autoencoder network architecture to model EHR data to derive patient representations that are predictive

of final diagnosis, patient risk level and outcome (e.g., mortality, readmission) (Table 3). As generative deep model

development progresses quickly, applications of novel architectures, such as Generative Adversarial Networks, to

EHR data are starting to emerge, demonstrating improved performance for the disease prediction [97] and risk

prediction given treatment [98].

Overall, the promise of integrating pharmacogenomics with data-driven EHR analysis of population, cohort

and individual patient data already shows usefulness for patient stratification and prediction of treatment response.

A quickly growing body of work in the field demonstrates a great interest in applying deep networks to these

problems [91], which allows one to learn from heterogeneous EHR data, extract temporal patterns, impute missing

data and predict clinical outcomes and optimal treatment strategies while outperforming conventional machine

leaning methods.

Deep learning for temporal patient data

Due to the longitudinal nature of EHR data, many applications employ deep network architectures that are

capable of extraction of temporal patterns from it, such as RNNs, long short-term memory networks – among

others. [91]. These networks are used for mapping patient trajectories with temporal predictions of clinical outcomes,

outperforming conventional machine learning methods that typically require a single ‘snapshot’ in time, and are

not as robust for longitudinal modeling [99–101]. Several methods have been proposed to deal with the complex

nature of longitudinal EHR data, specifically because of temporality from clinical records. To account for possible

interventions and predict optimal treatment strategy, deep learning approaches were shown to be efficient when

combined with reinforcement learning. For example, Kale et al. demonstrated how this type of deep model can be

used for discovery and analysis of causal phenotypes from clinical time series data [102]. Deep neural networks trained
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on EHR data with temporally dependent constraints and outputs have also been proposed to predict 3–12-month

mortality of patients receiving improved palliative care [46]. Additional deep reinforcement learning models have

been used to learn an optimal heparin dosing policy from sample dosing trials, their associated outcomes having

been predicted from the publicly available MIMIC II intensive care unit database [103].

Looking forward, we also envision the incorporation of data from mobile devices and wearable sensors for

measuring phenotypic markers and stratification of patients by these phenotypes. This type of continuously

collected data allows researchers access to large-scale deep phenotyping of the human population, and to better

assess patients’ prognosis by analyzing their real-time data. Rajpurkar et al. developed a 34-layer CNN which

exceeded the performance of board certified cardiologists in detecting a wide range of heart arrhythmias from

electrocardiograms recorded with a single-lead wearable monitor [104]. Apple’s ResearchKit open-source framework

enables access to enrolled patients’ heart rate, accelerometer and other mobile sensor data [105]. For example, the

approach utilizing deep CNNs for feature extraction from accelerometry and gyroscope iPhone data has recently

won the Parkinson’s Disease Digital Biomarker DREAM challenge, an open crowd-sourced research project designed

to benchmark the use of remote sensors to diagnose and track Parkinson’s disease [106]. Similar studies with RNNs

have also shown to be successful in classification of patients with bipolar disorder using NLP and accelerometer

data collected from a patient’s mobile device [107]. Although data from wearable sensors is not yet considered to

be a part of a patient’s EHR, this data have shown to be robust and usable with deep learning methods and will

certainly contribute to the modernization of patient stratification.

Pharmacological applications for drug & target discovery, repurposing & interaction

Although the noncoding human genome represents the new source for drug targets and genetic variation discovery,

so far, most approaches to ‘epigenetic’ drug discovery have focused on post-translational modification of histone

proteins and DNA through enzymes (‘writers’ and ‘erasers’), and the recognition of these changes by adaptor proteins

(‘readers’). There are now hundreds of identified chromatin remodeling proteins that aggregate into larger protein

complexes, and exert complex functions such as chromatin-mediated neuroplasticity and neurogenesis in the human

CNS. These chromatin remodeling proteins were first examined in the context of developmental decisions about cell

fate, and in the adult, potential druggable targets were thought to consist of histone demethylases (e.g., KDM1A),

histone methyltransferases such as EZH2 and bromodomain-containing proteins, that were thought to be the only

‘readers’ of the histone code. On closer inspection, these turned out to be super-families of related proteins, and

there exist many other proteins that act as chromatin remodelers (Figure 5).

The realization that the human epigenome operates the fundamental regulatory machinery of transcription, many

new druggable targets can be discovered that are not ‘writers’, ‘erasers’ or ‘readers’. Fundamental to this realization

was the recognition that the linear genetic sequence was only the beginning, as the important mechanisms of

gene regulation operate in the spatial and temporal dynamics between regulatory elements such as super-enhancers,

enhancers and promoters along with the target genes they regulate. Additionally, several important characteristics of

causal variants in GWAS have emerged, including properties such as allele-specific bias, location of gene variants in

euchromatin and histone marks that are associated with genome elements that help define their function. Critical to

transcriptional regulatory circuits was the realization that transcription factors are key drivers of phenotype, and they

can be classified in a hierarchal manner. In addition, master transcription factors are controlled by super-enhancers

for determination of cell-specific gene regulation and identity [108].

Ivanov et al. [109] first recognized the complexity of the molecular physiology responsible for regulation of ADME

genes, including DNA methylation and hydroxymethylation, various histone modifications, miRNAs and lncRNAs.

Since a xenobiotic substance that alters any of the myriad of enzymes and small RNAs involved in ADME gene

regulation represents a novel therapeutic candidate, they emphasized the importance of ‘pharmacoepigenomics’ in

drug discovery. Since 2012, our understanding of the druggable epigenome has increased exponentially, providing

thousands of new druggable targets (Figures 5 & 6).

Although the human epigenome has yielded insight into pharmacogenomic regulatory mechanisms, translation

of this wealth of data into drug discovery will not be trivial. Currently, although the single most valuable approach

for detection of prospective druggable targets in the human epigenome is the application of deep learning methods

for candidate identification (Table 2), the ability to test compound/drug–molecule pairs is hobbled by protracted

preclinical screening in animal models [29,32]. The cost and time incurred by the brute force screening of thousands

of small compounds for novel epigenome drug targets in animal models is a daunting challenge. Simulation

of the mechanism of candidate drugs’ action in populations of ‘virtual humans’, which accurately represent the
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Table 4. Examples of open-source deep learning software applications for pharmacological applications.

Software Source code Description Ref.

DeepChem https://deepchem.io/ Implements low data learning method based on a novel iterative

re�nement long short-term memory architecture combined with

graph convolutional neural networks to learn of meaningful

distance metrics over small molecules. On the Tox21 and SIDER

collections, one-shot learning methods strongly dominate simpler

machine learning baselines, indicating the potential for strong

performance on small biological datasets

[115]

DeepDTIs https://github.com/Bjoux2/DeepDTIs DBN Training drug–target space extracted from DrugBank consisted of

1412 drugs and 1520 targets. Experimental drug–target pairs for

testing were derived from DrugBank as well and consisted of 2528

targets and 4383 experimental drugs. DeepDTI gained the best

performance in multiple performance metrics as compared with

the Bernoulli Naive Bayesian, Decision Tree and Random Forest

classi�ers. In addition, DeepDTI showed potential to predict

whether a new drug targets some existing targets, or whether a

new target is interacting with some existing drugs

[116]

DeepSynergy https://github.com/KristinaPreuer/DeepSynergy Predicts synergistic drug combinations for cancer therapy by

learning from chemical properties of the drugs and gene

expression pro�les of speci�c cancer cell lines. DeepSynergy

signi�cantly outperformed the other methods with an

improvement of 7.2% over the second-best method at the

prediction of novel drug combinations within the space of

explored drugs and cell lines. Applying DeepSynergy for

classi�cation of these novel drug combinations resulted in a high

predictive performance of an AUC of 0.90.

[117]

AUC: Area under the receiver operating characteristic curve.

molecular physiology of actual humans is within reach [110], but is an underfunded application domain in biomedical

informatics and computer science. Translation will require innovation in domains that have traditionally resisted

change, including adoption of adaptive clinical trial design, transformation of federal regulatory governance and

broad adoption in preclinical pharmaceutical research of genomics-based science and in silico strategies that have

been shown to be effective in predicting the clinical success of drug targets [111].

Deep learning applications in drug discovery and repurposing are starting to emerge, and already show high

potential in many tasks including virtual screening, prediction of ADME/Tox properties and prediction of novel

drug–target interactions [8,28–32]. Generative deep models are also used for de novo design molecules with de-

sired chemical properties [112–114]. In Table 4, we show those applications with publicly available open-source

implementations.

Deep learning & toxicology

The Tox21 Data Challenge has been the largest effort of the scientific community to compare computational

methods for toxicity prediction [118]. This challenge comprised 12,000 environmental chemicals and drugs that

were measured for 12 different toxic effects by specifically designed assays. In this challenge, deep learning-based

DeepTox model had the highest performance of all computational methods winning the grand challenge, the

nuclear receptor panel, the stress response panel and six single assays [118]. DeepTox also demonstrated the benefit

of using a multitask network, which outperformed a single-task counterpart in ten out of 12 assays. Further

studies also suggest that multitask deep networks show superior performance on a broad range of drug discovery

datasets [31,119].

DeepAOT family of deep architectures for the compound acute oral toxicity prediction is based on molecular

graph encoding CNNs [120]. These models implement regression, multiclassification and multitask networks that

outperformed previously reported models for this task. Interpretation of these models was performed by exploration

of networks’ internal features (referred to as deep fingerprints) that were highly correlated with topological structure-

based fingerprints. Furthermore, one toxicity-related feature of each deep fingerprint was tracked back to the

atomic level and the highlighted toxicity fragments were then compared with structural alerts for toxic chemicals

and compounds with potential adverse reactions from ToxAlerts database [121]. Consistent results suggested that

DeepAOT models could infer acute oral toxicity related toxic fragments from just the information on molecular

shape and atomic bonds. Moreover, this model architecture is not limited to acute oral toxicity, and it could be

applied for studying other end points induced by compounds in complex systems [120].
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Figure 7. Future trends in pharmacogenomics. We anticipate that as larger and more heterogeneous

pharmacogenomic datasets become available in coming years, the predictive power of deep learning models will

increase.

AI: Arti�cial inteligence; EHR: Electronic health records; PGx: Pharmacogenetics; R & D: Research and development.

Other pharmacogenomic applications

Applications of deep learning recently demonstrated state-of-the-art performance for predicting cell phenotypes

from transcriptomics data [122], drug response in cancer [123], seizure-inducing side effects of preclinical drugs [124],

patient survival from multiomics data [38], drug-induced liver injury prediction [53] and classifying genomic variants

into adverse drug reactions [125].

Future perspective

Impact on basic research in biology & pharmacology

We anticipate that as larger and more heterogeneous pharmacogenomic datasets become available in coming years,

the predictive power of AI, and specifically deep learning models, will increase. Abundance of various types of data

not only will enable more effective data-driven mining and discovery of important variants and markers, but allow

as well for deeper investigation of corresponding interaction mechanisms by systematically considering underlying

biological processes at different scales and biological data modalities. As already noted, discovery and characterization

of noncoding regulatory elements in 4D nucleome already are becoming a major topic of pharmacogenomic studies.

Further investigations will continue this trend, with a focus on causal relationship between elements of interest and

increasing model specificity and predictive power originating from multiomics and pathway studies.

Increasing amounts of patient-specific data such as EHRs, environmental data and demographics, combined

with pharmacogenomic targets and pharmacological knowledge bases will allow patient stratification into treatment

groups with specificity at the population, cohort and individual levels. Advanced machine learning models such as

deep learning will allow the researcher to jointly learn multiple objectives from heterogeneous, multimodal data

and predict, for example, novel variants, their effects and functions, drug AE risk estimation, treatment and dosage

recommendation and other pharmacological outputs (Figure 7). Given the growing amount of these data, AI

methods, including deep learning, often demonstrate the best performance in addressing relevant methodological

challenges [8]. However, as discussed above, applications of any machine learning algorithm, including deep learning,

require careful selection of controls, training sets and appropriate validation schemes and metrics, and all of these

should be combined with domain expertise to fully realize the potential of AI and deep learning.
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Industrial perspective

Pharmaceutical companies were quick to recognize the potential application of AI methods such as deep learning

for drug discovery and development. Market forecasts emphasized in 2017 that the “full potential healthcare service

cost savings of AI-enabled initiatives would be $300 billion a year in the USA, or about 0.7 percent of GDP” [126],

and “big pharma, biotech, contract research organizations and research institutes will spend $390M US on deep

learning for drug discovery, including products, services and internal projects worldwide, and this market will

grow to $1.25B by 2024” [127]. This led to a rush of investment into start-ups intending to offer AI consulting

services and products offered to pharmaceutical companies, with a similarity to the rise of new companies offering

companion diagnostics in the early part of the 21st century, which did not reach profitability in an entrepreneurial

timeframe. There has been a reluctance of the large pharmaceutical companies, whose culture is often monolithic

and conservative, to embrace innovation in the absence of pragmatic demonstration that AI methods would lead to

success in clinical trials. More importantly, big pharma quickly realized that access to large quantities of genotyped

patient data was a major priority for patient stratification and other applications, but in the USA, security concerns

has limited partnerships among healthcare data owners – hospitals, insurers and drug makers. This has recently led

big pharma to take the position of moving quickly to organize and curate their own datasets for internal use, and

form partnerships with national biobanks and other entities for external forces of data, while engaging in watchful

waiting for more realistic demonstrations of the practicality of deep learning for drug discovery and development

before large investments are made. During this time, the industry as a whole has remained in vigorous discussions

with various stakeholders about the potential and limitations of such methods. Now that there is some amount

of critical evaluation of AI applications in drug discovery [128], the pharmaceutical industry is poised to embrace

omics-driven drug discovery, phenotype-driven drug discovery and stratification in clinical trials on a massive scale

as soon as convincing validation emerges from current efforts.

Open science considerations

A culture of data, code and model sharing promises to speed advances of deep learning applications in pharma-

cogenomics. The sharing of high quality, labeled datasets will be especially valuable; however, a clear asymmetry

exists with government-sponsored academic researchers directed to share, while researchers in industry are often

prohibited from sharing code, data and results due to proprietary and intellectual property protections. Availability

of open-source solutions for the discovery of epigenomic regulatory interactions and variant annotation (Table 2)

compared with those in patient stratification (Table 3) and pharmacological applications (Table 4) shows that

the potentially translational character and patient privacy aspects of the study often prevent its details, data and

implementation from being open to public. However, this situation is already changing in the machine learning

and deep learning communities, that has witnessed acceleration of progress via public-posting of various datasets

for benchmarking and software tools, including those developed and used in the industrial setting. Moreover,

researchers who invest time to preprocess datasets to be suitable for deep learning can make the preprocessing code

(e.g., Basset [38]) and cleaned data publicly available to catalyze further research. Code-sharing and open-source

licensing are essential for continued progress in this domain. Because many deep learning models are often built

using one of several popular software frameworks, it is also possible to directly share trained predictive models.

A pretrained neural network can be quickly fine-tuned on new data and used in transfer learning, as discussed

above. It is possible for models to be trained on competitive proprietary data without the release of such data, and

a consortium model of joint training on proprietary data from multiple sources has been contemplated within the

industry.

Conclusion

Deep learning models will be further improved to address current limitations such as training time, interpretability

of results and requirements to training set size. Transfer learning that involves training deep learning models on

one type of data and adaptation of a learnt representation to another type will be commonly used in experiments

where data collection remains expensive. Models such as deep neural networks will be adapted to learn joint data

representation from various omics data types, which will allow combining information from different experiments

to provide better-informed predictions. As dataset sizes increase, we will see more of semi- and unsupervised

machine learning applications, including generative models that will be able to produce or suggest new and testable

biological hypotheses, such as potential novel pharmacogenomic markers (PK, PD and ADME), and also drug

targets, based on information extracted from multimodal omics data.
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Several decades from now, one can imagine the situation when machine learning and AI-based systems will shift

their focus from ‘prediction’ to ‘prescription’, in other words, will not only provide insights, but will also provide

recommendations for further action. Such changes not only have the potential to revolutionize pharmacogenomics

and pharmaceutical research more broadly, but also will likely provide a wide impact on biological sciences, and on

health, in general.

Executive summary

Pharmacogenomics has promising applications in drug discovery & development, & medication optimization

• Pharmacogenomic studies have established the importance of drug–genome interactions.

• Pharmacogenomics offers promise for applications such as medication optimization for patients based on

genotype in diagnostic testing, value as a companion diagnostic and drug discovery and development.

• The noncoding regulatory genome is the current domain for the discovery of new genomic variants.

Brief overview of machine learning methodology

• Machine learning methods have demonstrated the ability to identify novel regulatory variants located in

noncoding domains that can inform pharmacogenomic response, prediction of drug–genome interactions and

extraction of pharmacogenomic phenotype from clinical data, and drug discovery.

• The predictive power of machine learning is realized mostly when it is combined with prior domain knowledge,

such as gene networks and pathways.

• Usage of traditional machine learning models is challenged by rapid growth of data volume, a need for

combination of heterogeneous datasets from different experiments and is highly resource intensive in its

preprocessing and feature handcrafting application(s).

Deep learning takes advantage of big data via representation learning

• Deep learning is a subset of machine learning models composed of multiple processing layers to learn

representations of data with multiple levels of abstraction, which eliminates the feature extraction step. These

models improved the state-of-the-art in many machine learning tasks, including several examples in genomics

and drug discovery.

• Applications of deep learning in pharmacogenomics have started to emerge, but they are still in its infancy.

• Deep learning models often require relatively large training sets, architecture design and careful choice of

validation techniques to prevent over�tting.

Identi�cation of regulatory pharmacogenomic variants & drug target discovery using deep learning

• Signi�cant molecular variation which accounts for human differences in medication response and adverse events

may be based in the intricate organization of the 4D spatial genome (or 4D nucleome), which drives a need for

deeper investigation of nuclear zones of transcriptional regulation.

• Pharmacoepigenomic datasets contain information about gene regulatory elements such as promoters and

enhancers, histone marks, disruption of transcription factor binding sites and quantitative trait loci. They are

used in training of various machine learning models to infer regulatory attributes of noncoding SNPs, including

chromatin state annotation, promoters, enhancers, transcription start sites, gene bodies – among others.

• Deep learning models already have demonstrated state-of-the-art performance in several tasks such as predicting

DNA accessibility within noncoding regions, potential transcription factor and RNA binding sites, and gene

expression from histone modi�cations.

• Realization that many of genetic differences in drug response can be found via analysis of noncoding regulatory

genome together with modern gene editing techniques opens great opportunities for applications of machine

and deep learning to predict the key regulatory variants that impact drug response and induce adverse drug

events.

• Applications of deep learning for phenotype extraction from medical records and other patient data, including

temporal, show the potential usefulness for pharmacogenomic patient strati�cation, individualized treatment

outcome prediction and medication optimization.

• The fact that human epigenome operates the fundamental regulatory machinery of transcription in the spatial

and temporal dynamics suggests that discoveries of many new druggable targets that were not in the focus of

traditional ‘epigenetic’ drug discovery are potentially realizable.

• Deep learning can be a lead force in pharmacoepigenomics-based drug discovery, combining candidate

prediction with virtual screening, in silico drug repurposing and evaluation.
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