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Abstract

Deep learning is a branch of artificial intelligence where networks of simple interconnected units 

are used to extract patterns from data in order to solve complex problems. Deep learning 

algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially 

those related to images. They have often matched or exceeded human performance. Since the 

medical field of radiology mainly relies on extracting useful information from images, it is a very 

natural application area for deep learning, and research in this area has rapidly grown in recent 

years. In this article, we discuss the general context of radiology and opportunities for application 

of deep learning algorithms. We also introduce basic concepts of deep learning including 

convolutional neural networks. Then, we present a survey of the research in deep learning applied 

to radiology. We organize the studies by the types of specific tasks that that they attempt to solve 

and review a broad range of deep learning algorithms being utilized. Finally, we briefly discuss 

opportunities and challenges for incorporating deep learning in the radiology practice of the 

future.
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Introduction

The field of deep learning encompasses a group of artificial intelligence methods which 

employ a large number of simple interconnected units to perform complicated tasks. Deep 

learning algorithms, rather than using a set of pre-programmed instructions, are capable of 

learning from large amounts of data. The tasks solved by these algorithms include localizing 

and classifying objects in images, understanding language, playing games, and many others 

[1]. While the flagship of deep learning, convolutional neural networks, were first 
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introduced decades ago, only in the last 5 years have astonishing success of these algorithms 

elevated their status from interesting but impractical ideas to the go-to algorithms in artificial 

intelligence. In recent years, not only have deep learning algorithms been able to surpass 

performance of other methods in artificial intelligence [2] but in some tasks, such as 

pneumonia recognition, they have shown performance superior to humans [3–5].

Arguably, the most well-known achievement of deep learning to date is its performance in 

the ImageNet competition. ImageNet is a database of more than 14,000,000 annotated 

natural images containing real world objects such as cars, animals, and buildings (http://

www.image-net.org). One of the goals of the competition is to assign each image to one of 

1000 predefined categories. When a deep learning-based algorithm first appeared in the 

competition in 2012, it dramatically improved the error rate from 0.258 in the previous year 

(http://image-net.org/challenges/LSVRC/2011/results) to 0.153 (http://image-net.org/

challenges/LSVRC/2012/results.html). The error rate produced by a deep learning based 

methods dropped below that achieved by human observers in 2015 for the first time [5]. The 

performance of deep learning algorithms for image classification has been improving since 

then and is now considered to be comparable to or better than human performance for many 

tasks [6–8]. Other areas relevant to the topic of this article, where deep learning algorithms 

have seen impressive results, include the automatic generation of sophisticated captions for 

images that consist of full sentences [9] as well as localization and outlining of objects in 

images [10, 11].

There are likely three reasons for the recent success of deep learning algorithms: availability 

of data, increased processing power, and rapid development of algorithms. These are highly 

connected: availability of large datasets of images and computing power made it possible to 

demonstrate the strength of the basic concepts of deep learning, and these successes 

motivated the development of further datasets and algorithms. The availability of graphic 

processing units (GPUs), which can be used in a multi-core model for rapid data processing, 

has dramatically reduced computation times and enabled larger scientific and technical 

communities to become involved and to develop even more powerful algorithms which 

further advanced the field.

As the primary strength of deep learning has been in image analysis, the potential 

applications in radiology have become very quickly apparent. The development of 

algorithms for radiology has shown some inertia due to the time needed for acquisition of 

the appropriate expertise in the medical imaging community as well as limited availability of 

large medical imaging datasets. However, the last 2–3 years have seen remarkable 

productivity in the field. It is now well recognized by both researchers and clinicians that 

deep learning will play a significant role in radiology.

In this paper, we begin with a general overview of radiology as the application domain and 

consider where deep learning could have the most significant impact. Then, we introduce the 

general concepts of deep learning. This is followed by an overview of the recent work in the 

field, emphasizing developments related to MRI. The article closes with remarks regarding 

the future of deep learning in radiology.
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The practice of radiology

Deep learning techniques (and artificial intelligence algorithms in general) have a 

tremendous potential to influence the practice of radiology. Unlike most other facets of 

medicine, nearly all of the primary data utilized in imaging as well as the outputs produced 

by radiologists (ie imaging reports) are digital, lending those data to analysis by artificial 

intelligence algorithms.

One of the most challenging tasks in the interpretation of images is that of disease detection, 

the rapid differentiation of abnormalities from normal background anatomy. For example, in 

the interpretation of mammography, each radiograph contains thousands of individual focal 

densities, regional densities, and geometric points and lines that must be interpreted to detect 

a small number of suspicious or abnormal findings. Fortunately, in order to be useful, a 

computer algorithm does not have to detect all objects of interest (e.g., abnormalities) and be 

perfectly specific (i.e., not mark any normal locations). For example, in screening 

mammography, approximately 80% of screening mammograms should be read as negative 

according to the ACR BI-RADS guideline. Of the 20% of examinations that trigger 

additional evaluation, many will ultimately be categorized as negative or benign [12]. An 

algorithm that could successfully categorize even half of screening mammograms as 

definitely negative would dramatically reduce the effort required to interpret a large batch of 

examinations.

disease management implications is undertaken. For focal masses generically, a large 

number of features must be integrated in order to decide how to appropriately manage the 

finding. These features can include size, location, signal intensity, borders, heterogeneity, 

change over time, and others. In some cases, simple criteria have been established and 

validated for the management of focal findings. For example, most focal lesions in the 

kidney can be characterized as either simple or minimally complex cysts, which almost 

uniformly do not require treatment. On the other hand, most lesions in the kidney that are 

solid are considered to have high malignant potential. Finally, a minority of focal kidney 

lesions are considered indeterminate and can be managed accordingly. Deep learning 

algorithms have the potential to assess a large number of features, including features 

previously not considered by radiologists, and to arrive at a repeatable conclusion in a 

fraction of the time required for a human interpreter.

While detection, diagnosis, and characterization of disease receive the primary attention 

among algorithm developers, another important area where artificial intelligence could 

contribute is in facilitating the workflow of the radiologists while interpreting images. With 

the near complete conversion from printed films to centralized digital Picture Archiving and 

Viewing Systems (PACS) as well as the availability of multi-planar, multi-contrast, and 

multi-phase MRI, radiologists have seen exponential growth in the size and complexity of 

image data to be analyzed. However, standard PACS systems are not able to reliably 

organize and present all relevant imaging data to the interpreter for a variety of reasons, 

including differences in sequence labeling, patient positioning, and anatomy between 

examinations, variability in modalities used to image the same portion of the anatomy, as 

well as other factors. In principle, an artificial intelligence algorithm could bring forward 
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sequences from examinations that include the relevant body part(s), detect the image 

modality and contrast type, and determine the location of the area of interest within the 

relevant anatomy to reduce the radiologist’s effort in performing these relatively mundane 

tasks.

Finally, computer algorithms might be able to perform medical image interpretation tasks 

that radiologists do not perform on a regular basis. For example, the field of radiogenomics 

[13] aims to find relationships between imaging features of tumors and their genomic 

characteristics. Examples can be found in breast cancer [14], glioblastoma [15], low grade 

glioma [16], and kidney cancer [17]. However, due to its complexity, radiogenomics is not a 

part of the typical clinical practice of a radiologist. Another example is prediction of 

outcomes of cancer patients with applications in glioblastoma [15, 18], lower grade glioma, 

[16], and breast cancer [19]. While imaging features have a potential to predict patient 

outcomes, very few are currently used to guide oncological treatment. Deep learning could 

facilitate the process of incorporating more of the information available from imaging into 

the oncology practice.

An introduction to deep learning

Terminology

To understand deep learning, it is helpful to first understand the related concepts of artificial 

intelligence and machine learning. Artificial intelligence is the most generic of the three 

terms, comprising a set of computer algorithms that are able to perform complicated tasks or 

tasks that require intelligence when conducted by humans. Machine learning is a subset of 

artificial intelligence algorithms which, to perform these complicated tasks, are able to learn 

from provided data and do not require pre-defined rules of reasoning. The field of machine 

learning is very diverse and has already had notable applications in medical imaging [20]. 

Deep learning is a sub-discipline of machine learning that relies on networks of simple 

interconnected units. In deep learning models, these units are connected to form multiple 

layers that are capable of generating increasingly high level representations of the provided 

inputs (e.g. images). Below, in order to explain the architecture of deep learning models, we 

introduce the artificial neural network in general and one specific type: the convolutional 

neural network. Then, we detail the process of “learning” as applied to networks, which is 

the process of incorporating the patterns extracted from data into the deep neural networks.

Artificial Neural Networks

Artificial neural networks (ANNs) are machine learning models based on basic concepts 

dating as far as back as the 1940s, significant development in 1970s and 1980s and a period 

of notable popularity in 1990s and 2000s, followed by a period of being overshadowed by 

other machine learning algorithms. The ANN is based on a concept of an artificial neuron, 

which is a model of a nerve cell. While many neuron models have been proposed, a typical 

neuron simply multiplies each input by a certain weight, then adds all the products for all the 

inputs and applies a simple mathematical function referred to as an activation function, to 

produce a single output value. An illustration of a neuron and different activation functions 

is shown in Figs. 1A and 1B respectively. An ANN consists of a multitude of interconnected 
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neurons, usually organized in layers. A simple ANN is illustrated in Fig. 1C. A traditional 

ANN typically used in the practice of machine learning contains 2 to 3 layers of neurons. 

Even though each neuron performs a very rudimentary calculation, the interconnected nature 

of the network allows for the performance of very sophisticated calculations and 

implementation of very complicated functions.

Convolutional Neural Networks

Deep neural networks are a special type of an ANN. The most common type of deep neural 

network is a deep convolutional neural network (CNN). Deep convolutional neural 

networks, while inheriting the properties of a generic ANN, also have their own specific 

features. First, they are “deep,” which is to say that they are typically comprised of 10–30 

layer, and in extreme cases could exceed 1000 layers. Second, their neurons are connected 

such that multiple neurons share weights. This effectively allows the network to perform 

convolutions (or template matching) of the input image with the filters (defined by the 

weights) within the CNN. Another special feature of CNNs is that between some layers, 

they perform pooling operations (see Fig. 2) which make the network invariant to small 

changes in the input data. Finally, CNNs typically use a different nonlinear transformation 

when generating the output of a neuron as compared to traditional ANNs.

Figure 2 illustrates key concepts for CNNs. Specifically, Fig. 2A demonstrates how a 

network performs a multiplication of its weights, organized in a matrix by the original pixels 

within an image. As this multiplication is repeated across different locations in the image 

this operation corresponds to filtering of an image where the filters (a.k.a. the convolutional 

kernels) are defined by the network weights. These layers are referred to as convolutional 

layers. Figure 2B shows the basic concept of a max pooling layer where a maximum value 

of multiple neighboring outputs of the previous layer is passed to the next layer. 

Convolutional layers, pooling layers, and fully connected layers (such as those in the multi-

layer neural network in Fig. 1C) are the primary components of convolutional neural 

network. Figure 2C, shows an example of a small architecture for a typical CNN. A variety 

of deep learning architectures have been proposed, often driven by characteristics of the task 

at hand (e.g. fully convolutional neural networks for image segmentation). Some of these are 

described in more detail in the section of this paper that reviews the current state of the art.

The learning process for convolutional neural networks

Above, we described general characteristics of traditional neural networks and deep 

learning’s flagship, the convolutional neural network. Next, we will explore how to make 

those networks perform useful tasks. This is accomplished in the process referred to as 

learning or training. The learning process for a convolutional neural network simply consists 

of changing the weights of the individual neurons in response to the provided input data. In 

the most popular type of a learning process, called supervised learning, a training example 

contains an object of interest (e.g. a T2-weighted image of a tumor) and a label (e.g. the 

tumor’s pathology: benign or malignant). In our example, the image is presented to the 

network’s input, and the calculation is carried out within the network to produce a predicted 

summary value (such as a likelihood of malignancy) based on the current weights of the 

network. Then, the network’s prediction is compared to the actual label of the object (e.g. 0 
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for benign, 1 for malignant), and an error is calculated. A correction for the error is then 

propagated through the network to change the values of the network’s weights such that the 

next time the network analyzes this exact example, the error decreases. In practice, the 

correction of the weights is performed after a group of examples (a batch) are presented to 

the network. This process is called error backpropagation or stochastic gradient descent. 

Various modifications of the stochastic gradient descent algorithm have been developed [21]. 

In principle, this iterative process consists of calculations of error between the output of the 

model and the desired output and adjusting the weights in the direction where the error 

decreases.

The most straightforward way of training is to start with a random set of weights and train 

using available data specific to the problem being solved (training from scratch). However, 

given the large number of parameters (weights) in a network, often above 10 million, and a 

limited amount of training data for a specific task, a network may overtrain (a.k.a. overfit) to 

the available data (i.e. fitting to well to the training set and not generalizing well to test 

data), resulting in poor performance on test data. Two training methods have been developed 

to address this issue: transfer learning [22] and off-the-shelf features (a.k.a. deep features) 

[23]. There are many properties of the dataset used for pre-training that affect its usability, 

e.g. similarity of the structures present in the images, the size of the original dataset. 

However, quantitative effects of these factors are still a part of ongoing research on transfer 

learning methods. A diagram comparing training from scratch with transfer learning and off-

the-shelf deep features is shown in Figure 3.

In the transfer learning approach, the network is first trained using a different dataset, for 

example an ImageNet collection. Then, the network is “fine-tuned” through the addition of 

training data specific to the problem to be addressed. The idea behind this approach is that 

performing different visual tasks shares a certain level of processing such as recognition of 

edges or simple shapes. This approach has been shown successful in, for example, prediction 

of patient survival time from brain MRI in patients with glioblastoma [24] or in skin lesion 

classification [25]. Another approach that addresses the issue of limited training data is the 

deep “off-the-shelf” features approach which uses convolutional neural networks which have 

been trained on a different dataset to extract features from the images. This is done by using 

a pre-trained network and extracting outputs of layers prior to the network’s final layer. 

Those layers typically have hundreds or thousands of outputs. Then, these outputs are used 

as inputs to “traditional” classifiers such as linear discriminant analysis, support vector 

machines, or decision trees. This is similar to transfer learning (and is sometimes considered 

a part of transfer learning) with the difference being that the final layers of a CNN are 

replaced by a traditional classifier and the early layers are not additionally trained for the 

specific task at hand.

Deep learning vs “traditional” machine learning

Increasingly often we hear a distinction between deep learning and “traditional” machine 

learning (see Figure 4). The difference is very important, particularly in the context of 

medical imaging. In traditional machine learning, the first step is typically feature extraction. 

This means that to classify an object, one must decide for the algorithm which 
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characteristics of an object will be important and implement algorithms that are able to 

capture these characteristics. A number of sophisticated algorithms in the field of computer 

vision have been proposed for this purpose and a variety of size, shape, texture, and other 

features have been extracted. This process is to a large extent arbitrary since the machine 

learning researcher or practitioner often must guess which features will be of use for a 

particular task and runs the risk of including useless and redundant features and, more 

importantly, not including truly useful features. In deep learning, the process of feature 

extraction and decision making are merged and trainable, and therefore no choices need to 

be made regarding which features should be extracted; this is decided by the network in the 

training process. However, the cost of allowing the neural network to select its wn features is 

a requirement for much larger training data sets.

Deep learning in radiology: state of the art

In this section, we give an overview of applications of deep learning in radiology. We 

organized this section by the tasks that the deep learning algorithms perform. Within each 

subsection, we describe different methods applied, and when possible, we systematically 

discuss the evolution of these methods in the recent years. Other recent reviews surveyed the 

applications of deep learning in broadly understood medical imaging (including pathology) 

[26] and specifically in brain segmentation in MRI [27].

Classification

In a classification task, an object is assigned to one of the predefined classes. A number of 

different classification tasks can be found in the domain of radiology such as: classification 

of an image or an examination to determine the presence or an absence of an abnormality; 

classification of abnormalities as benign or malignant; classification of cancerous lesions 

according to their histopathological and genomic features; prognostication; and 

classification for the purpose of organization radiological data.

Deep learning is becoming the methodology of choice for classifying radiological data. The 

majority of the available deep learning classifiers use convolutional neural networks with a 

varying number of convolutional layers followed by fully connected layers. The availability 

of radiological data is limited as compared to the natural image datasets which have driven 

the development of deep learning techniques over the last 5 years. Therefore, many 

applications of deep learning in medical image classification have resorted to techniques 

meant to alleviate this issue: off-the-shelf features and transfer learning [28] discussed in the 

previous section of this article. Off-the-shelf features have performed well in a variety of 

domains [23], and this technique has been successfully applied to medical imaging [29, 30]. 

In [29], the authors combined the deep off-the shelf features extracted from a pre-trained 

deep CNN network with hand-crafted features for determining malignancy of breast lesions 

in mammography, ultrasound, and MRI and achieved statistically significant improvements 

in performance compared to existing breast cancer computer-aided diagnosis methods. In 

[30], long-term and short term survival with improved (29%) accuracy was predicted for 

patients with lung carcinoma by combining off-the-shelf features with the traditional 

quantitative features. The other strategy, transfer learning, involves fine tuning of a network 
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pre-trained on a different dataset. Transfer learning has been successfully applied to a variety 

of tasks such as classification of prostate MR images to distinguish patients with prostate 

cancer from patients with benign prostate conditions [31] using MRI. Most of the studies 

which apply the transfer learning strategy replace and retrain the deepest layer of a network, 

while the shallow layers are fixed after the initial training. A variant of the transfer learning 

strategy combines fine-tuning and deep features approaches. It fine-tunes a pre-trained 

network on a new dataset to obtain more task-specific deep feature representations. An 

ensemble of fine-tuned CNN classifiers was shown to outperform traditional CNNs in 

predicting radiological image modality on a test set of 4166 images [32]. A comparison of 

approaches using deep features and transfer learning with fine tuning has been shown useful 

for identifying radiogenomic relationships in breast cancer MRI [33]. Though, deep features 

performed better than transfer learning with the fine tuning approach, the method faced the 

issue of training on small dataset.

When sufficient data are available, an entire deep neural network can be trained from a 

random initialization (training from scratch). The size of the network to be trained depends 

on task and dataset characteristics. However, the commonly used architecture in medical 

imaging is based on AlexNet [2] and VGG [34] with modifications that have fewer layers 

and weights. Training from scratch has been applied to assessing for the presence of 

Alzheimer’s disease based on brain MRI using deep learning [35]. In this study using the 

publicly available ADNI cohort, sparse regression models were combined with deep neural 

networks to achieve higher classification performance compared with several non-deep 

learning based techniques in differentiating Alzheimer’s versus normal controls. Recent 

advances in the design of CNN architectures have made networks easier to train and more 

efficient. They have more layers and perform better (in terms of accuracy or area under the 

curve [AUC]) while having fewer trainable parameters, which reduces the likelihood of 

overtraining [36]. The most notable examples include Residual Networks (ResNets) [37] and 

the Inception architecture [38, 39]. A shift toward these more powerful networks has also 

taken place in applications of deep learning to radiology both for transfer learning and 

training from scratch. Three different ResNets were used to predict methylation of the O6-

methylguanine methyltransferase gene status from brain tumor pre-surgical MRI [40] with 

an accuracy of 94.9%, which is better than conventional machine learning based techniques 

using MRI texture features. In [41], the InceptionV3 network was fine-tuned and served as a 

feature extractor instead of previously used GoogLeNet to classify wrist radiographs into 

two categories (with and without fracture). The authors leveraged the data augmentation to 

generate 11,112 training images from an initial set of 1389 images and obtained an AUC of 

0.95 on the test set.

In another approach, auto-encoder [42] or stacked auto-encoder [43] networks have been 

trained from scratch, layer by layer, in an unsupervised way. A stacked denoising auto-

encoder with backpropagation was used in [44] to determine the presence of Alzheimer’s 

disease. Auto-encoders and stacked auto-encoders can also be used to extract feature 

representations (similarly to the deep features approach) from hidden layers for further 

classification. Such feature representation has also been used in the identification of multiple 

sclerosis lesions in using MRI and myelin maps jointly [45].
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Segmentation

In an image segmentation task, an image is divided into different regions in order to separate 

distinct parts or objects. In MRI, the common applications are segmentation of organs, 

substructures, or lesions, often as a preprocessing step for feature extraction and 

classification [46, 47]. Below, we discuss different types of deep learning approaches used in 

segmentation tasks in a variety of radiological images.

The most straightforward and still widely used method for image segmentation is 

classification of individual voxels based on small image patches (both 2-dimensional and 3-

dimensional patches) extracted around the classified voxel. This approach has found use in 

various segmentation problems, for example brain tumor segmentation in [48–50], white 

matter segmentation in multiple sclerosis patients [51], segmentation of normal components 

of brain anatomy [52], and rectal cancer segmentation [53]. It allows for using the same 

network architectures and solutions that are known to work well for classification, however, 

there are some shortcomings of this method. The primary issue is that these methods are 

computationally inefficient, since they process overlapping parts of images multiple times. 

Another drawback is that each voxel is segmented based on a limited-size context window 

and ignores the wider context. In some cases, some global information, e.g. pixel location or 

relative position to other image parts, may be needed to correctly assign its label.

One approach that addresses the shortcomings of the voxel-based segmentation is a fully 

convolutional neural network (fCNN) [54]. Networks of this type process the entire image 

(or large portions of it) at the same time and output a 2-dimensional map of labels (i.e., a 

segmentation map) instead of a label for a single pixel. A very important advantage of 

fCNNs over the voxel-based approach is avoiding many repeated convolutions by analyzing 

a large portion of the image and providing the segmentation label for all the voxels at the 

same time. Example architectures that were successfully used in both natural images and 

radiology applications are encoder-decoder architectures such as U-Net [55–57] or Fully 

Convolutional DenseNet [58–60]. Various adjustments to these types of architectures have 

been developed that mainly focus on connections between the encoder and decoder parts of 

the networks, called skip connections. An fCNN was applied in [61] for in radiology include 

prostate gland segmentation in diffusion-weighted MRI. Although a relatively small dataset 

of over 100 cases was used, the segmentation quality as evaluated with Dice similarity 

coefficient was 0.89. In another study [62], a fCNN was used for segmentation of multiple 

sclerosis lesions and gliomas in MRI slices of axial, coronal and sagittal planes separately. 

In addition to differences in building blocks for fCNNs, different optimization functions 

have been explored that account for class imbalance (remarkable differences among the 

number of examples in each class), which is common in medical datasets [63]. In [64], 

weighted cross entropy loss was used for brain structure segmentation in MRI. The proposed 

method did not require any post-processing and offered on average 10 times faster 

processing of large MRI volumes comparing to other tested methods.

In order to segment 3-dimensional data, it is common to process data as 2-dimensional slices 

and then combine the 2-dimensional segmentation maps into a 3-dimensional map since 3D 

fCNNs are significantly larger in terms of trainable parameters and as a result require 

significantly larger amounts of data. Nevertheless, these obstacles can be overcome, and 
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there are successful applications of 3D fCNNs in radiology, e.g. V-Net for prostate 

segmentation from MRI [65], 3D U-Net [66] for segmentation of the proximal femur for 

assessing osteoporosis [67], and brain glioma segmentation [68].

Finally, a deep learning approach that has found some application in medical imaging 

segmentation is recurrent neural networks. In [69], the authors applied a recurrent fully 

convolutional neural network for left-ventricle segmentation in multi-slice cardiac MRI to 

leverage inter-slice spatial dependences. Similarly, [70] used Long Short-Term Memory 

(LSTM) [71] type of recurrent neural network trained end-to-end together with fCNN to 

take advantage of 3D contextual information for pancreas segmentation in MR images. In 

addition, they proposed a novel loss function that directly optimizes a widely used 

segmentation metric, the Jaccard Index [72].

Detection

Detection is a task of localizing and pointing out (e.g., using a rectangular box) an object in 

an image. In radiology, detection is often an important step in the diagnostic process which 

identifies an abnormality (such as a mass or a nodule), an organ, an anatomical structure, or 

a region of interest for further classification or segmentation [73, 74]. Here, we discuss the 

common architectures used for various detection tasks in radiology along with example 

specific applications.

The most common approach to detection for 2-dimensional data is a 2-phase process that 

requires training of 2 models. The first phase identifies all suspicious regions that may 

contain the object of interest. The requirement for this phase is high sensitivity [75] and 

therefore it usually produces many false positives. A typical deep learning approach for this 

phase is a regression network for bounding box coordinates based on architectures used for 

classification [76, 77]. The second phase is simply classification of sub-images extracted in 

the previous step. In some applications, only one of the two steps uses deep learning. This 

strategy has been applied in cerebral microhemorrhage detection using a large dataset of 320 

MRI volumes and achieved 93% sensitivity [78].

The classification step, when utilizing deep learning, is often performed using transfer 

learning. The models are often pre-trained on natural images, for example for thoraco-

abdominal lymph node detection in [79] and pulmonary embolism detection in CT 

pulmonary angiogram images [28]. In other applications, models have been pre-trained 

using other medical imaging dataset to detect masses in digital breast tomosynthesis images 

[80]. The same network architectures can be used for the second phase as in a regular 

classification task (e.g. VGG [34], GoogLeNet [81], Inception [38], ResNet [37]) depending 

on the needs of a particular application.

While in the 2-phase detection process the models are trained separately for each phase, in 

the end-to-end approach one model encompassing both phases is trained. An end-to-end 

architecture that has proved to be successful in object detection in natural images, and was 

recently applied to medical imaging, is the Faster Region-based Convolutional Neural 

Network [10]. It uses a CNN to obtain a feature map which is shared between region 

proposal network that outputs bounding box candidates, and a classification network which 
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predicts the category of each candidate. It was recently applied for intervertebral disc 

detection in X-ray images [82] and detection of colitis on CT images [83].

Another approach to detection is a single-phase detector that eliminates the first phase of 

region proposals. Examples of popular methods that were first developed for detection in 

natural images and rely on this approach are You Only Look Once (YOLO) [84], Single 

Shot MultiBox Detector [85] and RetinaNet [11]. In the context of radiology, a YOLO-based 

network called BC-DROID has been developed for region of interest detection in breast 

mammograms [86]. Single Shot MultiBox Detector has been employed for breast tumor 

detection in ultrasound images, outperforming other evaluated deep learning methods that 

were available at the time [87]. The authors of [88] applied the same network for detection 

of pulmonary lung nodules in CT images. The above-mentioned methods and architectures 

were widely adapted for natural images and some medical imagining modalities, e.g. CT, 

mammograms, X-rays, however, are still uncommonly applied in object detection using 

MRI.

In the examples above, 2-dimensional data have typically been used. For 3-dimensional 

imaging volumes, which are most commonly encountered in CT and MRI, results obtained 

from 2-dimensional processing can be combined to produce the final 3-dimensional 

bounding box. As an example, in [89] the authors performed detection of 3D anatomy in 

chest CT images by processing data slice by slice in one direction. Combining output from 

different planes was performed in several studies. Most of the them [90–92] used orthogonal 

planes of MRI and CT images performing detection in each direction separately. The results 

can then be combined in different ways, e.g. by an algorithm based on output probabilities 

[89] or using another machine learning method like random forest [88]. An alternative 

method for 3D detection has been proposed for automatic detection of lymph nodes by 

concatenating coronal, sagittal and axial views as a single 3-channel image [75].

Other Tasks in Radiology

While the majority of the applications of deep learning in radiology have been in 

classification, segmentation, and detection, other medical imaging-related problems have 

found some solutions in deep learning. Due the variety of those problems, there is no 

unifying methodological framework for these solutions. Therefore below, we organize the 

examples according to the problem that they attempt to address.

Image Registration: In this task two or more images (often 3D volumes), typically of 

different types (e.g., T1-weighted and T2-weighted image sets) must be spatially aligned 

such that the same location in each image represents the same physical location in the 

depicted organ. Several approaches can be taken to address the problem. In one approach, 

similarity measures between image patches taken from the images of interest are calculated 

and used to register the image sets. The authors of [93] used deep learning to learn a 

similarity measure from T1-T2 MRI image pairs of the adult brain and tested it to register 

T1-T2 MRI interpatient images of the neonatal brain. This similarity measure performed 

better than the standard measure, called mutual information, which is widely used in 

registration [94]. In another deep learning-based approach to image registration, the 
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deformation parameters between image pairs are directly learned using misaligned image 

pairs. A CNN-based network was trained to correct respiratory motion in 3D abdominal MR 

images [95] by predicting spatial transforms. All of these techniques are supervised 

regression techniques as they were trained using ground truth deformation information. In 

another approach [96], which was unsupervised, a CNN was trained end-to-end to generate a 

spatial transformation which minimized dissimilarity between misaligned image pairs.

Image generation/reconstruction: Acquisition and hardware parameters can strongly 

affect the visual quality and detail of images obtained using the same modality. First, we 

discuss the applications that synthesize images generated using different acquisition 

parameters within the same modality. In [97], 7T like images were generated from 3T MR 

images by training a CNN with patches centered around voxels in the 3T MR images. 

Undersampled (in k-space) cardiac MRIs were reconstructed using a deep cascade of CNNs 

in [98]. A real-time method to reconstruct compressed sensed MRI using GAN has also been 

proposed [99]. In another approach [100] in order to synthesize brain MRI images based on 

other MRI sequences in the same patient, convolutional encoders were built to generate a 

latent representation of images. Then, based on that representation a sequence of interest 

was generated. Reconstruction of “normal-dose” CT images from low-dose CT images 

(which are degraded in comparison to normal-dose images) has been performed using patch-

by-patch mapping of low-dose images to high-dose images using a shallow CNN [101]. In 

contrast, a deep CNN has been trained with low-dose abdominal CT images for 

reconstruction of normal-dose CT [102].

Deep learning has also been applied to synthesizing images of different modalities. For 

example, CT images have been generated using MR images by adopting an FCN to learn an 

end-to-end non-linear mapping between pelvic CT and MR images [103]. Synthetic CT 

images of the brain have also been generated from a single T1-weighted MR image set 

[104]. In another application to aid a classification framework for Alzheimer’s disease 

diagnosis with missing PET scans, PET patterns were predicted from MRI using CNN 

[105].

Image enhancement: Image enhancement aims to improve different characteristics of the 

image such as resolution, signal-to-noise-ratio, and necessary anatomical structures (by 

suppressing unnecessary information) through various approaches such as super-resolution 

and denoising.

Super-resolution of images has particularly been explored in cardiac and lung imaging. 

Three dimensional near–isotropic cardiac and lung images often require long scan times in 

comparison to the time the subject can hold his or her breath. Thus, multiple thick 2D slices 

are acquired instead and the super-resolution methodology is applied to improve the 

through-plane resolution of the images. A deep cascade of CNNs has been shown to 

preserve anatomical structure up to 11 fold undersampling using cardiac MRI [106]. In 

another study [107] using CT, a single image super-resolution approach based on CNN was 

applied in a publicly available chest CT image dataset to generate high-resolution CT images 

which are preferred for interstitial lung disease detection. This method outperformed the 

traditional compressed sensing based approaches used in MR image reconstruction. In 
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another study [108] to synthesize thin slice knee MRIs from thick slice knee MRIs, the 

proposed CNN based approach showed improved qualitative and quantitative performance 

over the state-of-the-art techniques in a test set of 17 patients.

Image enhancement through denoising application of using deep has also been described in 

[109] where the authors performed denoising of DCE-MRI images of a brain (for stroke and 

brain tumors) by training an ensemble of deep auto-encoders using synthesized data. 

Removal of Rician noise in real and synthetic three-dimensional MR images using a deep 

convolutional neural network aided with residual learning can be performed by excluding 

the traditional steps of optimization and estimation of the noise level parameter [110]. An 

encoder-decoder CNN architecture [111] was used to denoise the noisy uptake signal 

between a pre-contrast MR sequence (zero gadolinium dose for contrast) and a 10% low-

dose post-contrast MR sequence of brain. With the help of this model, full contrast high 

quality post-contrast sequences were reconstructed from sequences with 10-fold reduction in 

contrast dose for different pathologies (including glioma) in brain for 50 patients.

Content-based image retrieval: In the most typical version of this task, the algorithm, 

given a query image, finds the most similar images in a given database. To accomplish this 

task, a deep CNN can first be trained to distinguish between different organs [112]. Then, 

features from the three fully connected layers in the network are extracted for the images in 

the set from which the images were retrieved (evaluation dataset). The same features can be 

then extracted from the query image and compared with those of the evaluation dataset to 

retrieve the image.

Objective image quality assessment: Objective quality assessment measures of 

medical images aim to classify an image to be of satisfactory or unsatisfactory quality for 

subsequent tasks. Objective quality measures of medical images diagnosis and aid in better 

treatment [113]. Image quality of fetal ultrasound has recently been predicted using CNN 

[114]. Another study attempted to reduce the data acquisition variability in echocardiograms 

using a CNN trained on the quality scores assigned by an expert radiologist [115]. As 

another example, simple CNN architecture has been reported for classifying T2-weighted 

liver MR images as diagnostic or non-diagnostic quality by CNN [116].

Main challenges and pitfalls in development of deep learning algorithms

While applications of deep learning in medical imaging show tremendous promise, there are 

some challenges and potential pitfalls, and caution should be exercised in research on the 

topic. One of the principal challenges is availability of data. While millions of training 

examples are available for problems related to natural images, the datasets for medical 

images are typically much smaller, with a typical number of patients in the hundreds range. 

This, combined with the large number of parameters in a deep neural network that require 

optimization, results in a high risk of overtraining and subsequent low performance on data 

that were not used in the training process. Some solutions that can help alleviate this issue 

are pre-training of the models with other datasets, use of smaller models, and augmentation 

of the data by including slight alterations of the original images in the dataset. A related 

issue is often a very small number of cases with a disease (e.g., cancer) as compared to 
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healthy patients. This issue, referred to as class imbalance, can lead to highly diminished 

performance [118]. Some solutions have been proposed to this issue such as higher rate of 

sampling of the examples from the minority class for training [118]. However, despite the 

solutions that have been proposed to address small data set size and class imbalance, these 

remain important challenges to the use of deep learning in radiology.

Given the high risk of overtraining, there is a high likelihood of reporting performance that 

does not reflect the true ability of a model to classify/predict/segment when the validation is 

not conducted properly. Though evaluation of models through splitting datasets into training 

dataset which is used for the development of the model and test set used for estimating the 

model’s performance as well as crossvalidation (splitting the dataset into training and test 

sets and combining the evaluation results) can provide fairly accurate estimate of 

generalization performance, these methods also have limitations. Therefore, sharing the 

developed models for testing by other institutions can facilitate further development by 

testing reproducibility and can increase the confidence of the scientific community in these 

models.

Finally, when aiming to develop deep learning models that could be used clinically, one 

must ensure a proper validation setup in the experimental validation of the models. This is 

highly challenging and sometimes overlooked. It requires not only posing a clinical question 

that is of significance and answers that change clinical decision making but also careful 

curation of the dataset to include only those patients that are relevant to the question and 

precise definitions of other non-imaging variables such as pathology/genomic markers and 

patient outcomes. This requires a close and continuous collaboration with clinicians and/or 

other experts in a given application field at many stages of the development as well as a 

strong understanding of the clinical reality of the problem by the technical expert. While 

those and other issues pose challenges in the development of deep learning models, none of 

them are insurmountable.

Future of deep learning in radiology

There is a general agreement that deep learning will play a role in the future practice of 

radiology and MRI specifically. Some predict that deep learning algorithms will conduct 

mundane tasks, leaving radiologists with more time to focus on intellectually demanding 

challenges. Others believe that radiologists and deep learning algorithms will work hand-in-

hand to deliver performance superior to either alone. Finally, some predict that deep learning 

algorithms will replace radiologists (at least in their image interpretation capacity) 

altogether.

Incorporation of deep learning in radiology will be associated with multiple challenges. 

First, and currently foremost, is the technological challenge. While deep learning has shown 

extraordinary promise in other image-related tasks, the results in radiology are still far from 

showing that deep learning algorithms will replace a radiologist in the entire scope of their 

diagnostic work. Some recent studies suggest performance of these algorithms comparable 

to expert humans in narrowly defined tasks, but these results are only applicable to a very 

small minority of the tasks that radiologists perform [4, 119–125] . This is likely to change 
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in upcoming years given the rapid progress in implementing the deep learning algorithms in 

the realm of radiology.

Implementation of deep learning in radiology practice also poses legal and ethical 

challenges. Primarily: who will be responsible for the mistakes that a computer will make? 

While this is a difficult question, similar questions have been posed and resolved when other 

technologies were introduced, for example elevators and cars. Since artificial intelligence 

penetrates various areas of human activity, questions of this type will likely be studied and 

answers proposed in the coming years.

Other challenges will include patient acceptance or non-acceptance of a human’s not being 

involved in the process of interpreting their images (regardless of the performance) as well 

as regulatory issues. Finally, an important practical issue is how to incorporate deep learning 

algorithms into the radiology workflow in order to improve, rather than disrupt, the 

radiology practice.

Conclusion

In summary, in this paper we have discussed the principles of deep learning as well as the 

current practice of radiology to elucidate how these new algorithms may be incorporated 

into radiologists’ workflow. We have discussed the progress and state of art in the field. 

Finally, we have discussed some challenges and questions related to implementation of deep 

learning in the current practice of imaging. All signs show that deep learning will play a 

significant role in radiology. The next 5 years will be a very exciting time in the field that 

may see many questions stated in this article answered through a collaboration of machine 

learning scientists and radiologists.
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Fig. 1. 
A diagram illustrating basic concepts of artificial neural network: (A) a model of a neuron 

where x1, …, xn are the network inputs, w1,…,wn are the weights, b is a bias, f is the 

activation function, and y is the neuron output, (B) two common activation functions, (C) a 

model of a simple neural network.
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Fig. 2. 
A diagram illustrating basic concepts of convolutional neural networks: (A) a convolutional 

layers: values in the convolutional filters implemented in the network weights (middle 

column) are multiplied by the pixel values and the products are summed up, (B) a max 

pooling layer: a maximum pixel value is taken in a given region, (C) an architecture of a 

simple convolutional neural network including convolutional, pooling, and fully connected 

layers.
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Fig. 3. 
An illustration of different ways of training in deep neural networks: training from scratch, 

transfer learning, and deep features
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Fig. 4. 
An illustration of difference between “traditional” machine learning and deep learning. In 

the “traditional” machine learning, a set of predefined features is extracted and used by a 

multivariate classifier. In deep learning the entire image is provided as an input to a neural 

network which outputs a decision.
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Fig. 5. 
Examples of applications of deep neural network to medical images in our laboratory: (A) A 

classification task in which a CNN was designed to distinguish between different genomic 

subtypes (cluster of clusters) of lower grade gliomas in MRI, (B) An automatic segmentation 

of low grade glioma tumors in MRI, (C) A detection of thyroid nodules in ultrasound
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Table 1.

An overview of papers presented in the review split by task and organ.

Task Site Reference

Classification of breast mass lesions Breast (Antropova, Huynh, and Giger 2017)

Classification of survival groups Lung (Paul R, Hawkins SH, Balagurunathan Y, Schabath MB, 
Gillies RJ, Hall LO 2016)

Classification of prostate cancer Prostate (Wang et al. 2017)

Classification of image modality Multiple (Kumar et al. 2017)

Classification of genomic subtypes Breast (Zhu et al. 2017)

Classification for Alzheimer’s Disease Brain (Suk, Lee, and Shen 2017)

Classification of O6-methylguanine methyltransferase gene 
status

Brain (Korfiatis et al. 2017)

Classification of fracture Wrist (Kim and Mackinnon 2017)

Classification for Alzheimer’s Disease Brain (Ortiz et al. 2017)

Classification for multiple sclerosis Brain (Yoo et al. 2018)

Classification of genomic subtypes Brain (Akkus, Ali, et al. 2017)

Classification of genomic subtypes Brain (Wachinger, Reuter, and Klein 2017)

Segmentation of rectal cancer Rectum (Trebeschi et al. 2017)

Segmentation of brain in fetal US Fetal brain (Salehi et al. 2017)

Segmentation of liver and hepatic lesions Liver (Christ et al. 2017)

Segmentation of liver tumor Liver (X. Li et al. 2017)

Segmentation of prostate gland Prostate (Clark et al. 2017)

Segmentation of sclerosis lesions and gliomas Brain (McKinley et al. 2016)

Segmentation of brain structure Brain (Mehta and Sivaswamy 2017)

Segmentation of prostate Prostate (Milletari, Navab, and Ahmadi 2016)

Segmentation of proximal femur Proximal femur (Deniz et al. 2017)

Segmentation of gliomas Brain (Shen and Anderson, n.d.)

Segmentation of left-ventricle Brain (Poudel, Lamata, and Montana 2016)

Segmentation of pancreas Pancreas (Cai et al. 2017)

Segmentation of left-ventricle Heart (Avendi, Kheradvar, and Jafarkhani 2016)

Detection of sclerosis Brain (Rey et al. 2002)

Detection of lymph nodes Lymph nodes (Roth et al. 2014)

Detection of cerebral microhemorrhage Brain (Dou et al. 2016)

Detection of Thoraco-abdominal lymph nodes Lymph nodes (Shin et al. 2016)

Detection of pulmonary embolism Lung (Tajbakhsh et al. 2016)

Detection of masses Breast (Samala et al. 2016)

Detection of intervertebral disc Spine (Sa et al. 2017)

Detection of colitis Colon (J. Liu et al. 2017)

Detection of breast cancer Breast (Platania et al. 2017)

Detection of breast tumor Breast (Cao et al. 2017)

Detection of pulmonary lung nodules Lung (N. Li et al. 2017)
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Task Site Reference

Detection of 3D anatomy in chest Chest (de Vos et al. 2016)

Detection of knee cartilage Knee (Prasoon et al. 2013)

Detection of sclerotic metastases Brain (Roth, Lu, et al. 2016)

Detection of lymph nodes Lymph nodes (Roth, Lu, et al. 2016)

Detection of colonic polyp Colon (Roth, Lu, et al. 2016)

Detection of fractures on spine Spine (Roth, Wang, et al. 2016)

Registration of T1-T2 MRI of the neonatal brain Brain (Simonovsky et al. 2016)

Registration of brain MRI Brain (Maes et al. 1997)

Correction of respiratory motion Abdomen (Lv et al. 2017)

Registration of cardiac cine MRI Heard (de Vos et al. 2017)

Reconstruction of 7T-like MRI Brain (Bahrami et al. 2016)

Reconstruction of MRI Heart (Schlemper et al. 2017)

Reconstruction of compressed sensed MRI Abdomen (Yang et al. 2017)

Synthesis of MRI Brain (Chartsias et al. 2017)

Reconstruction of CT images from low-dose CT images Multiple (H. Chen et al. 2017)

Reconstruction of CT images from low-dose CT images Abdomen (Kang, Min, and Ye 2017)

Generation of CT images from MRI Pelvis (Nie et al. 2016)

Generation of CT images from MRI Brain (Han 2017)

Prediction of PET pattern from MRI Brain (R. Li et al. 2014)

Super-resolution in MRI Heart (Oktay et al. 2016)

Enhancement of DCE-MRI Brain (Benou et al. 2017)

Denoising of 3D MRI Brain (Jiang et al. 2017)

Content-based image retrieval Multiple (Qayyum et al. 2017)

Automatic objective image quality assessment Fetal (Wu Lingyun, Cheng Jie-Zhi, Li Shengli, Lei Baiying, 
Wang Tianfu 2017)

Automatic objective image quality assessment Heart (Abdi AH, Luong C, Tsang T, Allan G, Nouranian S, 
Jue J, Hawley D, Fleming S, Gin K, Swift J 2017)

Diagnostic quality assessment of MRI Liver (Esses et al. 2017)
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