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Abstract—The ever-increasing complexity of robot applications
induces the need for methods to approach problems with no
(viable) analytical solution. Deep learning (DL) provides a set of
tools to address this kind of problems. This survey presents a
categorization of the major challenges in robotics that leverage
DL technologies and introduces representative examples of suc-
cessful solutions for the described problems. We also consider the
question when and whether to use modular, monolithic models or
end-to-end DL, in order to provide a guideline for the selection
of the correct model structure and training strategy. By doing
so, the current role and adaptability of different techniques at
different hierarchical levels of a robot-application can be high-
lighted, thus providing a well-structured basis to assist future
approaches.

Index Terms—Deep learning (DL), machine learning (ML),
manipulators, mobile robots, neural networks, robot control,
robot learning.

I. INTRODUCTION

C
OMPUTERS can easily solve formal problems that are
demanding for humans. However, the increasing need for

adaptive systems requires the solution of tasks that are hard
to formulate, but can be easily solved by humans, such as the
recognition and manipulation of objects. In order to perform
such tasks, a certain complex knowledge of the environment is
inevitable. The automatic extraction of the required knowledge
is called machine learning (ML). The way the data is presented
to the ML system, heavily influences how well the extracted
knowledge represents the given problem. The ML approaches
that also perform feature extraction, using multiple hierarchical
artificial neural network layers, are referred to as deep learning
(DL) [1], [2].

The theoretical background of DL had been introduced for
a long time, when it finally gained widespread popularity,
i.a., thanks to the winner entry of the ImageNet Challenge
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2012 (LSVRC-2012) [3], a deep convolutional neural network
(CNN) proposed by Krizhevsky, Sutskever, and Hinton (later
referred to as AlexNet). This model was able to significantly
outperform the previous state-of-the-art approaches as well as
other contestants, achieving a top-5 test error rate of 15.3%,
which was more than 10% lower than the second best entry.
Since then, DL has been successfully applied for several use
cases, such as speech recognition [4]–[6], image process-
ing [7]–[10], natural language processing [11]–[13], sentiment
analysis, recommendation systems [14], [15], etc., and large
companies like Google, Facebook, Amazon, IBM, etc., have
also founded their own DL research teams.

During its development, DL brought innovations in various
aspects of robotics as well. A general review on the frequently
used DL methods for robotics can be found in [16], while other
surveys cover the most outstanding results with sharper focus:
Robot control through reinforcement learning (RL) [17], [18],
robotic manipulation and grasping [18], [19], mobile robot
navigation [19], and transfer learning for robotics [19], [20] to
mention a few topics. Even though DL-based solutions can be
utilized in such diverse set of problems, they suffer from the
drawbacks of unpredictability and high computational com-
plexity. In safety critical systems, such as self-driving cars
and industrial robots DL methods are never used on their
own and their output is always treated with uncertainty. As a
response to that, such DL methods are tested against adversar-
ial attacks and on benchmarks that tell about their robustness.
As a response to high computational complexity and time-
consuming training process, alternative model architectures,
and corresponding training strategies are introduced, such as
random vector functional link neural networks (RVFLNNs),
proposed by Pao et al. [21], [22], which utilize a novel train-
ing strategy for a shallow network architecture to avoid the
time consuming training process that is typical in DL systems.
Based on the RVFLNN method Chen and Liu [23], [24] also
introduced broad learning systems, that offer an incremental
training strategy for the fast adaptation and retraining of such
models. To overcome these problems, new approaches in the
field of DL were also proposed, which usually leverage the
modular nature of DL models with the help of an appropriate
model structure and/or training strategy [25]. Apart from the
training process, the collection and preparation of the data for
DL also requires a huge amount of resources, especially if it
is done manually. This issue is even more relevant in robotics,
where in most cases the data collection can only be done by
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performing actions on an actual robot. This type of data col-
lection can take up to months of robot hours with multiple
robots and comes with great costs accordingly [26]. To reduce
the amount of (labeled) data needed for the training, new
DL approaches leverage unsupervised/semi-supervised meth-
ods and transfer learning [27]–[29], and attempt to decrease
the resource needs by doing the data collection (mostly) in
simulation instead of reality [30], [31]. In this survey, we
provide a wide angle review, from the aspect of the utilized
structures and training strategies for DL models in robotics.
We elaborate this topic by considering the major challenges
in robotics and the related DL solutions. Accordingly, a struc-
tured overview of the problems can be seen in Fig. 1 arranging
the landscape along the three major categories: 1) perception;
2) motion; and 3) knowledge adaptation. This categorization
is the result of the following considerations.

1) Common characteristics of any robot-application
[excluding Human–Robot interaction (HRI)] is that the
operation is manifested in motion and manipulation.

2) In order to plan desirable motion, the robot needs to
have reliable knowledge about its environment that is
gained through perception capabilities.

3) Having successful DL-based solutions concerning per-
ception and motion in specific tasks does not mean
that the obtained knowledge can be directly utilized
in other problems. To avoid or at least reduce the
tremendous effort of training from scratch, the general
knowledge has to be extracted from the experience of
former solutions and transferred to new ones.

Along these points, the three major challenges can be orga-
nized in a hierarchical structure (Fig. 1), because the motion or
manipulation is carried out based on the results of the percep-
tion process, and for the adaptation of the extracted knowledge
an already existing solution for a similar problem is necessary.
The category of motion is further divided both vertically and
horizontally. The vertical separation is due to the significantly
different tasks of robotic manipulation and mobile robotics,
while the horizontal arrangement shows the separation of the
planning and the control of the motion. In our categorization,
we consider perception related challenges as those, that can
be fully independent from the robot, so these models do not
incorporate any explicit or implicit knowledge on the robot
kinematics and controls. Thus, for example, a model for grasp
prediction that incorporates the information about the gripper
structure is not considered as solution for a perception task, but
a solution for planning. The models that also make the robot
perform actions are considered to be solutions for control.

The problems highlighted in the different levels of the hier-
archy are not to be considered as subsets of the specific
challenge. For example, HRI is not a subset of perception,
but a larger field that involves perception. These problems are
presented in the hierarchy to show, what kind of tasks may
be approached by DL solutions, and where the correspond-
ing DL solutions are located in the hierarchy. Also, there are
analytical methods for the solutions of most of these prob-
lems, but this article analyzes the challenges from the aspect of
DL. The most outstanding practical advantage of DL methods
over analytical ones is in vision systems, since DL solutions

Fig. 1. Major challenges in DL for robotics.

for object detection and localization do not require expensive
equipment, are quite robust to environmental variations, and
they also save a lot of time, that would be spent on the manual
design of visual feature detectors otherwise. An other area that
is gaining more-and-more attention is grasp synthesis with DL.

The set of tools provided by DL can be applied at any
level of the hierarchy shown in Fig. 1. Furthermore, the scope
of a DL application can range from a single subtask to the
whole hierarchy. When approaching a robot application with
a DL solution, one has to decide which part of the application
the DL model should be responsible for, and what strategies
can be used for its training. In this survey, we aim to sup-
port these decisions by introducing successful solutions that
can be applied at different levels of the presented hierarchy,
highlighting the advantages and disadvantages of using DL
at different scopes and by providing a systematic depiction
of utilizing different training strategies, such as end-to-end or
modular approaches.

II. CURRENT HARD CHALLENGES IN ROBOTICS

We consider the challenges of modern robot applications
that usually benefit from DL solutions. The challenges are
organized according to the scheme of Fig. 1, which helps us
present the modular aspect of such applications.

A. Perception

In case of intelligent robot systems, high-level perception
skills, such as the recognition of scenes and objects, localiza-
tion, and interaction with humans are often required. These
tasks are usually approached with the use of visual, depth,
audio, and tactile information. In case of multimodal data, the
challenge of sensory integration had to be addressed as well.

1) Scene and Object Recognition, Localization: In order
to perform tasks in robot applications, the information of
what kind of objects are there in the environment and where
those objects are, is necessary. In real-world systems, this
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information is often not provided beforehand. For example,
in a bin-picking scenario the position and orientation of the
objects to be manipulated is unknown. Similarly in a simulta-
neous localization and mapping (SLAM) application, the map
of the environment and thus the location of the mobile robot
and the obstacles are not known a-priori. For acquiring this
kind of information, high-level perception capabilities are uti-
lized. DL methods can work well with data structures like
images and depth data, using mostly the CNN structure [7].

The recognition of scenes and objects, as well as the
localization of objects are mostly performed through visual
information [32]–[38]. Apart from that, depth, tactile, and
audio modalities can also be utilized. While tactile information
is particularly used for object recognition in manipula-
tion [39]–[42], audio can be used for identifying directions
and locations [43]–[45]. Depth data may be used by both robot
manipulators or mobile robots [32], [46], [47].

2) Human–Robot Interaction: The purpose of HRI is to
endow robots with social skills, so they can interact with peo-
ple. To do so, the robot has to infer the intentions of humans
and perform appropriate actions accordingly. However, the
interpretation of human social behavior is a very complex task,
for which hand-crafted solutions are extremely hard to formu-
late. That is why, the perception of human intentions is usually
done with the help of an ML method like DL [33], [48].

3) Sensory Integration: Data from a single modality may
not be sufficient for all kinds of problems. For example, in
case of object detection, apart from visual information depth
data may also be utilized. The use of multiple sources of
information gives a richer representation of the environment,
it introduces redundancy to the system and reduces uncer-
tainty. However, for the proper composition of the available
information from various data sources, an appropriate sensory
integration should be performed [49], [50].

Due to the uncertainties and conflicting information, it is
hard to decide which pieces of information should contribute
to the decision making process to what extent. This is espe-
cially true in case of multimodal data. DL methods are able
to learn a high-level common embedding of the inputs with
different modalities. The DL models for sensory integration
usually process different modalities separately in different data
streams, until sufficiently high-level features are extracted to
fuse the information [32], [39], [42], [51]. The best approach
to choose the abstraction level (a layer of the DL model) at
which the information is fused is application specific, so it
may as well be learned with an appropriate DL model [52].

B. Motion

A common requirement for intelligent robot systems is to
flexibly adapt to novel tasks and environments, while being
reliable and computationally efficient. Conventional analytic
solutions do not scale well for motion planning problems with
high dimensionality, so for these tasks DL-based solutions are
also sought [47], [53]–[58].

The tasks for robot motion that are often approached with
DL methods are the detection of the target of the motion (grasp
detection), path planning, and trajectory planning in dynamic

environments, SLAM, learning a model for predictive control,
and learning to control unconventional robot architectures.

1) Grasp Detection: For the planning of the motion, a
target should be specified beforehand. However, in some appli-
cations the target may not be known a priori due to the
requirement for flexibility. For example, if a robotic manipu-
lator is required to grasp unknown objects, these objects have
to be detected and their pose, relative to the manipulator, have
to be inferred [53]–[56]. The output of the grasp detection
process is usually the proposed pose of the end effector of the
manipulator that yields the highest probability of a successful
grasp. There are analytic solutions for grasping in the pres-
ence of uncertainty, such as detection and pose estimation of
known objects or the detection of primitive shapes, but these
solutions are time-consuming and hard to formulate, accord-
ing to Lenz et al. [55]. So DL methods are used to deal with
novel objects and occlusions.

It is important to note, that the output of the grasp detection
process greatly depends on the geometric set-up of the gripper.
For the same object, different gripper geometries and operation
principles (parallel gripper, three-finger gripper, suction pad,
etc.) result in different gripper positions and orientations for
the highest probability of success rate [59]–[61]. This makes
the proposed solutions gripper-specific, so if a DL model is
utilized, it has to be retrained if the type of the gripper is
changed.

2) Path and Trajectory Planning: A robot application that
operates in a dynamic environment should plan paths and
trajectories in a responsive manner [62], reacting to unex-
pected changes in the environment. There are conventional,
non-DL-based methods for real-time motion planning, such
as [63] and [64]. However, in some cases the path planning
process should also generalize to yet unseen scenarios apart
from being reactive, such as grasping novel objects in dynamic
environments, or reacting to unseen moving obstacles. In such
problems DL methods can be utilized. Due to there being
no theoretical guarantee for the performance of a DL model,
hybrid planning techniques can also be preferable [65].

Apart from modifying a path, that connects the current and
target locations by always adapting to the current situation,
a local path planning approach can be used as well. This
setup is particularly used in case of mobile robots, where
the navigation is only based on local landmarks and fea-
tures of the environment. In this case, the output of the DL
model is usually the heading direction or steering angle for
the mobile robot [47], [57], [66]. These approaches are widely
used in case of self driving cars, mobile robot navigation, and
swarm robotics and are fundamental for SLAM applications
as well [58]. The selection of the appropriate heading direc-
tion has to incorporate a vast amount of information that is
hard to process with analytic approaches. In reality, for great
distances even the discrimination of objects/obstacles and the
ground becomes a challenge [37], [67].

3) Whole-Body Planning: There are examples for platforms
that utilize the advantages of mobility and manipulative skills
together [68]–[70]. In such robots legged locomotion, balance
keeping, and/or manipulation with multiple arms at the same
time can occur [71]. The problems associated with these kind
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of robots are referred to as whole-body planning and whole-
body control.

The difficulty in whole-body planning is to carry out solu-
tions for the previously mentioned challenges by combining
multiple actions at once to adapt to various circumstances. The
motion of the whole body influences the position of the tar-
get objects relative to the robot. This property must be taken
into consideration during manipulation. So the control of the
manipulators are interdependent through the extra objectives,
such as keeping the balance of the robot [68], [68]–[70]. As it
is an extremely hard task to formalize and compute, DL meth-
ods are often used for learning behavior of legged locomotion
or keeping balance.

4) Motion Control: When the plan is successfully con-
structed, the next step is to perform the motion accurately
by minimizing the error between the planned and the real-
ized movements. This is mostly done through modeling the
dynamic behavior of the system in question. In this case the
control algorithm is able to compute the actuation needed
to perform the desired motion, or predictions can be made
based on the model to evaluate the most beneficial actions to
take [70], [72]–[75]. There are several well-known analytic
solutions for the challenges of model construction and motion
control [76]. Sometimes, however, in case of unconventional
robot architectures, it is easier to construct the model with
learning-based methods such as DL. Also some applications
require a level of flexibility from the control algorithm, that
cannot be fulfilled without learned behaviors or the behav-
ior is too difficult to describe analytically like the in-hand
manipulation of objects [77].

Some of the recent learning-based solutions for motion con-
trol utilize a so-called end-to-end approach [26], [78]–[82].
Such an approach is based on a DL solution that integrates the
whole dataflow into a single computational model. According
to Fig. 1 an end-to-end model would take sensory data as its
input, and output the motor control signals needed to perform
the actions (gray dashed line). In a model like this, it is not
possible to separate the different levels, like perception and
motion planning. Also, the model includes the solution for
problems, that could be solved with exact analytic methods as
well. End-to-end approaches have a great significance, e.g., in
the solution of learning locomotion for unconventional robot
architectures [73], [74]. The training of the end-to-end struc-
ture for robot control is usually carried out in a try-and-error
manner [82]–[84].

C. Knowledge Adaptation

The training of a DL model from scratch is a time consum-
ing and data demanding process. If a robot application has
a requirement, that is satisfied with a DL-based solution, it
should be crafted in a way, that is easy to adapt to other simi-
lar problems as well. That is, why the adaptability of the model
always have to be considered, and thus, it is represented in the
background layer in Fig. 1. The area of transfer learning deals
with approaches that leverage the knowledge gained by the
solution of former problems in order to speed up the training
process, or to enhance the performance of new solutions [85].

Transfer learning can be seen as the discovery and utiliza-
tion of abstracted knowledge, which we will refer to as core
knowledge from now on. The core knowledge can be repre-
sented as an abstract kinematic or dynamic model, a law or
a set of rules, a formula or a function, an algorithm, a pol-
icy, etc. With the help of this knowledge we can create new,
similar solutions for different problems. Taking the kinematics
of serial manipulators as an example, the problem might be
the forward kinematics task for a given robot arm. The core
knowledge in this case can be represented as an abstract robot
model (or a set of rules for creating a robot model) and the
method for solving the forward kinematics task given a spe-
cific robot model in the defined format. With this knowledge
new solutions can be constructed for the forward kinematics
problem, but with different manipulators. However, there are
problems, where the analytic formulation of such representa-
tions of the core knowledge is not possible or not yet available.
In these cases, we can use DL methods to approximate the core
knowledge [85].

The most important solutions for transfer learning in
robotics are the use of pretrained DL models, sim-to-real
approaches, the extraction of domain invariant features, and
learning by imitation/demonstrations.

1) Pretrained Models: A very common method for transfer
learning is the use of pretrained models. Pretrained models are
used as general feature extractors [86], [87] as they represent
a general knowledge required for a field of problems and they
are used for the initialization of the DL-based solution for
the new problem. During training, they may be fine tuned, or
a smaller learning-based model may be trained from-scratch
that processes the features extracted by the pretrained model.
There are several publicly available DL models that were pre-
trained on the ImageNet dataset [88], such as AlexNet [3],
GoogleNet [89], VGG model [90], etc. These models can
be used for extracting high-level features from image data in
various image processing tasks.

2) Sim-to-Real: The majority of learning-based solutions
for motion control use a trial-and-error approach. These
approaches usually cannot be carried out on the physical robot
itself, because of safety, financial and time concerns [83], [84].

Due to the aforementioned difficulties, there is a strong need
to decouple the preparation of the solution from the physical
world. An obvious workaround is to create the solution in a
simulation environment and apply it to the real-world problem.

The in-silico preparation of the solutions has several ben-
efits, like full and accurate information of the environment
and the great speed of computation and preparation of var-
ious environmental circumstances. The sole challenge is to
adapt the solution to the real-world-problem in order to
exploit the benefits of these methods. This is often referred
to as bridging the “reality gap” [30], [31], for which
there are two major approaches. One is randomization and
the other is the close-to-real quality simulation and data
generation [30], [31], [91]–[94].

Sim-to-real approaches that utilize randomization are based
on the idea, that if a model is able to perform well in the highly
randomized source domain, it must have great generalization
properties, so it should be able to adapt to the real-world
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domain as well [30], [91]. The other approach to bridge the
reality gap is to make the simulation environment as similar
to the real world as possible, so the trained DL model can be
applied for the real-world problem directly [31], [93], [94].

3) Domain-Invariant Features: Apart from sim-to-real,
there are other approaches that try to overcome the challenge
of different source and target domains. These approaches aim
to discover features that are domain independent [14], [95].
The domain independent features can be extracted from sev-
eral different domains (D1,D2, . . . , ). Let’s say X1 and X2
are the feature spaces of two domains, and the features are
X1 = {x11, x12, . . . , } and X2 = {x21, x22, . . . , }, respectively.
x1i and x2j are common features, if they are identical and their
marginal probability distribution in the two domains (D1,D2)

are the same. If we take a dataset of images of objects to be
grasped as an example, identical features can be the red color
intensity value of the same pixels of the images of different
domains (if the images have the same resolution). However,
only if the marginal probability distribution of this feature is
the same across all domains, can we say that this feature is
a common feature of the domains. Obviously, the common
features are usually more complex than the color intensity of
specific pixel, e.g., complex shapes and textures [86], [87].
Such features are hard to find analytically, so DL methods are
utilized to extract them.

4) Imitation and Demonstration-Based Learning: Imitation
learning is the term used for learning-based methods that cre-
ate a solution based on demonstrations [20], [96], [97]. This
approach can be successfully used for robots to learn manip-
ulation skills [98], [99]. The demonstration is the solution for
the source problem and the aim is to learn a solution for the
target problem. The difference between the source and the
target problems can be the differences in the embodiment of
the agents. For example, imitation learning can be realized
for a task of robotic manipulation, by providing demonstra-
tion from a human performing the task, and requiring the
robot to perform the same task [96]. Most of the approaches
for such problems suppose that the demonstration is close
to the optimal solution of the source problem and thus the
performance of the solution for the target problem is mea-
sured via a comparison to the demonstration [98]–[100]. This
can be achieved by having a state description, and by con-
structing a solution for the target problem that achieves the
objective through a sequence of states that is similar to the
demonstration [98], [99]. The state description has to be inde-
pendent of whether it is the source or target problem in order
to make it comparable, so it can be made with the help of
common features. This process of adapting the source solu-
tion to the target solution is also referred to as skill transfer
and skill extraction.

In order to simplify the demonstration learning scenario,
the source problem is usually defined in a way (the demon-
strations are provided in a way), that is very similar to the
target problem. This means, that instead of tracking the hand
of a human demonstrating the task, the demonstration can
also be provided by teleoperation. The human hand have a
significantly different kinematic structure than most of the con-
ventional robot manipulators and also the tracking of the hand

can introduce errors to the system. Meanwhile, demonstrations
provided in the form of teleoperation are very close to the tar-
get problem and can be easily used as starting points for later
exploration [99]. Providing the demonstrations in such a way
enables the collection of relevant internal data from the demon-
stration, such as forces, torques, velocities, etc. This data can
be measured with high accuracy and most of the probability
distributions of the errors of these measurements are the same
hence they mainly come from the physical construction of
the manipulator. That is why, in demonstration learning tasks,
usually other modalities are utilized apart from vision such as
tactile information [101].

III. RELEVANT EXAMPLES AND BEST PRACTICES

A. Proposition

Preferably DL methods result in a model that is easy to
adapt to new problems as well, thus avoiding most of the
data exhaustive and time consuming training process that is a
characteristic of such methods. For this to happen, the solution
either has to be general enough that it can be applied to the new
problem directly, or it has to be easily reusable/transferable.
The choice of the scope and training strategy for the DL-
model heavily influences the adaptability of the solution. We
can highlight the advantages and disadvantages of different
approaches from this aspect. We especially focus on the in-
hierarchy scope of some approaches, along with their training
strategies, and argue that larger DL models that incorporate
multiple levels of the hierarchy presented in Fig. 1, such as
end-to-end methods, are not always preferable over modular
DL-based solutions. The use of transfer learning methods and
the leveraging of the modular nature of DL models can help
in the quick and data efficient preparation of new solutions.
We support our argument with a set of relevant examples
and best practices and demonstrate how these methods can
be effectively utilized in robotics.

The examples are categorized according to the approaches
for achieving such efficient adaptation capabilities, meanwhile
the order of the presented examples roughly represents moving
higher in the hierarchy in Fig. 1.

B. Feature Extraction

At the very bottom of the hierarchy, perception is carried
out using the sensory data as input. If the sensory data has
high dimensionality, it is reasonable to define a smaller set of
features that still represent the problem well, but enable sim-
plified calculations. The discovery of such features is referred
to as feature extraction.

1) Pretrained Models and Modularity for Perception:

Visual information is high dimensional data and its use is also
very common in robotics, so the pretrained models that are
used for image processing, such as the AlexNet, GoogleNet,
and VGG networks are widely utilized in the solutions for
robot applications as well. From these models, the CNN part
is used as the pretrained model. These CNNs extract high-level
features from the images, efficiently reducing the dimension-
ality. Girshick et al. [38] proposed the R-CNN which showed
that the features extracted by these pretrained models can be
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used for visual object detection. Later, Girshick [102] also
introduced the Fast R-CNN with which the training and infer-
ence is significantly faster than the R-CNN. In the R-CNN
method, the pretrained model extracts features from regions
of interest (RoI) in the input images and the extracted fea-
ture vectors are classified with object-specific support vector
machines (SVMs). The RoIs are provided by a region proposal
method. In case of the Fast R-CNN, the output is inferred by
fully connected neural network layers from the feature maps
of the RoIs. Girshick showed that the Fast R-CNN is able
to perform more accurate and faster object detection than the
R-CNN method (9 times faster training and 213 times faster
inference) which is mostly the result of the model architecture,
that the prediction layers can be optimized together with the
feature extractor (single-stage training).

Ren et al. created a DL-based region proposal network
(RPN) for the Fast R-CNN object detection method. They
also fused the introduced RPN with the Fast R-CNN structure
through an attentional interface and named it Faster R-CNN, a
DL model that is capable of real-time object detection [103].
Their results show, that the Fast R-CNN fused with the RPN
yielded superior accuracy compared to Fast R-CNN with other
region proposal methods. They were also able to do infer-
ence with 17 frames per second (FPS) surpassing previous
approaches. This example can demonstrate very well how the
modular nature of DL methods can be leveraged to create
better and complex solutions.

Johnson et al. [13] proposed a fully convolutional local-
ization network. They used the Faster R-CNN method for
proposing regions for a recurrent neural network that gener-
ates complex captioning of the image. Their model is called
DenseCap. Valipour et al. [33] used this model in their incre-
mental learning scenario as the basis of their localization
network and the VGG-16 pretrained model for extracting fea-
tures for the object detection and localization. Through this
DL-based perception pipeline, the robot was able to retrieve
(manipulate) various objects requested by the human operator
via speech, that is recognized by the CMU Sphinx speech
recognition module. They also utilized a speech synthesis
method, so the robot is able to provide feedback on its current
state verbally. For this purpose, the Festival speech synthe-
sis system [104] was used. They also created a method for
correcting the classifications of the localization network in an
incremental fashion, through HRI, with the help of the speech
synthesis, speech recognition, and a human gesture recogni-
tion system. This solution shows how the different DL modules
can be combined to solve a very complex robotics problem,
consisting of object detection, and HRI.

Redmon et al. [105] approached the topic of object detection
from an other perspective and introduced their new network
called YOLO. Contrary to the R-CNN and its variants, YOLO
does not apply region proposals separate from feature extrac-
tors. Rather, the proposed bounding boxes for objects and
the associated class probabilities are directly inferred from
the global extracted features. So their network follows the
popular architecture of having two parts, a CNN for feature
extractor and a smaller neural network on top of the CNN
that performs the actual classification and regression tasks.

We refer to this part as the top network. This approach is
integrated into a single model, so it can be trained in an end-
to-end fashion, but it can still leverage the modular nature
of DL models. The feature extractor and the top network
can be separated and they are responsible for different sub-
tasks. Also, instead of extracting local features (only from the
region proposals), the model can infer predictions globally,
based on the whole image. They also introduced a feature
extractor CNN architecture for YOLO, that is inspired by the
GoogleNet architecture and pretrained this feature extractor on
the ImageNet dataset. The pretraining process took approxi-
mately a week to achieve the performance of the GoogleNet
models as of 2012. Naturally, if there is not a specific reason
to create a novel pretrained model for feature extraction, one
can simply use the already available CNNs for that purpose
avoiding the costs of the nearly one week training. During the
evaluation of their method Redmon et al. also showed that
a VGG-16-based YOLO is more accurate than their fastest
model, but can only predict 21 FPS instead of the 155 FPS
inference speed of the Fast YOLO. The comparison with
other models revealed that the Fast YOLO model was able
to perform object detection at a rate of 155 FPS and with
a mean average precision (mAP) of 52.7, while the second
fastest method, the deformable parts models (DPMs) could
be run on 100 FPS with an mAP of 16.0. The most accu-
rate method appeared to be the VGG-16-based Faster R-CNN
with 73.2 mAP and 7 FPS, while the best YOLO architecture,
the VGG-16-based YOLO achieved 66.4 mAP with 21 FPS.
The authors have also showed that the YOLO model is able to
generalize better, by comparing its performance to other detec-
tion systems on artworks and natural images from the Internet.
These comparisons show that a single neural network that
incorporates the whole problem may have a better performance
than nonend-to-end approaches, both in terms of speed and
accuracy. However, it is very important that the end-to-end
model should also possess modularity, because the training of
the whole network can be very resource exhaustive.

The YOLO model has a special connection to robotics as
well, because the prediction process of the bounding boxes
for its object detection is based on the MultiGrasp system
proposed by Redmon and Angelova [106].

2) Multimodal Data and Unsupervised Pretraining for

Perception: Apart from visual information, depth data is also
significant in robotics. However, pretrained models for depth
and point cloud information (e.g., PointNet [107]) are not as
widely available as pretrained models for RGB data, so often
clever tricks are used to deal with this modality.

Predicting a grasp can be carried out by estimating the
pose of a known object. Zeng et al. [108] proposed a method
with fully CNN segmentation of 2-D images from multiview
RGB-D sensors for object 6-D pose estimation. Based on the
segmentations of 2-D images a segmented 3-D point cloud is
constructed and formerly scanned objects are fit on the seg-
mented scene, so the pose for the objects can be estimated.
With this method the authors were able to create a pose esti-
mator model for multiple objects with occlusion in a cluttered
environment. Their segmentation network is based on the pre-
trained VGG architecture. The output of the network is a dense
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probability map, with values for every pixel of the image for
each of the given object labels. The probability maps are then
thresholded, and the 3-D segmented point cloud is constructed
from these segmentations. This approach was awarded third
and fourth place in the 2016 Amazon Picking Challenge.

For the processing of multiple modalities one possible way
is to use separate convolutional structures and fuse them into a
common layer at a higher level of the DL model like in [109].
Schwarz et al. [32] encoded the depth data into color images
to process them with the help of CNNs, that were pretrained
on simple images. Based on the extracted features from both
the images and the converted depth data, a classification is
performed to identify objects on the image, and a regression
method is used to predict their pose. The comparison of this
approach with the method of Bo et al. which utilized unsu-
pervised learning of hierarchical feature representations from
RGB-D objects [110], revealed that this method was able to
learn from much less data. Furthermore, the accuracy of the
model for RGBD data was better than the one which trained
its own feature extractor in an unsupervised manner and the
RGB-based classification accuracy was also comparable (92%
compared to 92.1% for the method of Bo et al.).

The method that Bo et al. utilized, the unsupervised pre-
training of the feature extractor is also a very popular
approach [40], [55], [110]. These methods usually use an
autoencoder structure and the reconstruction error to extract
meaningful and representative features from the inputs. The
unsupervised training of a feature extractor to be used later as
a pretrained model is important in problems where the inputs
are not common structures and thus, there is no large labeled
dataset available. Schmitz et al. [40] used a denoising autoen-
coder structure for pretraining their model for tactile object
recognition. They concluded that the unsupervised pretraining
together with dropout increased the recognition rate drastically
and they were able to achieve 88% recognition rate compared
to the 64.7% without pretraining and dropout.

3) Feature Extraction for Planning: The examples
presented so-far can be considered as solutions for the per-
ception problem. In case of grasp planning, however, the
predictions may also depend on the kinematic model of the
end effector, resulting in different strategies for different kinds
of end effectors. Thus, according to our categorization in
Fig. 1, such challenges are at a higher level in the hierarchy
(motion planning). The following examples, that incorporate
this knowledge inside the DL model provide solutions for
planning problems.

The MultiGrasp system by Redmon and Angelova [106]
predicts multiple grasps for various objects and also performs
classification. A predicted grasp is parameterized by five val-
ues, that are the location (x, y), width and height, and the
orientation of the proposed grasp. Each predicted grasp is
weighted by a predicted probability of being a true grasp
for the given object and the grasp with the highest weight
is realized as the detected grasp. The MultiGrasp model is a
single DL model performing grasp detection so it has similar
advantages over other grasp predictors like the YOLO model
has over the other object detectors. While the state-of-the art
of that time, a grasp detection method based on two-stage

cascaded deep neural networks and RGB-D data, proposed by
Lenz et al. [55] was able to achieve 75% accuracy at 13.5 s per
frame (0.074 FPS), the MultiGrasp model had 87% accuracy
in the same dataset for grasp detection and it only took 75
milliseconds per frame (13.33 FPS) to detect the grasps. Just
like the YOLO model, the MultiGrasp architecture is made up
of a CNN for feature extraction and a top network performing
the predictions, so it can also leverage the benefits of using
pretrained models.

4) Similarity in Feature Spaces for Planning:

Mahler et al. [59] introduced Dex-Net 1.0, a cloud-based
large dataset for robotic grasping tasks and an algorithm to
determine fast and robust grasping policies for novel objects.
Their dataset consists of numerous objects (represented as 3-D
object models) and several possible grasps per object, each
labeled with corresponding probability of force closure. They
used a so called multiview CNN (MV-CNN) method [111]
to identify objects in their database that are similar to the
object being grasped. The MV-CNN has the architecture of
the AlexNet model and they initialized it by pretraining on
the ImageNet dataset. The features extracted by the MV-CNN
from several images of different objects are used to measure
the similarity of these objects. The similarity is expressed
as the Euclidean distance of compressed feature vectors
representing the objects. Their algorithm is able to model the
correlations of grasps on different objects, so it is able to uti-
lize former grasps of similar objects recorded in their dataset.
Later Mahler et al. also created deep CNNs for the prediction
of the probability of a grasp being successful, for parallel [60]
grippers and suction-based end effectors [61] as well. Both of
these models were trained entirely on their synthetic dataset
and reported outstanding results of being fast (0.8–3 s)
with a high success rate (93%–99%). However, due to the
different gripper types, parts of the model structure had to be
altered and the network had to be retrained for the different
tasks. In [112], they proposed a method for combining both
models for more robust manipulation with two robot arms,
one equipped with a parallel gripper and the other with a
suction pad.

The utilization of the feature maps for measuring similarity
of high-dimensional data is also present in the approach of Gao
and Zhang for the detection loops in SLAM systems [113].
The proposed method utilizes a stacked denoising autoen-
coder for the re-localization of the mobile robot for SLAM.
The compressed representation of the images, extracted by the
encoder part, is used for the comparison with other images.
If the similarity of the compressed features of two images is
above a certain level, a loop is detected and the mobile robot
platform can be relocalized to increase the accuracy of the
SLAM process. The results show that the method can output
more robust recognition of previously seen scenes than the
FAB-MAP method [114], which was used as a baseline for
the experiments.

5) Domain Invariant Features and Imitation Learning

for Control: The transfer learning approaches that uti-
lize the extraction of domain invariant features or imita-
tion learning also leverage feature extractors for measuring
similarity in a way. The following examples demonstrate,



KÁROLY et al.: DL IN ROBOTICS: SURVEY ON MODEL STRUCTURES AND TRAINING STRATEGIES 273

how these methods can be used in the context of trans-
ferring solutions for the challenge of controlling the
motion.

Gupta et al. [83] created a method for skill transfer between
robot agents (that were trained by RL) even with different mor-
phologies. Based on tasks that both agents are able to solve,
a common feature space is trained. Then this common feature
space is used to transfer the skills of one agent to the other.
From the tasks that can be solved by both agents, pairs of
states can be extracted that are considered to be correspond-
ing. A neural network for both agents maps the states to a
common feature space. These neural networks are optimized
to generate similar common features for the corresponding
state pairs. In order to avoid trivial solutions, the encoding to
the common feature space is decoded for both agents and the
reconstruction error is also used in the loss function, similarly
to an autoencoder structure. So this approach trains a feature
extractor for both agents that can map the state into a feature
space, in which similar feature vectors represent similar states
of the two environments. The skill of one agent can be encoded
to the common feature space and then decoded for the other
agent to transfer skills. Gupta et al. also compare their method
to an approach in which no transfer learning is carried out and
the policies of the different agents are trained separately from
scratch. The comparison revealed that the from-scratch train-
ing was unable to learn the solution for tasks that could be
solved successfully by agents of different morphology using
their proposed transfer learning method, even when it was
trained on a significantly larger set of data.

Duan et al. proposed a method for imitation learning,
which only requires a single demonstration for new, previously
unseen tasks [98]. The motivation for their method is to
develop a network that can be trained to perform actions to
accomplish a potentially infinite number of tasks in contrast
to the usual approach, when the learnt policies represented
as deep networks are task-specific. Their method utilizes
three neural networks. The demonstration and the context
networks are responsible for creating a context embedding
based on the demonstration and the current state. This con-
text embedding is necessary for forming to fixed length input,
independent of the length of the demonstration for the third
part, the manipulation network. The context embedding in
this case corresponds to the result of the feature extraction.
The manipulation network is a simple deep neural network
with fully connected layers that proposes the appropriate
actions based on the context embedding. The modular nature
of the system enables training the three networks separately.
Although, during training the model is not enforced to learn
an embedding that maps similar states of the demonstration
into similar contexts, Duan et al. mentioned that their experi-
mental analysis supports this interpretation of how the transfer
from the demonstration to the learned policy is carried out
internally.

C. Beyond Feature Extraction

Feature extraction enables the compact and informative rep-
resentation of the environment. However, there are some tasks,

like the control of robot systems, for which solely the repre-
sentation of the environment is not enough, but the effects of
certain actions on the environment should also be considered.
In such problems, RL can be utilized.

1) Reinforcement Learning: The two major parts of RL are
model-based and model-free RL. Model-based RL constructs
a model of the environment with which the state transitions
and the rewards can be predicted, thus allowing the agent plan-
ning ahead [72]. In case of model-free RL approaches, policy
optimization, or Q learning can be performed.

Model-based RL methods are more data efficient than
model-free approaches, whereas the proposed solutions may
be suboptimal compared to the model-free methods because
of the model bias, according to [73], [74], and [115]. There
are multiple approaches to combine the benefits of these two
fields of RL. Pong et al. [73] introduced temporal difference
models (TDMs) that can be trained via model-free RL and
used for model-based (predictive) control. The results of the
proposed method were demonstrated on robotic manipulation
tasks in simulation and real-life environment and on simulated
locomotion tasks as well and revealed that on the given prob-
lems TDM is generally more data efficient than model-free RL
approaches (converging faster) while it also achieves at least
the accuracy of the policies trained by a model-free method.

An other solution to leverage both model-based and model-
free RL was proposed by Nagabandi et al. [74]. They intro-
duced a model-based RL method that can be trained efficiently
to implement a deep neural network dynamics model. Then
this predictive model was used to form an initial policy for
a model-free RL process for fine tuning, to achieve model-
free performance with better efficiency. They also carried out
benchmark experiments on locomotion tasks, that show their
method is able to achieve state-of-the-art performance but with
a 3–5 times greater data efficiency.

Levine et al. [26] proposed an end-to-end DL-based method
for hand-eye coordination in robotic grasping problems. Their
method consists of a grasp prediction system and a servo-
ing function that is responsible for the continuous control of
the robot, according to the output of the grasp prediction.
This approach is a good example for how the planning and
the control tasks can be separated in DL approaches for
robotic systems. Their grasp prediction system is a deep CNN
that can infer the grasp success probability from a series of
images and motion commands. The servoing function sam-
ples motor commands and selects the one with the highest
associated probability for a successful grasp, with the help
of the cross entropy method. They explained that the grasp
prediction network can be interpreted as an approximation
of the Q-function defined by the servoing method, with the
assumption that there is no difference between moving from
point A to point C directly or moving from point A to point C

through point B. This assumption is not always true in a
grasping problem, because intermediate movements may relo-
cate objects in the scene, but it enables to reduce the fitting
of the Q-function to a simple prediction task. In their grasp
prediction network they did not use a pretrained model. The
network was trained on a large-scale real-life dataset of over
800 000 grasp attempts collected in the course of two months
with the help of multiple (6–14) real life robotic manipulators.
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Fig. 2. Summary of examples.

The results show, that the system is able to develop intelligent
grasping strategies (e.g., different strategy for grasping soft and
hard objects) and can generalize to grasping unseen objects,
different camera placements, and slightly different robot con-
figurations, but Levine et al. highlight that the method may
fail to generalize significant differences in the robot platform,
such as a different manipulator or gripper, or the changes in
the environment, like grasping from a shelf instead of a planar
surface. In case of these problems, the grasp prediction model
had to be retrained with additional training samples for the
new problem.

Levine et al. [82] also proposed a method for robotic manip-
ulation in which a single model is responsible for both the
planning and the control of the motion. It takes images of
the environment and the robot configuration as its input and
outputs the torques for the motors of the robot. The learnt
policy is implemented by a deep CNN consisting of a convo-
lutional visual processing part and a fully connected control
network on the top of the visual processing part. Even though
the proposed model is monolithic it leverages modular pre-
training. The filters of the first visual processing layer were
initialized with the weights of the GoogleNet model, and the
whole visual processing part was initialized by training it to
perform 3-D pose regression. For the initialization of the con-
trol network the visual processing part was removed from the
policy and the full state was provided instead, for which the
control network could be optimized. After their individual ini-
tialization, the visual processing part, and the control network
were combined into the policy. At first the control network
was trained while the weights of the visual processing part
were left frozen, and then the whole policy was optimized by
fine-tuning it in an end-to-end manner. Levine et al. compared
the performance of the end-to-end fine tuned policy with one
that was only fine tuned down to the pose regression features
and an other one in which only the predicted poses are fed to
the control layers. They found that the policies with the end-
to-end fine-tuning outperformed both other approaches and the
ones that used the pose regression features were superior to
those that only relied on the predicted poses. This implies
that if the fine tuning is performed up to deeper layers, the
model can be better adapted to the specific problem. With this
approach Levine et al. were able to create policies for differ-
ent manipulation tasks in a matter of 3–4 h, of which only

Fig. 3. Model structures and training strategies (best viewed in color).

a fraction is actual robot movement for data collection, so it
is significantly faster than collecting data with multiple robots
for multiple months. However, they also note that the trained
policies are not able to generalize to significantly different
scenes and that the training of a single policy with multiple
robots working in different environments, advanced pretrain-
ing techniques and better data augmentation may be necessary
for a more general policy.

Fig. 2 summarizes the findings derived from the examples,
and gives an insight on how the knowledge adaptation meth-
ods are related to the different levels of the hierarchy in the
selected examples. In the figure, the knowledge adaptation
approaches were highlighted in bold font and some examples
were given with italic.

IV. DISCUSSION

From the introduced representative examples, it can be seen
that different model structures and training strategies can be
used for similar problems effectively, each having their own
advantages and drawbacks. However, there seems to be no
general consensus on the definition of the terms that are impor-
tant to discuss these matters. For example end-to-end DL is
often associated with the model structure, meaning that a sin-
gle DL model performs the task, but it is also frequently used
to describe the training strategy when the model is trained as a
whole. This can lead to misconceptions as there are approaches
which use a single DL model for the solution, but it is not
trained as a whole. We recommend the separate discussion of
the model structure and the training strategy and according
to the introduced best practices, we differentiate two model
structures and four kinds of training strategies. The proposed
terminology can be seen in Fig. 3.
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For the solution of a problem either a composition of
multiple models, or a single model may be used. We call
solutions with multiple models the modular structure, and the
single-model solutions are called monolithic structures. The
modules in the modular structure are responsible for subtasks
of the problem and they can also be considered as individual
modular or monolithic structures. Examples for the modular
approach are the RCNN, and the Fast RCNN for the object
detection task, and the proposal of Valipour et al. [33] for an
incremental learning system via HRI. From the comparison
of the RCNN variants and the YOLO model, the conclusion
can be drawn that as the solution approaches the monolithic
structure (fully connected layers instead of SVMs in Fast
RCNN; RPN in Faster RCNN; and finally the completely
monolithic YOLO), the speed and performance of the method
improves. However, there is a practical limit to creating arbi-
trary large monolithic models, which is determined by the
complexity of the task and the amount of the available train-
ing data. While a single monolithic model can be sufficient for
object detection, a complex system that includes object detec-
tion, HRI via speech recognition and speech synthesis, human
pose recognition, etc., cannot be implemented as a monolithic
structure. In this case, the modules should be trained sepa-
rately and the system should be combined from the individual
modules. Thus, the fundamental building blocks of every mod-
ular approach eventually will be smaller monolithic structures.
This can also be easily seen in Tree-CNN, the approach of
Roy et al. [116] that uses a hierarchical tree structure of
DCNN modules to provide adaptation capability. By leverag-
ing modularity, the system can be given an adaptive nature by
incrementally training new modules upon receiving data from
yet-unseen classes. Also, the better control over what a mod-
ule is responsible for, makes it possible to build hierarchical
structures, where modules in different layers of the hierarchy
can classify according to super-classes or subclasses. Due to
the advantages and disadvantages of both structures neither of
them is generally superior and the proper structure should be
selected according to the nature of task.

Assessing the computational and time complexity of train-
ing DL models is a challenging task due to various reasons,
such as the several existing model architectures, training strate-
gies, and hardware environments. However, in order to better
understand what methods can be used to reduce these val-
ues, recent research is carried out to find a method to predict
them [117]. Although regarding monolithic models, it is fairly
simple to see that as a result of the reuse of the modules,
there are parts which do not have to be trained again, and this
results in less computations and reduced training time. Also
in case of the try-and-error RL methods the data collection is
simultaneous with the training process, so a large monolithic
model with many parameters, that requires a lot of data to
train, requires a lot of time to train as well.

We define three different training strategies regarding the
monolithic models. The first one is the end-to-end train-
ing, when the entire model is trained (all the parameters are
updated) for the specific problem. For the end-to-end train-
ing of a model, large amounts of training data is necessary,
so this strategy is typically applied for the creation of feature

extractors, for which large, labeled datasets are available, like
the ImageNet dataset. An example for such a model is the pre-
trained part of the YOLO. If there is no such training dataset
for the desired task, the data collection can take up plenty
of time, like in [26], where Levine et al. collected 800 000
grasp attempts in the course of two months with the help of
multiple (6–14) real life robotic manipulators to train a grasp
detector in an end-to-end manner.

In case of the section-wise training strategy, the monolithic
model is composed of smaller modules. However, contrary
to the modular approach, in the section-wise training strategy
the modules are not independent on their own (except the first
one), because later modules are trained with respect to the
result of the training of the previous modules in the model. A
typical example for this approach is when a pretrained model is
used, and the training is performed with the weights of the pre-
trained model frozen, so only the top network is updated. For
example, in the VGG-16-based YOLO model, the top network
is trained to perform the object detection with respect to the
given VGG-16 feature extractor, while in the original YOLO
model, the top network is trained with respect to the feature
extractor introduced by Redmon et al. [105], so these modules
are not interchangeable, because they depend on the feature
extractor.

For the adaptation of an end-to-end-trained monolithic
model to new problems the time consuming and data exhaus-
tive training process usually have to be repeated from scratch,
because the whole model is optimized for a specific task.
However, in a monolithic model which is trained with the
section-wise approach, only the higher-level modules will be
specialized for a given task. So, in order to repurpose the
model, one could simply retrain the higher-level modules
only. Naturally, due to the working principle of deep neu-
ral networks, even the end-to-end-trained monolithic models
possess this property, so lower layers of the network extract
more general features than the layers above them. The dif-
ference is, that in section-wise training we have control over
which part of the model is responsible for what subtask, allow-
ing us the engineering of a more transparent decision process,
thus making the knowledge adaptation easier. The advantage
of training a model in an end-to-end fashion, provided that a
sufficiently large training dataset is available, is that it is more
likely to achieve a better performance due to the sheer number
of parameters that are optimized for the specific task. In order
to combine the strengths of both approaches, the incremental
end-to-end training strategy can be utilized.

In case of the incremental end-to-end training strategy the
model is constructed like the section-wise-trained monolithic
models, but instead of training the top network only, end-
to-end training is utilized. this way the whole model can be
optimized for a specific problem for better performance, but
we can also enforce the model to develop a solution for certain
tasks at certain levels of its hierarchy.

There is also a middle-ground between the section-wise
and the incremental end-to-end training strategy, when nei-
ther the whole model is trained in an end-to-end fashion, nor
just the top network is updated, but a part of the already
trained weights are also modified along with the top network
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weights. Levine et al. proved in [82], that the deeper one goes
with the training the better performance the model has on
the specific task, eventually making the incremental end-to-
end training approach the best possible choice, provided that
a sufficiently large training dataset is available. In order to
reduce the data needs of the incremental end-to-end training
strategy Levine et al. also utilized the section-wise approach
to initialize the model, and the end-to-end training was applied
only after that.

The mentioned training strategies are, among other things,
determined by the model structure, the amount of available
training data, the complexity of the task, etc. Although hybrid
approaches already exist [82], one has to select a training strat-
egy according to these criteria. Since the nature of the tasks
for which DL is used and the fundamental structure of DL
models and training procedures are not expected to change
significantly, we expect all of these training strategies to stay
relevant in the future as well.

Based on our findings, we provide a brief checklist that can
be followed when designing a DL-based solution for a robot
application.

1) Specify the requirements that the application should ful-
fil and check if it could benefit from a DL-based solution
(this could be done according to Section II).

2) Identify the specific task that the DL-model should be
responsible for and locate it in the hierarchy of Fig. 1.

3) Search for methodologies and previous solutions from
Section III or elsewhere.

4) Decide on the model structure (monolithic or modu-
lar) based-on the scope of the problem (Fig. 1) and the
available resources.

5) Carry out a training strategy for the model. If pos-
sible use pretrained models, feature extractors and/or
transfer learning, and the incremental end-to-end train-
ing approach. If the available training dataset is not
large enough for the end-to-end fine-tuning, then use
the section-wise training strategy.

6) Build complex systems with the modular approach if the
monolithic models for specific tasks are already trained.

V. SUMMARY

In this survey, we proposed a widespread analysis of the
field of DL in robotics. We categorized the major challenges
according to the most significant features a robotic task like
perception, motion, and the adaptation to variable tasks and
domains. We found that this categorization helps us to classify
problems, place them in a hierarchy, and search for solutions
suitable for the given type of problems. We also classified
the DL methods according to the structure of the DL-model
and the strategy used for its training. This way, we were able
to give examples of successful solutions for each category of
challenges and see the influence and role of the introduced
DL structures and training strategies.

We also provided a guideline for creating new DL-based
solutions for robot applications in Section IV. We hope that our
discussion on the DL model structures and training methodolo-
gies can dissolve the misconceptions about end-to-end models

and end-to-end learning and that our paper can provide a useful
hint for the future research in DL and robotics.
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