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Deep learning is a sub
eld of machine learning, which aims to learn a hierarchy of features from input data. Nowadays, researchers
have intensively investigated deep learning algorithms for solving challenging problems in many areas such as image classi
cation,
speech recognition, signal processing, and natural language processing. In this study, we not only review typical deep learning
algorithms in computer vision and signal processing but also provide detailed information on how to apply deep learning to speci
c
areas such as road crack detection, fault diagnosis, and human activity detection. Besides, this study also discusses the challenges
of designing and training deep neural networks.

1. Introduction

Deep learning methods are a group of machine learning
methods that can learn features hierarchically from lower
level to higher level by building a deep architecture. 	e
deep learning methods have the ability to automatically learn
features at multiple levels, which makes the system be able
to learn complex mapping function � : � → � directly
from data, without help of the human-cra�ed features. 	is
ability is crucial for high-level feature abstraction since high-
level features are di�cult to be described directly from raw
training data. Moreover, with the sharp growth of data, the
ability to learn high-level features automatically will be even
more important.

	e most characterizing feature of deep learning meth-
ods is that their models all have deep architectures. A
deep architecture means it has multiple hidden layers in
the network. In contrast, a shallow architecture has only
few hidden layers (1 to 2 layers). Deep architectures are
loosely inspired by mammal brain. When given an input
percept, mammal brain processes it using dierent area of
cortex which abstracts dierent levels of features. Researchers
usually describe such concepts in hierarchical ways, with
many levels of abstraction. Furthermore, mammal brains
also seem to process information through many stages of
transformation and representation. A very clear example is
that the information in the primate visual system is processed

in a sequence of stages: edge detection, primitive shapes, and
more complex visual shapes.

Inspired by the deep architecture of mammal brain,
researchers investigated deep neural networks for two
decades but did not 
nd eective training methods before
2006: researchers only obtained good experimental results of
neural network with one or two hidden layers but could not
get good results of neural network with more hidden layers.
In 2006, Hinton et al. proposed deep belief networks (DBNs)
[1], with a learning algorithm that uses unsupervised learning
algorithm to greedily train deep neural network layer by layer.
	is training method, which is called deep learning, turns
out to be very eective and e�cient in training deep neural
networks.

Many other deep architectures, that is, autoencoder, deep
convolutional neural networks, and recurrent neural net-
works, are successfully applied in various areas. Regression
[2], classi
cation [3–9], dimensionality reduction [10, 11],
modeling motion [12, 13], modeling textures [14], informa-
tion retrieval [15–17], natural language processing [18–20],
robotics [21], fault diagnosis [22], and road crack detection
[23] have seen increasing deep learning-related research
studies. 	ere are mainly three crucial reasons for the rapid
development of deep learning applications nowadays: the big
leap of deep learning algorithms, the signi
cantly increased
computational abilities, and the sharp drop of price in
hardware.
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	is survey provides an overview of several deep learning
algorithms and their emerging applications in several speci
c
areas, featuring face recognition, road crack detection, fault
diagnosis, and falls detection. As complementarity to existing
review papers [24, 25], we not only review the state-of-the-art
deep learning methods but also provide detailed information
on how to apply deep learning to speci
c problems. 	e
reminder of this paper is organized as follows. In Section 2,
the two categories of deep learning algorithms are intro-
duced: restricted Boltzmann machines (RBMs) and convo-
lutional neural networks (CNNs). 	e training strategies are
discussed in Section 3. In Section 4, we describe several
speci
c deep learning applications, that is, face recognition,
road crack detection, fault diagnosis, and human activity
detection. In Section 5, we discuss several challenges of
training and using the deep neural networks. In Section 6,
we conclude the paper.

2. Deep Learning Algorithms

Deep learning algorithms have been extensively studied in
recent years. As a consequence, there are a large number of
related approaches. Generally speaking, these algorithms can
be grouped into two categories based on their architectures:
restricted Boltzmann machines (RBMs) and convolutional
neural networks (CNNs). In the following sections, we
will brie�y review these deep learning methods and their
developments.

2.1. Deep Neural Network. 	is section introduces how to
build and train RBM-based deep neural networks (DNNs).
	e building and training procedures of a DNN contain two
steps. First, build a deep belief network (DBN) by stacking
restricted Boltzmann machines (RBMs) and feed unlabeled
data to pretrain the DBN. 	e pretrained DBN provides
initial parameters for the deep neural network. In the second
step, labeled data is fed to train the DNN using back-
propagation. A�er two steps of training, a trained DNN is
obtained. 	is section is organized as follows. Section 2.1.1
introduces RBM, which is the basic component of DBN. In
Section 2.1.2, RBM-based DNN is introduced.

2.1.1. Restricted Boltzmann Machines. RBM is an energy-
based probabilistic generative model [26–29]. It is composed
of one layer of visible units and one layer of hidden units.
	e visible units represent the input vector of a data sample
and the hidden units represent features that are abstracted
from the visible units. Every visible unit is connected to every
hidden unit, whereas no connection exists within the visible
layer or hidden layer. Figure 1 illustrates the graphical model
of restricted Boltzmann machine.

As a result of the lack of hidden-hidden and input-input
interactions, the energy function of a RBM is

Energy (k, h; �) = −b�k − c
�
h − h
�
Wk, (1)

where � = {W, b, c} are the parameters of RBM and they need
to be learned during the training procedure; W denotes the
weights between the visible layer and hidden layer; b and c

ℎ0 ℎ1
ℎ2 ℎi

�0 �1 �i· · ·

· · ·

Figure 1: Restricted Boltzmann machine.

are the bias of the visible layer and hidden layer, respectively;
this model is called binary RBM because the vectors v and h

only contain binary values (0 or 1).
We can obtain a tractable expression for the conditional

probability �(ℎ | V) [30]:
� (ℎ | V) = exp (b�k + c

�
h + h
�
Wk)

∑
h̃
exp (b�k + c�h̃ + h̃

�
Wk)

= ∏� exp (c�h� + h�W�k)∏�∑h̃�
exp (c�h̃� + h̃�W�k)

= ∏
�

exp (h� (c� +W�k))∑
h̃�
exp (h̃� (c� +W�k)) = ∏� � (h� | V) .

(2)

For binary RBM, where ℎ� ∈ {0, 1}, the equation for a
hidden unit’s output given its input is

� (ℎ� = 1 | V) = ���+��V1 + ���+��V = sigm (�� +��V) . (3)

Because V and ℎ play a symmetric role in the energy
function, the following equation can be derived:

� (V | ℎ) = ∏
�
� (V� | ℎ) , (4)

and for the visible unit V� ∈ {0, 1}, we have
� (V� = 1 | ℎ) = sigm (�� +��⋅� ℎ) , (5)

where�⋅� is the �th column of�.
Although binary RBMs can achieve good performance

when dealing with discrete inputs, they have limitations to
handle continuous-valued inputs due to their structure.	us,
in order to achieve better performance on continuous-valued
inputs, Gaussian RBMs are utilized for the visible layer [4, 31].
	e energy function of a Gaussian RBM is

Energy (k, h) = ∑
�

(V� − ��)22�2� −∑
��
���ℎ� V��� −∑� ��ℎ�, (6)

where �� and �� are the mean and the standard deviation
of visible unit �. Note here that only the visible layer V

is continuous-valued and hidden layer ℎ is still binary. In
practical situation, the input data is normalized, whichmakes�� = 0 and �� = 1. 	erefore, (6) becomes

Energy (k, h) = 12k�k − c
�
h − h
�
Wk. (7)
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Figure 2: Deep belief network structure.
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Figure 3: 	e architecture of convolution neural network.

2.1.2. Deep Neural Network. Hinton et al. [1] showed that
RBMs can be stacked and trained in a greedy manner to
form so-called deep belief networks (DBNs) [32]. DBNs are
graphical models which learn to extract deep hierarchical
representation of the training data. ADBNmodelwith � layers
models the joint distribution between observed vector V andℓ hidden layers ℎ	 as follows [30]:
� (V, ℎ1, . . . , ℎℓ) = (ℓ−2∏

	=0
� (ℎ	 | ℎ	+1))� (ℎℓ−1, ℎℓ) , (8)

where V = ℎ0, �(ℎ	−1 | ℎ	) is a conditional distribution for the
visible units conditioned on the hidden units of the RBM at
level " and �(ℎℓ−1, ℎℓ) is the visible-hidden joint distribution
in the top-level RBM.	is is illustrated in Figure 2.

As Figure 2 shows, the hidden layer of low-level RBM is
the visible layer of high-level RBM, which means that the
output of low-level RBM is the input of high-level RBM.
By using this structure, the high-level RBM is able to learn
high-level features from low-level features generated from the
low-level RBM. 	us, DBN allows latent variable space in its

hidden layers. In order to train a DBN eectively, we need to
train its RBM from low level to high level successively.

A�er the unsupervised pretraining step forDBN, the next
step is to use parameters from DBN to initialize the DNN
and do supervised training for DNNusing back-propagation.
	e parameters of the#-layer DNN are initialized as follows:
parameters {��, ��} (� = 1, . . . , #) except the top layer
parameters are set the same as the DBN, and the top layer
weights {��, ��} are initialized stochastically. A�er that, the
whole network can be 
ne-tuned by back-propagation in a
supervised way using labeled data.

2.2. Convolutional Neural Network. Convolutional neural
network is one of the most powerful classes of deep neural
networks in image processing tasks. It is highly eective and
commonly used in computer vision applications [33]. 	e
convolution neural network contains three types of layers:
convolution layers, subsampling layers, and full connection
layers. 	e whole architecture of convolutional neural net-
work is shown in Figure 3. A brief introduction to each type
of layer is provided in the following paragraphs.
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Figure 4: Digital image representation and convolution matrix.

2.2.1. Convolution Layer. As Figure 4 shows, in convolution
layer, the le� matrix is the input, which is a digital image,
and the right matrix is a convolutionmatrix.	e convolution
layer takes the convolution of the input image with the
convolution matrix and generates the output image. Usually
the convolution matrix is called 
lter and the output image is
called 
lter response or 
ltermap. An example of convolution
calculation is demonstrated in Figure 5. Each time, a block of
pixels is convoluted with a 
lter and generates a pixel in a new
image.

2.2.2. Subsampling Layer. 	e subsampling layer is an impor-
tant layer to convolutional neural network. 	is layer is
mainly to reduce the input image size in order to give the
neural network more invariance and robustness. 	e most
usedmethod for subsampling layer in image processing tasks
is max pooling. So the subsampling layer is frequently called
max pooling layer. 	e max pooling method is shown in
Figure 6. 	e image is divided into blocks and the maximum
value of each block is the corresponding pixel value of the
output image. 	e reason to use subsampling layer is as
follows. First, the subsampling layer has fewer parameters
and it is faster to train. Second, a subsampling layer makes
convolution layer tolerate translation and rotation among the
input pattern.

2.2.3. Full Connection Layer. Full connection layers are sim-
ilar to the traditional feed-forward neural layer. 	ey make
the neural network fed forward into vectors with a prede
ned
length. We could 
t the vector into certain categories or take
it as a representation vector for further processing.

3. Training Strategy

Compared to conventional machine learning methods, the
advantage of the deep learning is that it can build deep
architectures to learn more multiscale abstract features.
Unfortunately, the large amount of parameters of the deep
architectures may lead to over
tting problem.

3.1. DataAugmentation. 	ekey idea of data augmentation is
to generate additional data without introducing extra labeling
costs. In general, the data augmentation is achieved by
deforming the existing ones. Mirroring, scaling, and rotation
are the most common methods for data augmentation [34–
36]. Wu et al. extended the deforming idea to color space,
the provided color casting, vignetting, and lens distortion
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Figure 6: 	e example of the subsampling layer.

techniques in their work, which enlarged the training set
signi
cantly [37].

3.2. Pretraining and Fine-Tuning. Training a deep learning
architecture is a time-consuming and nontrivial task. On one
hand, it is di�cult to obtain enough well-labeled data to train
the deep learning architecture in real application, although
the data augmentation can help us obtain more training
data.

For visual tasks, when it is hard to get su�cient data, a
recommendable way is to 
ne-tune the pretrained CNN by
natural images (e.g., ImageNet) and then use speci
c data set
to 
ne-tune the CNN [36, 38, 39]. Tajbakhsh et al. showed
that, for medical applications, the use of a pretrained CNN
with adequate 
ne-tuning outperformed or, in the worst case,
performed as well as a CNN trained from scratch [38].

On the other hand, the deep learning architecture con-
tains hundreds of thousands of parameters to be initialized
even with su�cient data. Erhan et al. provided the evidence
to explain that the pretraining step helps train deep architec-
tures such as deep belief networks and stacked autoencoders
[40]. 	eir experiments supported a regularization expla-
nation for the eect of pretraining, which helps the deep-
learned model obtain better generalization from the training
data set.
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4. Applications

Deep learning has been widely applied in various 
elds,
such as computer vision [25], signal processing [24], and
speech recognition [41]. In this section, we will brie�y review
several recently developed applications of deep learning (all
the results are referred from the original papers).

4.1. CNN-Based Applications in Visual Computing. As we
know, convolutional neural networks are very powerful tools
for image recognition and classi
cation.	ese dierent types
of CNNs are o�en tested on well-known ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) data set and
achieved state-of-the-art performance in recent years [42–
44]. A�er winning the ImageNet competition in 2012 [42],
the CNN-based methods have brought about a revolution in
computer vision. CNNs have been applied with great success
to the object detection [35, 45, 46], object segmentation [47,
48], and recognition of objects and regions in images [49–
54]. Comparedwith hand-cra�ed features, for example, Local
Binary Patterns (LBP) [55] and Scale Invariant Feature Trans-
form (SIFT) [56], which need additional classi
ers to solve
vision problems [57–59], the CNNs can learn the features
and the classi
ers jointly and provide superior performance.
In next subsection, we review how the deep-learned CNN is
applied to recent face recognition and road crack detection
problem in order to provide an overview for applying the
CNN to speci
c problems.

4.1.1. CNN for Face Recognition. Face recognition has been
one of the most important computer vision tasks since
the 1970s [60]. Face recognition systems typically consist
of four steps. First, given an input image with one or
more faces, a face detector locates and isolates faces. 	en,
each face is preprocessed and aligned using either 2D or
3D modeling methods. Next, a feature extractor extracts
features from an aligned face to obtain a low-dimensional
representation (or embedding). Finally, a classi
ermakes pre-
dictions based on the low-dimensional representation. 	e
key to get good performances for face recognition systems is
obtaining an eective low-dimensional representation. Face
recognition systems using hand-cra�ed features include [61–
64]. Lawrence et al. [65] 
rst proposed using CNNs for
face recognition. Currently, the state-of-the-art performance
of face recognition systems, that is, Facebook’s DeepFace
[66] and Google’s FaceNet [67], are based on CNNs. Other
notable CNN-based face recognition systems are lightened
convolutional neural networks [68] and Visual Geometry
Group (VGG) Face Descriptor [69].

Figure 7 shows the logic �ow of CNN-based face recog-
nition systems. Instead of using hand-cra�ed features, CNNs
are directly applied to RGB pixel values and used as a
feature extractor to provide a low-dimensional representation
characterizing a person’s face. In order to normalize the
input image to make the face robust to dierent view angles,
DeepFace [66] models a face in 3D and aligns it to appear as
a frontal face. 	en, the normalized input is fed to a single
convolution-pooling-convolution 
lter. Next, 3 locally con-
nected layers and 2 fully connected layers are used to make

Image

Face detection

Preprocessing

CNN

Representation

Classi�cation

Figure 7: Logic �ow of CNN-based face recognition [70].

Table 1: Experiment results on LFW benchmark [70].

Technique Accuracy

Human-level (cropped) [74] 0.9753

FaceNet [67] 0.9964 ± 0.009
DeepFace-ensemble [66] 0.9735 ± 0.0025
OpenFace [70] 0.9292 ± 0.0134


nal predictions. 	e architecture of DeepFace is shown in
Figure 8. 	ough DeepFace achieves the best performance
on face recognition up to date, its representation is di�cult
to interpret and use because the faces of the same person
are not clustered necessarily during the training process. In
contrast, FaceNet de
nes a triplet loss function directly on
the representation, whichmakes the training procedure learn
to cluster face representation of the same person [70]. It
should also be noted that OpenFace uses a simple 2D a�ne
transformation to align face input.

Nowadays, face recognition inmobile computing is a very
attractive topic [71, 72]. While DeepFace and FaceNet remain
private and are of large size, OpenFace [70] oers a light-
weighted, real-time, and open-source face recognition system
with competitive accuracy, which is suitable for mobile
computing. OpenFace implements FaceNet’s architecture
but it is one order of magnitude smaller than DeepFace
and two orders of magnitude smaller than FaceNet. 	eir
performances are compared on Labeled Faces in the Wild
data set (LFW) [73], which is a standard benchmark in
face recognition.	e experiment results are demonstrated in
Table 1. 	ough the accuracy of OpenFace is slightly lower
than the state of the art, its smaller size and fast execution time
show great potential in mobile face recognition scenarios.

4.1.2. CNN for Road Crack Detection. Automatic detection
of pavement cracks is an important task in transportation
maintenance for driving safety assurance. Inspired by recent
success in applying deep learning to computer vision and
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Figure 8: Outline of DeepFace architecture [66].
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Figure 9: Illustration of the architecture of the proposed ConvNet [23].

medical problems, a deep learning based method for crack
detection is proposed [23].

Data Preparation. A data set with more than 500 pavement
pictures of size 3264 × 2448 is collected at the Temple
University campus by using a smartphone as the data sensor.
Each image is annotated by multiple annotators. Patches of
size 99 × 99 are used for training and testing the proposed
method. 640,000 patches, 160,000 patches, and 200,000
patches are selected as training set, validation set, and testing
set, respectively.

Design and Train the CNN. A deep learning architecture is
designed, which is illustrated in Figure 9 and conv, mp, and
fc represent convolutional, max pooling, and fully connected
layers, respectively.	eCNNs are trained using the stochastic
gradient descent (SGD) method on GPU with a batch size of
48 examples, momentum of 0.9, and weight decay of 0.0005.
Less than 20 epochs are needed to reach a minimum on the
validation set.	e dropout method is used between two fully
connected layers with a probability of 0.5 and the recti
ed
linear units (ReLU) as the activation function.

Evaluate the Performance of the CNN. 	e proposed method
is compared against the support vector machine (SVM) and
the Boosting methods. 	e features for training the SVM
and the Boosting method are based on color and texture of
each patch which are associated with a binary label indicating
the presence or absence of cracked pavement. 	e feature
vector is 93-dimensional and is composed of color elements,
histograms of textons, and LBP descriptor within the patch.

	e Receiver Operating Characteristic (ROC) curves of
the proposed method, the SVM, and the Boosting method
are shown in Figure 10. Both the ROC curve and Area
under the Curve (AUC) of the proposedmethod indicate that
the proposed deep learning based method can outperform
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Figure 10: ROC curves [23].

the shallow structure learned from hand-cra�ed features. In
addition,more comprehensive experiments are conducted on300 × 300 scenes as shown in Figure 11.

For each scene, each row shows the original image with
crack, ground truth, and probability maps generated by the
SVMand the Boostingmethods and that by theConvNet.	e
pixels in green and in blue denote the crack and the noncrack,
respectively, and higher brightness means higher con
dence.
	e SVM cannot distinguish the crack from the background,
and some of the cracks have been misclassi
ed. Compared
to the SVM, the Boosting method can detect the cracks
with a higher accuracy. However, some of the background
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Figure 11: Probability maps.

patches are classi
ed as cracks, resulting in isolated green
parts in Figure 11. In contrast to these two methods, the
proposedmethod provides superior performance in correctly
classifying crack patches from background ones.

4.2. DBN-Based Applications in Signal Processing

4.2.1. DNN for Fault Diagnosis. Plant faults may cause abnor-
mal operations, emergency shutdowns, equipment damage,
or even casualties.With the increasing complexity of modern
plants, it is di�cult even for experienced operators to diag-
nose faults fast and accurately. 	us, designing an intelligent
fault detection and diagnose system to aid human operators
is a critical task in process engineering. Data-drivenmethods
for fault diagnosis are becoming very popular in recent years,
since they utilize powerful machine learning algorithms.
Conventional supervised learning algorithms used for fault
diagnosis are Arti
cial Neural Networks [76–81] and support
vector machines [82–84]. As one of emergingmachine learn-
ing techniques, deep learning techniques are investigated
for fault diagnosis in a few current studies [22, 85–88].
	is subsection reviews a study which uses Hierarchical
Deep Neural Network (HDNN) [22] to diagnose faults in
a well-known data set called Tennessee Eastman Process
(TEP).

TEP is a simulation model that simulates a real industry
process. 	e model was 
rst created by Eastman Chemical
Company [75]. It consists of 
ve units: a condenser, a
compressor, a reactor, a separator, and a stripper. Two liquid
products G and H are produced from the process with the
gaseous inputs A, C, D, and E and the inert component B.
	e �owsheet of TEP is shown in Figure 12.

Data Preparation. 	e TEP is monitored by a network of$
sensors that collect measurement at the same sampling time.
At the �th sample, the state of %th sensor is represented by a
scalar &� . By combining all$ sensors, the state of the whole
process in �th sampling interval is represented as a row vector&� = [&1� , &2� , . . . , &�� ]. 	e fault occurring at the �th sampling
interval is indicated with class label '� ∈ {1, 2, . . . , *}, where
value 1 to * represents one of * fault types. 	ere are total#
historical observations collected from all$ sensors to form
a data set- = {(&�, '�), � = 1, 2, . . . , #, '� ∈ {1, 2, . . . , *}}. 	e
objective of fault diagnosis is to train a classi
cation ℎ : &� →'� given data set- = {(&�, '�), � = 1, 2, . . . , #}.

For each simulation run, the simulation starts without
faults and the faults are introduced at sample 1. Each run
collects a total of 1000 pieces of sample data. Each single
fault type has 5 independent simulation runs. 	e Tennessee
Eastman Process has 20 dierent prede
ned faults but faults
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Figure 12: Tennessee Eastman Process [75].

3, 9, and 15 are excluded for fault diagnosis due to no eect or
subtle eect on all the sensors [82, 84].	us, the training data
set has a total of# = 5×17×1000 = 85000 data samples; that
is, -train = {(&�, '�), � = 1, 2, . . . , #, '� ∈ {0, 1, . . . , *}}, # =85000, * = 17. 	en, test data is generated using the same
method. Because only fault diagnosis methods are investi-
gated in this work, normal operation data is not considered.
Data normalization and data augmentation techniques are
used to achieve better performance.

Design and Train the HDNN. 	e general diagnosis scheme
of HDNN [22] is as follows. 	e symptom data generated
by simulation is transmitted to a supervisory DNN. 	e
supervisory DNN then classi
es symptom data into dierent
groups and triggers the DNN which is specially trained for
that group to do further fault diagnosis. Figure 13 illustrates
the fault diagnosis scheme of the HDNN, where each agent
represents a DNN.

Evaluate the Performance of the DNN. 	e experiment
result of the HDNN is compared to single neural network
and Duty-Oriented Hierarchical Arti
cial Neural Network
(DOHANN) [76] and is shown in Figure 14. 7 out of 17
faults have been diagnosed with 90% accuracy. 	e highest
Correct Classi
cation Rate (CCR) is 99.6% from fault 4,
while the lowest CCR is 50.4% from fault 13. 	e average
CCR of our method is 80.5%, while the average of CCRs
of SNN and DOHANN is 49.7% and 70.7%, respectively. It
demonstrates that the DNN-based algorithm outperforms
other conventional NN-based algorithms.

Agent 2

Agent 1

Agent 3

Agent 4

Subagent 1

Subagent 2

agent
Supervisory

Measured

process variables

Figure 13: Schematic diagram of HDNN [22].

4.2.2. DNN for Human Activity Detection. Human activity
detection has drawn much attention from researchers due
to high demands for security, law enforcement, and health
care [90–93]. In contrast to using cameras to detect human
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Figure 14: Correct classi
cation rate of SNN, DOHANN [76], and
HDNN [22].

activity, sensors such as worn accelerometers or in-home
radar which use signals to detect human activities are robust
to environmental conditions such as weather conditions
and light variations [94–99]. Nowadays, there are a few
emerging research works that focus on using deep learning
technologies to detect human activities based on signals
[89, 92, 100].

Fall detection is one of the very important human activity
detection scenarios for researchers, since falls are a main
cause of both fatal and nonfatal injuries for the elderly. Khan
and Taati [100] proposed a deep learning method for falls
detection based on signals collected from wearable devices.
	ey propose an ensemble of autoencoders to extract features
from each channel of sensing data. Unlike wearable devices
which are intrusive and easily broken and must be carried,
in-home radars which are safe, nonintrusive, and robust to
lighting conditions show their advantages for fall detection.
Jokanovic et al. [89] proposed a method that uses deep
learning to detect fall motion through in-home radar. 	e
procedure is demonstrated in Figure 15. 	ey 
rst denoise
and normalize the spectrogram as input. 	en, stacked
autoencoders are performed as a feature extractor. On top
of the stacked autoencoders, a so�max regression classi
er
is used to make predictions. 	e whole model is compared
with a SVM model. Experiment results show that the overall
correct classi
cation rate for deep learning approach is 87%,
whereas the overall correct classi
cation rate for SVM is 78%.

5. Challenges

	ough deep learning techniques achieve promising perfor-
mance on multiple 
elds, there are still several big challenges
as research articles indicate.	ese challenges are described as
follows.

5.1. Training with Limited Data. Training deep neural net-
work usually needs large amounts of data as larger training
data set can prevent deep learning model from over
tting.
Limited training data may severely aect the learning ability
of a deep neural network. Unfortunately, there are many
applications that lack su�cient labeled data to train a DNN.

	us, how to train DNN with limited data eectively and
e�ciently becomes a hot topic.

Recently, two possible solutions draw attention from
researchers. One of the solutions is to generalize new training
data from original training data using multiple data augmen-
tation methods. Traditional ones include rotation, scaling,
and cropping. In addition to these, Wu et al. [37] adopted
vignetting, color casting, and lens distortion techniques.
	ese techniques can further producemore dierent training
examples. Another solution is to obtain more training data
using weak learning algorithms. Song et al. [101] proposed a
weakly supervised method that can label image-level object-
presence. 	is method helps to reduce laborious bounding
box annotation costs while generating training data.

5.2. Time Complexity. Training deep neural network is very
time-consuming in early years. It needs a large amount
of computational resources and is not suitable for real-
time applications. By default, GPUs are used to accelerate
training of large DNNs with the help of parallel computing
technique. 	us, it is important to make the most of GPU
computing ability when training DNNs. He and Sun [102]
investigated training CNN under time cost constrains and
proposed fast training methods for real-world applications
while having similar performance as existing CNN models.
Li et al. [103] remove all the redundant computations during
training CNNs for pixel wise classi
cation, which leads to a
speedup of 1500 times.

5.3. �eoretical Understanding. 	ough deep learning algo-
rithms achieve promising results on many tasks, the under-
lying theory is still not very clear. 	ere are many questions
that need to be answered. For instance, which architecture
is better than other architectures in certain task? How many
layers and how many nodes in each layer should be chosen
in a DNN? Besides, there are a few hyperparameters such as
learning rate, dropout rate, and the strength of regularizer
which need to be tuned with speci
c knowledge.

Several approaches are developed to help researchers to
get better understanding in DNN. Zeiler and Fergus [43]
proposed a visualization method that illustrates features in
intermediate layers. It displays intermediate features in inter-
pretable patterns, which may help design better architectures
for future DNNs. In addition to visualizing features, Girshick
et al. [49] tried to discover the learning pattern of CNN by
testing the performance layer by layer during the training
process. It demonstrates that convolutional layers can learn
more generalized features.

Although there is progress in understanding the theory
of deep learning, there is still large room to improve in deep
learning theory aspect.

6. Conclusion

	is paper gives an overview of deep learning algorithms
and their applications. Several classic deep learning algo-
rithms such as restricted Boltzmann machines, deep belief
networks, and convolutional neural networks are introduced.
In addition to deep learning algorithms, their applications are
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Figure 15: Block diagram of the deep learning based fall detector [89].

reviewed and compared with other machine learning meth-
ods.	oughdeepneural networks achieve goodperformance
on many tasks, they still have many properties that need to
be investigated and justi
ed. We discussed these challenges
and pointed out several new trends in understanding and
developing deep neural networks.
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