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The rapid development of light detection and ranging (Lidar) provides a promising way to

obtain three-dimensional (3D) phenotype traits with its high ability of recording accurate

3D laser points. Recently, Lidar has been widely used to obtain phenotype data in

the greenhouse and field with along other sensors. Individual maize segmentation is

the prerequisite for high throughput phenotype data extraction at individual crop or

leaf level, which is still a huge challenge. Deep learning, a state-of-the-art machine

learning method, has shown high performance in object detection, classification, and

segmentation. In this study, we proposed a method to combine deep leaning and

regional growth algorithms to segment individual maize from terrestrial Lidar data. The

scanned 3D points of the training site were sliced row and row with a fixed 3D window.

Points within the window were compressed into deep images, which were used to train

the Faster R-CNN (region-based convolutional neural network) model to learn the ability

of detecting maize stem. Three sites of different planting densities were used to test

the method. Each site was also sliced into many 3D windows, and the testing deep

images were generated. The detected stem in the testing images can be mapped into

3D points, which were used as seed points for the regional growth algorithm to grow

individual maize from bottom to up. The results showed that the method combing deep

leaning and regional growth algorithms was promising in individual maize segmentation,

and the values of r, p, and F of the three testing sites with different planting density were

all over 0.9. Moreover, the height of the truly segmented maize was highly correlated to

the manually measured height (R2 > 0.9). This work shows the possibility of using deep

leaning to solve the individual maize segmentation problem from Lidar data.
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INTRODUCTION

During the 20th century alone, the human population has grown
from 1.65 billion to 6 billion according to the United Nations1.
By the middle of the 21st century, the global population will
reach up to 9–10 billion (Cohen, 2003; Godfray et al., 2010).
The growing population and declining area of cultivated land
under the background of global climate change has brought
unprecedented pressure on world food production and livelihood
security of farmers (Dempewolf et al., 2010; Godfray et al.,
2010; Finger, 2011; Tilman et al., 2011). To meet the challenge,
developing new methods of crop breeding to increase crop yields
is a promising option (Ray et al., 2013).

Traditional crop breeding, such as hybrid breeding, relies on
the breeding experience of breeders, which has the disadvantage
of long cycle, low efficiency and great uncertainty. With
the development of molecular biology technology, especially
the next-generation sequencing (NGS) technologies, molecular
breeding has revolutionized traditional agricultural breeding
into a new era with characteristics of rapid, accurate, and
stable (Perez-de-Castro et al., 2012). However, genomics research
cannot achieve satisfactory outcome in genetic improvement of
complex quantitative traits which is controlled by both biotic and
abiotic factors (Kumar et al., 2015). The major reason is the lack
of precise and high throughput phenotype data to assist gene
discovery, identification, and selection (Rahaman et al., 2015).

In the past, phenotype data was mainly obtained by manual
measurement in the field, which was time consuming, labor
intensive, and low accuracy. With the demand of precise
agriculture and development of remote sensing, image-based
method has been successfully applied in obtaining phenotypic
data related to plant structure and physiology. For example,
Ludovisi et al. (2017) studied the response of black poplar
(Populus nigra L.) to drought using phenotype data obtained
from unmanned aerial vehicles (UAVs) based thermal images;
Grift et al. (2011) measured the root complexity (fractal
dimension) and root top angle using root images. However, 2D
images were sensitive to illumination and lack of spatial and
volumetric information, which is more closely related to plant
function and yield related traits (Yang et al., 2013). Although
stereo-imaging method has been used in some studies to obtain
canopy three-dimensional (3D) structure and leaf traits, the
overlap of leaves is still a challenge for 3D reconstruction (Biskup
et al., 2007; Xiong et al., 2017b).

Light detection and ranging (Lidar), an active remote sensing
technology by recording the time delay between laser transmitter
and receiver to calculate the distance between the sensor and
target, can provide highly accurate 3D information, which has
been widely used in the field of forest ecology with its high
penetration ability in the past serval decades (Blair et al., 1999;
Lefsky et al., 2002; Guo et al., 2014). Recently, it has drawn
extensive attention in the field of plant phenotype (Lin, 2015;
Guo et al., 2017). For example, Hosoi and Omasa (2012) used
the high-resolution portable Lidar to estimate the vertical plant
area density; Madec et al. (2017) used ground Lidar to estimate

1http://www.worldometers.info/world-population/

plant height, and proved its advantage over the 3D points derived
from the UAV images. These Lidar based methods focus on the
parameters acquisition of group level rather than individual crop
level, which cannot fully meet the needs of precision phenotypic
traits extraction. The bottleneck in individual crop level lies in
how to achieve the accurate individual crop segmentation with
3D points.

Currently, there are mainly two kinds of individual object
segmentation algorithms for Lidar points, which are widely
used in the forest field, i.e., CHM (canopy height model)-based
(Hyyppa et al., 2001; Jing et al., 2012) and direct point-based
methods (Li et al., 2012; Lu et al., 2014; Tao et al., 2015). The
CHM-based methods use the raster image interpolated from
Lidar points to depict the top of the forest canopy (Li et al., 2012),
which may have inherent spatial error when interpolated gridded
height model from 3D points (Guo et al., 2010). Also, CHM-
based methods are not suitable for homogenous, interlocked,
and blocked canopy (Koch et al., 2006). These limitations can be
overcome by point-basedmethods, such as voxel space projection
(Wang et al., 2008), normalized cut (Yao et al., 2012), adaptive
multiscale filter (Lee et al., 2010), and regional growth method
(Li et al., 2012; Tao et al., 2015). Among them, regional growth
method has shown better performance in both confiner and
broadleaf forest. For example, Li et al. (2012) developed a regional
growth point cloud segmentation (PCS) method from top to
down for confiner forests. In broadleaf forest, Tao et al. (2015)
proposed a comparative shortest-path (CSP) algorithm from
down to top using the terrestrial and mobile Lidar. The regional
growth algorithm depends on the choice of seed points. However,
in Lidar-scanned maize group, seed points cannot simply use the
maximum value within a certain range because the maximum
point of an individual maize is often not the center of the maize.
Meanwhile, using clustering method (e.g., k-means, density-
based spatial clustering of applications with noise) to detect the
short and thin stem of maize is also impracticable.

Deep learning, as a new area of machine learning, has strong
ability in extracting complex structural information from high
dimensional and massive data (Lecun et al., 2015), which has
achieved remarkable results in text categorization (Conneau et al.,
2017), speech recognition (Ravanelli, 2017), image detection
(Sermanet et al., 2013; Song and Xiao, 2016), and video analysis
(Wang and Sng, 2015). Convolution neural network (CNN), as
the most commonly used method of deep learning, has made
state-of-the-art performance in some image-based phenotyping
tasks (Pound et al., 2017; Ubbens and Stavness, 2017). For
example, Mohanty et al. (2016) used deep learning method to
detect plant disease; Xiong et al. (2017a) used CNN to segment
rice panicles successfully based on images; Baweja et al. (2018)
used deep learningmethod to count plant stalk and calculated the
stalk width. By contrast, CNNs for 3D analysis, especially for 3D
object detection, have rarely been found in the phenotypic field.

Currently, 3D CNN structure mainly includes voxel-based
method, octree-based method, multi-surface-based method,
multi-view method, and direct point-cloud-based method. Each
method has its own advantages and disadvantages. The voxel-
based method can effectively preserve the spatial relationship
between voxels, but it is computationally intensive with massive
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point cloud data (Maturana and Scherer, 2015; Milletari et al.,
2016); octree-based methods have high indexing efficiency but
still occupied large storage (Wang et al., 2017); multi-surface
based methods require only smooth surfaces as input but are
extremely sensitive to noise and deformation (Masci et al., 2015).
The method based on multi-view is generally used in individual
object classification, which is less computational but difficult to
determine the viewing angle to achieve the best identification (Su
et al., 2015). The point-cloud-basedmethod cannot fully consider
the spatial structure of the point clouds and does not converge
easily (Qi et al., 2016, 2017). Moreover, these 3D convolutional
neural networks are mainly used in small object tasks because of
the high cost of computing memory and time. In all, the direct
3D object segmentation or detection with massive Lidar points in
large maize field is still a big challenge.

TABLE 1 | The information of the sensor used in this study.

Sensor FARO Focus3D X 330 HDR

Laser wavelength (nm) 1550

Laser beam divergence (mrad) 0.19

Field of view (◦) Horizontal: 360◦; Vertical: 300◦

Angular resolution (◦) Horizontal: 0.009◦; Vertical: 0.009◦

Detection range (m) 0.6–130 m indoor or outdoor with upright

incidence to a 90% reflective surface

Pulse rate (kHz) 244

Maximum scanning rate (Hz) 97

Scanning accuracy 0.3 mm @ 10 m @ 90% reflectance

Scanner weight (kg) 5.2

Dimensions (mm) 240 × 200 × 100

Laser class Laser class 1

Beam diameter at exit (mm) 2.25

This study proposed an indirectly way of 3D object detection
and segmentation, which used 2D Faster R-CNN (region-based
CNN) to detect object in 2D images compressed from 3D points.
After that, the detected object in 2D images was mapped to 3D
points, which was further used as seed points of regional growth
method proposed by Tao et al. (2015). This method fully utilized
the 2D CNN method to avoid the high cost of computation and
storage of 3D CNNs, and the regional growth method can keep
the geometric relationship of individual maize.

MATERIALS AND METHODS

Data
The experiment was conducted in a maize field in China
Agriculture University in June 2017. The maize species is ZD958,
which is a low-nitrogen-efficient maize hybrid (Han et al., 2015).
The area of the field is around 300 m2, with a 0.5 m spacing
between rows and a 0.2 m spacing within rows, respectively. The
maize was scanned using a high-resolution portable terrestrial
Lidar (FARO Focus3D X 330 HDR). The size of the sensor is
240 mm × 200 mm × 100 mm and the weight is 5.2 kg. The
detection range is 0.6–130 m with large field of view (horizontal:
360◦; vertical: 300◦). The pulse rate and maximum scanning rate
are 244 kHz and 97 Hz, respectively. The Lidar sensor is equipped
with good angular accuracy (horizontal: 0.009◦; vertical: 0.009◦)
and scanning accuracy of 0.3 mm @10 m @90% reflectance
(Table 1).

In this study, we collected nine Lidar scans in total. Through
the multi-station scanning and registration in FARO SCENE
software, we obtained the fully covered Lidar data of the study
area. There were around 1000 maize plants of different sizes
and shapes in the field. Four sites were chosen to conduct this

FIGURE 1 | The maize data scanned by terrestrial Lidar of training site and testing sites, whose ground points are in yellow. (A) The training site: each maize was

manually segmented from the group and colorized by height. (B) The testing sites with sparse (top), moderate (middle), and dense (bottom) planting density.
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TABLE 2 | The dataset information of the training site and the three testing sites of different planting densities.

Number of maize Area (m2) Plant density (plants/m2) Maize height (m)

Minimum Mean Maximum

Training data 337 100.48 3.35 0.09 0.34 0.68

Testing data Sparse 62 23.05 2.69 0.13 0.32 0.49

Moderate 71 11.48 6.19 0.13 0.29 0.69

Dense 88 9.81 8.96 0.14 0.35 0.73

experiment, one for training, and the other three for testing
(Figure 1).

Training Data (From 3D Points to 2D Images)

In this section, we intended to detect the stem of individual maize
with different situations. Because individual maize is always
intersecting, it is impossible to directly predict the irregular
bounding box in 2D images. However, the stem of maize is
always isolated, which is relatively easy to detect from the 3D
point cloud data and can be used as the seed point for individual
maize segmentation. We prepared different stem samples of
individual maize with different background information. In this
study, the training site was planted with a density of 3.35
plants/m2, whose area was 100 m2 (Table 2). We segmented the
individual maize from the training group to obtain 337 individual
maize samples manually using the Green Valley International R©

LiDAR360 software, which was used to generate the training
samples (Figure 1A). If we viewed the individual maize from
different directions, the background information was different,
which was also determined by the field and depth of the region
of interest (ROI). For each individual maize in the training
group, we viewed from 32 different directions through rotating
the group data at a fixed angle separate of 360◦/32. The ROI
of each view had a field of 1.024 m × 1.024 m, and depth of
0.256m, which was enough to cover individual maize of our study
(Figure 2). The fixed size had the effects like data normalization,
which was beneficial for speeding up the training process of
finding the best solution when using gradient descent as well as
promoting the testing accuracy of the neural network. The black
bounding box of ROI contained the individual maize with a red
bounding box, and its corresponding stem. The points whose z
values were smaller than 1/3 of the maize height were chosen
as points of a target stem, which was colorized in green with a
green bounding box. The ROI filled with maize and stem was
compressed into a depth image.

Through multi viewing and compressing, we generated 10784
training images with targets in various backgrounds. The massive
training samples were used to train the deep CNN, which helped
to learn different features and avoid over-fitting.

Testing Data

Three sites with planting density from sparse to dense were used
to test the accuracy and robustness of the method. The sparse
site was planted with a planting density of 2.69 plants/m2 in an
area of 23 m2, with the maize height ranging from 0.13 to 0.49 m.
Maize in this site have big interval, but there were overlaps if we
viewed from top. The moderate site had a planting density of 6.19

FIGURE 2 | The training samples (deep images) generated through

compressing the point cloud within the ROI (region of interest). The field of

ROI is 1.028 m × 1.028 m and depth is determined by the depth of each

training maize. The ROI covered an individual maize sample segmented

manually, whose color is white with a red bounding box. Meanwhile, the target

stem of the maize is in green with a green bounding box. Each sample was

viewed from 32 different directions, which obtained 32 deep images with

different background information. These deep images were used to train the

deep convolutional neural network.

plants/m2 in an area of 11.48 m2, with the maize height ranging
from 0.29 to 0.69 m. Maize in this site is very homogeneous with
small intervals. The dense site was planted with a planting density
of 8.96 plants/m2 in an area of 10 m2 with the maize height
ranging from 0.14 to 0.73 m. Maize in the dense site were heavily
intersected and overlapped. In addition, the number of maize of
the three sites were 62, 71, and 88, respectively (Table 2).

Methods
Faster R-CNN Model

Faster R-CNN (Ren et al., 2015) was a major breakthrough in the
field of target detection with images using deep learning method
after R-CNN (Girshick et al., 2014) and Fast R-CNN (Girshick,
2015). R-CNN was slow, because it ran the CNN around 2000
times (region proposals generated by selective search method)
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FIGURE 3 | The flow chart of the Faster R-CNN to detect stem in deep images and the regional growth method for individual maize segmentation. Each training

maize was compressed into deep images and fed into the Faster R-CNN to learn the ability of classifying and regressing the anchor (bounding box) of the stem in

deep images. The testing sites were sliced row by row to generate deep images, which were tested to get the anchor of stem by the trained Faster R-CNN. The

detected anchor was mapped to three dimensional points, which was used as seed points to grow an individual maize from bottom to up.

TABLE 3 | The accuracy assessments of the individual maize segmentation on the

three testing datasets with different planting density.

TP FP FN R P F

Sparse 59 4 3 0.95 0.93 0.94

Moderate 66 2 5 0.93 0.97 0.95

Dense 81 6 7 0.92 0.93 0.93

Overall 206 12 15 0.93 0.94 0.94

per image and had to train three different models separately, one
for extracting image features, one for classifying bounding box,
and one for regression to tighten the bounding box. Fast R-CNN
enhanced these deficiencies by jointing the feature extractor,
classifier, and regressor in a unified framework, which ran the

CNN just once per image and then shared the feature images
across the ∼2000 region proposals. Even though, Fast R-CNN
still used the selective search method to create proposals, which is
the bottleneck of the overall process. Faster R-CNN replaced the
selective search with a regional proposal network (RPN), which
reused the feature maps of CNN. This “end-to-end” framework
can be thought as a combination of RPN and Fast R-CNN.
Feature parameters were shared between the two networks.

In this study, each 2D view from 3D Lidar image was subjected
to the Region Proposal Network (RPN) to obtain the feature
image, which has five continuous convolution and activation
operations. The activation function using here is rectified linear
unit (ReLU). On each pixel of the feature image, 20 anchor
regions were generated to predict the bounding box of the stem
area. In this experiment, four areas (12, 72, 142, and 592) and five
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ratios (0.13, 0.51, 0.84, and 1.3, 8) corresponding to the anchors
were obtained according to the size and shape of the target stem
area in the training sample. For each anchor, we calculated the
probability of whether it was foreground or background. If the
anchor had the largest degree of overlap with the target object
or the overlap degree was greater than 0.7, it was marked as the
foreground sample. If the overlap was less than 0.3, then it was the
negative sample. The other ambiguous anchors, whose overlap
were around 0.5 were not involved in the training. Moreover,
for each anchor, we calculated the parameters that each anchor
should be shifted and scaled based on its position offset from
the ground truth bounding box of the target object. Therefore,
the loss function of Faster R-CNN consisted of classification
and regression loss, and the detailed information can be found
in the work of Ren et al. (2015). Faster R-CNN has achieved
extraordinary results in 2D images detection, which is promising
to learn the ability of detecting stem in 2D images compressed
from 3D points. The whole process of using Faster R-CNN and
regional growth algorithm was shown in Figure 3 and will be
described in the flowing sections.

Training Faster R-CNN Model to Learn Stem Location

in 2D Images

The ultimate goal of the training was to enable Faster R-CNN
to find the target area on a compressed 2D image. The 10784
training samples generated from 3D points were sent into the
Faster R-CNN model. The “end-to-end” CNN was built based
on the Caffe deep learning framework (Jia et al., 2014), which
learned the ability to detect the location of a stem given a maize
with complicated background. We trained the network with the
base learning rate of 0.01, momentum of 0.9 (represent the weight
of the last gradient update), and weight decay of 0.0005 to avoid
overfitting. In each epoch, we used stochastic gradient descent
to optimize the loss function. The model was trained until the
classification and segmentation loss were both satisfied (generally
both smaller than 0.01).

Testing Faster R-CNN Model to Predict Stem

Location in 2D Images

The general idea of using the Faster R-CNN to detect target in 3D
points was that the model can detect target region with the 2D

views from 3D Lidar image. The testing process contained four
main steps. For each testing data, the 3D points were firstly sliced
into different 3D window with a field size of 1.024 m × 1.024 m,
and a depth of 0.016 m. The field in the x and z direction was
ensured to cover a maize, the depth of 0.016 m was used to detect
stem but with less background. As the deeper the depth, the
more background will be included in the 2D images. Secondly,
the sliced points were used to generate 2D images. Thirdly, these
2D images were used to predict the location of stem. Only the
predicted results with more than 90% prediction confidence were
kept. Finally, the location of the slice unit and four coordinates of
the predicted anchor of the stem in each compressed image can
be recorded, which will be used to map the 3D points. To reduce
the undetected stem, we sliced the 3D points of each site from 32
different directions, and repeated the above testing process. For
the well-scanned maize with complete stem, the Faster R-CNN
can detect the stem from all directions. Among the detected
stems of the same maize, we only kept the one whose prediction
confidence was the best. For the incomplete maize with irregular
shape, the Faster R-CNN can detect the stem from some specific
directions, and the result was kept.

Mapping Stem From 2D Images to 3D Points and

Realizing Individual Maize Segmentation

Each 2D anchor of the predicted image provide the x and z value
of the stem location. The slice window of the image provided
the y value of the bounding box. Using the x, y, and z value,
we can map the 2D anchor into its corresponding 3D space,
which covered the original 3D stem points. The stem points
were treated as seed points to grow each maize from bottom to
up using a the CSP regional growth method proposed by Tao
et al. (2015). The CSP method was inspired by the metabolic
ecology theory and has been provedwith good accuracy in forests.
The CSP method included three parts: points normalization,
trunk detection and diameter at breast height (DBH) estimation,
and finally segmentation. In this study, we only adopted the
segmentation part. In this part, 3D transporting distances of
each point to different trunks (Dv) were calculated and scaled
by the DBH as formula (1). The shortest scaled distance (DN

v ) of
each point to different trunks determined which trunk the point

FIGURE 4 | The training loss of the Faster R-CNN for detecting stem of maize in deep images. (A) Loss of classification; (B) loss of segmentation.
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should belong to.
DN
v = Dv/DBH

2/3 (1)

Assessment of Segmentation Accuracy

The segmentation result was evaluated at individual maize level
for all the three different sites. If a maize was labeled as class A
and segmented as class A, it was true positive (TP); if a maize was
labeled as class A but was not segmented (allocated to another
class), it was false negative (FN); if a maize did not exist but was
segmented, it was false positive (FP). We expected higher TP,
lower FN, and lower FP to get higher accuracy. Moreover, the
recall (r), precision (p), and F-score (F) for each

r =
TP

TP + FN

p =
TP

TP + FP

F = 2∗ r∗p

r + p
(2)

site were calculated using the following equations (Goutte and
Gaussier, 2005).

Moreover, for the truly segmented individual maize, we
compared the height with manually segmented height using
correlation of coefficients (R2) and root-mean-squared error
(RMSE).

RESULTS

Segmentation Results of the Three Sites
In this study, we trained 65000 epochs totally. Although the
loss of classification and regression was not smooth enough, the
overall decline trend was obvious (Figure 4). The loss declined
mainly in the first 100 epochs. The final classification and
segmentation loss was around 0.0005 and 0.003, respectively,
which represents the small error between the predicted results
and the corresponding ground truths. The total training time was
around 1 h on a PC with intel i7-7700k CPU, 16 GB RAM, and a
NIVIDA GTX 1070 GPU.

The segmentation results of the three test sites were all good
(Figure 5). The overall values of r, p, and F were 0.93, 0.94, and
0.94, respectively. For the sparse site, the values of r, p, and F
were 0.95, 0.93, and 0.94, respectively. For the moderate site, the
values of r, p, and F were 0.93, 0.97, and 0.95, respectively. For
the dense site, the values of r, p, and F were 0.93, 0.94, and 0.94,
respectively (Table 3). These segmented accuracies were almost
the same despite of different planting density when scanned in
32 different directions. We visually compared the segmentation
results by varying the number of scanning directions and found
32 was the best. The testing time of the sparse, moderate, and
dense site are around 6, 8, and 13 min, separately.

Height Prediction Accuracy Using
Segmented Results
The R2 of the height between the automatically segmented
and the manually segmented maize were all higher than 0.9,

FIGURE 5 | The segmentation results of sparse (top), moderate (middle), and

dense (bottom) testing sites. The segmented individual maize are represented

by unique colors.

and RMSE all equalled to 0.02 m. The best result appeared
at the site of moderate density, which seems to have no
relationship with the planting density. In addition, the heights
of maize of the automatically segmented were lower than the
manually segmented results in all the three sites. The mean
underestimation of sparse, moderate, and dense sites was 0.02,
0.05, and 0.06 m, separately (Figure 6).

DISCUSSION

Segmentation Results
The segmentation results all showed high accuracy from sparse to
dense planting density, which benefited from the high accuracy
of stem detection by Faster R-CNN. There might be three main
reasons for this. Firstly, each site was tested from 32 different
directions, and the joint result contributed to the high accuracy.
Secondly, the slice depth of the 3D window was only 0.016 m,
which was smaller than the interval of any two adjacent maize
samples at any of the three sites. In this situation, the planting
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FIGURE 6 | The correlation of the individual maize height of automatically and manually segmented in maize group with planting density of sparse (A), moderate (B),

and dense (C).

density is not a determining factor and the isolated stem is easy
to be detected. Thirdly, points within the 3Dwindowwith a depth
of 0.016 m is enough to keep the shape of stem when compressed
into 2D images. Even the 3D points are incomplete and noisy,
the Faster R-CNN can detect the stem in the image based on the
regional and global background information. Theoretically, the
0.016 m depth can well-segmented maize group whose interval
was bigger than the threshold of 0.016 m. If the plant density
became denser, the scanning depth may need to be slightly
smaller. In reality, the planting interval is usually larger than
this threshold, which means the method can be applied to
perform segmentation in fields with different planting densities.
Moreover, as the method segmenting maize from bottom to up,
the overlap of leaf has little influence on the detection of stem.

This method has made up for the deficiency of image-based
method through using the spatial information of 3D point
cloud. However, there were still some shortcomings. Firstly, the
proposed method was only tested with young maize plants in the
elongated stage with a maximum height of around 0.7 m. The
effectiveness of the proposedmethod for segmentingmaize plants
in mature stage still needs to be further studied. Nevertheless, we
believed that the proposed method has the potential to handle
mature maize segmentation. The main reasons can be concluded
from two aspects: (1) the stem location is fixed after seedling
and the stem width does not change much after elongated
stage, which might be detected with a similar accuracy of the
current datasets; and (2) the proposed method used a fixed 3D
window size with a depth of 0.016 m covering only a piece of
the background information, which will not change too much
even in the mature stage. Moreover, the integrity of individual
maize points derived from the regional growth method might
be influenced by the heavily intercepted leaves, but it might
have limited influence on the extracting phenotype parameters,
such as maize height. Secondly, if stem was completely missing
in the scanned data, the network cannot detect the individual
maize, which cannot further grow to an individual stem. Thirdly,
if there was a leaf of maize drops to the ground and looks
like a stem from the side, the leaf may be falsely detected
as a stem, and further grow to a false positive individual
maize.

Height Prediction Accuracy
The high correlation (R2 > 0.9) of the automatically predicted
andmanually measured plant height enabled breeders to conduct
the height-related phenotyping experiments in a high throughput
way, which showed great potential in the field environment. HTP
information of plant height can reflect the plant biomass and
stress, etc. (Madec et al., 2017), which can further be used to
assist gene selection and accelerate crop breeding. However, some
limitations still exist. The predicted maize height of all three
sites were all lower than the ground truth. The reason might
be that we removed ground points automatically with a global
threshold when mapping 2D anchor to 3D points. Currently,
almost all the available filtering algorithms cannot fully remove
ground points, especially when the ground points have a depth of
few centimeters as well as micro-topography. Unremoved ground
points may affect the speed and accuracy of the regional growth
algorithm, which is undesirable. Therefore, we removed the
ground point with a global threshold of 0.1 m, which means the
points will be removed if they were at the neighbor of 0.1 m of
the lowest ground points in each small area. However, the mean
underestimation of the three sites were all less than 0.1 m. The
reason is the maize was planted on top of the ridge in the field,
the removed ground points often contain less stem points. In the
following work, we plan to develop new filtering algorithm to
remove ground points, like deep learning based method (Hu and
Yuan, 2016), which can help this task to get more accurate tree
height information.

CONCLUSION

In this study, we demonstrated the combination of deep
learning and regional growth methods to segment individual
maize with terrestrial Lidar scanned 3D points. A total of
10784 images compressed from 337 individual maize samples
were used to train the Faster R-CNN to learn the ability of
detecting stems. Three sites of the same growing stage with
different planting densities were used to test the stem detection
ability. These tested stems were further mapped into 3D points.
The results showed that the Faster R-CNN based method is
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powerful in detecting stem anchor in 2D views from 3D Lidar
images. The regional growth method can accurately segment the
individual maize with the detected stem seed points. Although
there are some false positive and false negative errors, the higher
accuracy with r, p, and F of more than 90% can significantly
reduce the workload to get 100% correct result by purely
manual methods. Overall, the segmented height of maize was
highly correlated to the manually measured value, demonstrating
our method can obtain accurate height of individual maize.
Because the seed points were detected by the Faster R-CNN and
the regional growth method algorithm had no parameter, the
proposed method is non-parametric, and has the possibility to
be applied in other field conditions.
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