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Abstract 

Background: In recent years, research in artificial neural networks has resurged, now under the deep-learning 

umbrella, and grown extremely popular. Recently reported success of DL techniques in crowd-sourced QSAR and 

predictive toxicology competitions has showcased these methods as powerful tools in drug-discovery and toxicol-

ogy research. The aim of this work was dual, first large number of hyper-parameter configurations were explored to 

investigate how they affect the performance of DNNs and could act as starting points when tuning DNNs and second 

their performance was compared to popular methods widely employed in the field of cheminformatics namely Naïve 

Bayes, k-nearest neighbor, random forest and support vector machines. Moreover, robustness of machine learning 

methods to different levels of artificially introduced noise was assessed. The open-source Caffe deep-learning frame-

work and modern NVidia GPU units were utilized to carry out this study, allowing large number of DNN configurations 

to be explored.

Results: We show that feed-forward deep neural networks are capable of achieving strong classification perfor-

mance and outperform shallow methods across diverse activity classes when optimized. Hyper-parameters that were 

found to play critical role are the activation function, dropout regularization, number hidden layers and number of 

neurons. When compared to the rest methods, tuned DNNs were found to statistically outperform, with p value <0.01 

based on Wilcoxon statistical test. DNN achieved on average MCC units of 0.149 higher than NB, 0.092 than kNN, 

0.052 than SVM with linear kernel, 0.021 than RF and finally 0.009 higher than SVM with radial basis function kernel. 

When exploring robustness to noise, non-linear methods were found to perform well when dealing with low levels 

of noise, lower than or equal to 20%, however when dealing with higher levels of noise, higher than 30%, the Naïve 

Bayes method was found to perform well and even outperform at the highest level of noise 50% more sophisticated 

methods across several datasets.

Keywords: Deep learning, SARs, Cheminformatics, Machine-learning, Data-mining, Random forest, kNN, Support 

vector machines, Naïve Bayes
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Background
Machine learning techniques have become an integral 

part of the modern drug discovery process. Data min-

ing methods based on machine learning techniques are 

routinely applied to model complex physicochemical and 

chemo-biological endpoints. Applications range from 

quantitative structure–property relationships (QSPRs) 

[1–3], quantitative structure–activity relationships 

(QSARs) [4, 5] to in silico mode-of-action analysis and 

predictive toxicology [6, 7].

Artificial neural networks (ANNs) were once popu-

lar in the field of molecular informatics and have been 
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applied for wide range of QSARs/QSPRs applications 

[8–17]. With the introduction of shallow methods such 

as random forest and support vector machines and 

technical difficulties associated with ANNs led to grad-

ual decrease of popularity of these methods. In recent 

years, research in ANNs has resurged, now under the 

deep-learning umbrella, and grown extremely popular 

due to major breakthroughs in computing capabilities, 

attracting considerable attention from both academia 

and industry. Although reported applications of deep-

learning techniques still remain limited in the field of 

molecular modeling they are fast gaining attention [18]. 

Two major crowd-sourced competitions, the Merck 

QSAR competition, held in 2012 at the Kaggle data min-

ing platform, and the Tox21 data-challenge 2014 for 

chemical risk assessment were both won by groups that 

utilized deep learning methods as main machine learn-

ing techniques [19, 20]. �e recent success demonstrates 

that deep learning methods are well suited for modeling 

complex biological data to support drug discovery and 

toxicological research.

ANNs were designed to mimic the efficiency and 

robustness of biological systems inspired by the complex 

cerebral cortex to process the myriads amount of sen-

sory data [21]. ANNs attempt to represent highly non-

linear and varying functions by combining multiple levels 

of representations through interconnected non-linear 

transformations [22]. Deep-learning methods are part 

of distributed representation-learning algorithms that 

attempt to extract and organize discriminative informa-

tion from the data by discovering features that compose 

multi-level distributed representations [23]. Representa-

tion learning algorithms have been applied with success 

to model complex real-world problems, such as speech 

recognition, signal processing and image classification 

[21, 24–26].

An DNN consists of multiple fully-connected layers: 

an input layer, one or multiple hidden layers and a sin-

gle output layer [27]. In feed-forward DNN, one of the 

mainstream deep learning methods, information is flow-

ing forward from the input layer, through the hidden lay-

ers and towards the output layer, illustration shown in 

Fig. 1a. �e building block of DNN is the artificial neu-

ron, which was introduced in 1943 by McCulloh and Pitts 

[28] and was inspired by biological neurons, illustration 

shown in Fig. 1b. Each neuron receives one or more input 

signals x1, x2, …, xm and outputs a value y to neurons of 

the next layer and so forth. �e output y is a nonlinear 

weighted sum of input signals, Fig. 1c shows popular acti-

vation functions the rectified linear units (ReLU), Tanh 

and Sigmoid (Sigm).

Deep neural networks are typically trained, by updat-

ing and adjusting neurons weights and biases, utilizing 

the supervised learning back-propagation algorithm in 

a

b

c

Fig. 1 a A feed-forward deep neural network with two hidden layers, each layer consists of multiple neurons, which are fully connected with neu-

rons of the previous and following layers. b Each artificial neuron receives one or more input signals x1, x2,…, xm and outputs a value y to neurons 

of the next layer. The output y is a nonlinear weighted sum of input signals. Nonlinearity is achieved by passing the linear sum through non-linear 

functions known as activation functions. c Popular neurons activation functions: the rectified linear unit (ReLU) (red), Sigmoid (Sigm) (green) and 

Tanh (blue)
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conjunction with optimization technique such as sto-

chastic gradient descent [29, 30]. Regularization tech-

niques, such as Dropout, were introduced to reduce 

over-fitting and improve generalization [31]. Dropout 

regularization technique was proposed to address the 

problem of over-fitting by preventing neurons co-adap-

tion. Recent advances in GPU computing capabilities has 

allowed complex deep learning architecture to be trained 

in reasonable amount of time [32].

Lusci et  al. [33] were among first to investigate the 

application of deep neural architectures for modeling 

molecular properties. �e authors utilized a recursive 

deep neural network approach to model molecular prop-

erties and applied the proposed approach to develop pre-

dictive model for aqueous solubility. Xu et al. [34] applied 

deep learning to model drug-induced liver injury. �e 

authors developed a predictive model based on 475 drugs 

and applied on external dataset of 198 drugs achieving 

AUC of 0.955 and exceeding the performance of previ-

ously reported drug-induced liver injury models. Aliper 

et  al. [35] applied deep learning for predicting pharma-

cological properties of drugs and for drug repurposing 

utilizing transcriptomic data from the LINCS Project. 

�e authors demonstrated that DNNs trained on tran-

scriptional response data sets could be utilized to classify 

drugs indications based on their transcriptional profiles. 

More recently, attempts to utilize convolutional neu-

ral networks (CNN) to model chemical data were also 

reported. Duvenaud et al., reported a CNN approach that 

operates directly on molecular graphs, where molecular 

structures are represented as graphs of arbitrary size and 

shape [36]. CNN were reported to be able to learn neural 

graph fingerprints and even outperform standard circular 

fingerprints on several tested datasets.

Recent study by Ma et  al. [19] investigated and com-

pared the performance of deep neural networks to 

random forest for QSARs applications. �e authors 

employed arbitrary selected DNNs configurations as 

opposed to an exhaustive search of possible hyper-

parameters combinations, and compared the perfor-

mance of DNNs against Random Forest for regression 

using 15 Merk’s in-house datasets including on-target 

and absorption, distribution, metabolism, and excretion 

(ADME) endpoints relevant to pharmaceutical research. 

�e authors reported that over 50 DNN configurations 

were explored and the performance of DNN was com-

pared to RF. DNN was reported to outperform RF over-

all by achieving on average 0.051 better R2 across the 15 

activity classes employed.

While several studies utilizing deep learning tech-

niques have been recently reported in the literature, 

the use of customized in-house implementations, often 

based on �eano framework, and models often remain 

non accessible to readers, hence hindering wider adop-

tion of deep learning techniques [37]. Instead, in this 

work we opted for the open-source Caffe deep learning 

framework as the main framework for training and test-

ing deep neural networks configurations. Caffe provides 

an easy usable platform for defining DNN configurations 

and executing experiments without extensive customiza-

ble hard-coding required as it provides an expressive and 

highly modular architecture [38]. �e code used to carry 

out this study, which was built upon Caffe and termed 

“ChemoCaffe”, is also made publicly available in the hope 

to make deep learning more accessible to practitioners 

interested applying DNNs to chemo-biological problems. 

ChemoCaffe allows large number of arbitrary selected 

DNN configurations to be tested in an automated fashion 

until optimal set of hyper-parameter values is identified.

Moreover, there is lack of comprehensive comparison 

of deep learning methods to popular methods of com-

monly employed algorithms such as random forest, sup-

port vector machine, k-nearest neighbor and Naïve Bayes 

for modeling structure–activity relationships (SARs). In 

this study we address this gap in the literature by con-

ducting and reporting a comprehensive comparison uti-

lizing seven diverse bioactivity classes extracted from 

ChEMBL public repository. Furthermore, it is commonly 

assumed that there is a limited amount of noise present 

in bioactivity datasets. �ere is no empirical evaluation 

of deep learning methods when dealing with noisy data, 

a common situation prevalent in Cheminformatics appli-

cations, especially when dealing with high-throughput 

screening readings. Hence, we explored the robustness 

of machine learning algorithms included in this study 

by introducing different levels of artificial noise to the 

datasets and measuring the performance of each method 

(Table 1).

Results and discussion
�e experimental process followed consisted of two main 

parts. First, arbitrary but reasonable selected hyper-

parameter configurations were explored with the aim 

to investigate how they affect the performance of feed-

forward deep neural networks. In the second part of the 

study, comparison of performance of deep neural nets 

to shallow methods Bernoulli Naïve Bayes, k-nearest 

neighbor, random forest and support vector machine was 

investigated.

Optimizing deep neural networks hyper-parameters

Here the study was focused on the hyper-parameters: 

(a) activation functions, by comparing the performance 

of rectified linear unit (ReLU), Sigmoid (Sigm) and 

Tanh functions, (b) learning rate, (c) number of neurons 

per layer, (d) number of hidden layers and (e) dropout 
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regularization. All tested network configurations were 

trained for 300 epochs with fixed learning rates, as shown 

in Table 2, with no early stops applied.

Comparing activation functions

Single hidden layered neural networks with varying 

number of neurons {5, 10, 50, 100, 200, 500, 700, 1000, 

1500, 2000, 2500, 3000, 3500} were tested to compare 

the performance between the three activation functions 

ReLU, Sigm and Tanh, the rest hyper-parameters were 

kept fixed. �e performance was measured using MCC 

over fivefolds cross validation. �e results obtained per 

activity class and per activation function are presented in 

Fig. 2 with ReLU(red), Sigmoid (green) and Tanh (blue), 

obtained with learning rate of η = 0.1. Neural Networks 

combined with the ReLU activation function perform 

better, when compared to Sigm or Tanh, by achieving 

higher MCC. Statistical analysis using Wilcoxon paired 

rank test are shown in Table 3, with confidence interval 

99%. �e results demonstrate that DNN combined with 

the rectified linear units (ReLU) activation function per-

formed better than the Sigm or Tanh functions. Neurons 

with rectified linear units (ReLU) activation function has 

been reported to be (a) easier to optimize, (b) converge 

faster, (c) generalize better and (d) are faster to compute 

[39].

Number of hidden layers, neurons per layer 

and regularization

Feed-forward neural networks are considered “deep” 

when the number of hidden layers is equal to or more 

than two, where each layer represents a higher level of 

abstraction. Here the analysis was focused on the hyper-

parameters; (a) number of hidden layers, (b) learning 

rate, (c) number of neurons per hidden layer and (d) 

“dropout” regularization, while retaining the rest hyper-

parameters fixed. Experimental process followed was 

similar as before using internal fivefold cross validation.

Results obtained by seven deep neural nets configu-

rations over the seven bioactivity classes are shown in 

Fig.  3, here the effect of hyper-parameters (a) number 

of hidden layers, (b) number of neurons and (c) dropout 

regularization on the performance of DNN measured 

by MCC as evaluation metric are visualized averaged 

over the seven activity classes, while the rest parameters 

were kept fixed. From these results it can be observed 

that increase of the number of hidden layers and neu-

rons, combined with application of regularization, has 

a substantial effect on the performance of DNN. When 

comparing the improvement in performance observed 

between single hidden layered Neural Networks, con-

figuration A, and deeper network configurations tested 

(B–G) with multiple hidden layers, thousands of neurons 

and regularization the performance was improved by an 

average of 0.062 MCC units. Furthermore, application 

of dropout regularization on the performance, configu-

rations C–G, was also found to affect the performance, 

when comparing to non-regularized networks. As an 

example, the performance was improved by an average 

of 0.039 MCC units when dropout of 50% was applied to 

two hidden layered DNN. �is highlights the importance 

of regularization on the performance of DNN.

Comparison of performance of deep neural nets to shallow 

methods and robustness to noise

In the second part of the study comparison of perfor-

mance of deep neural nets with the shallow counter-

parts Bernoulli Naïve Bayes (NB), k-nearest neighbor 

(kNN), random forest (RF) and support vector machines 

(SVM) was performed. Here the NB classifier was used 

Table 1 Bioactivity datasets assembled from ChEMBL repository and utilized in this study

The ratio of decoys/active per activity class was set to 10:1

Activity class CHEMBL target id Number of active inhibitors Number of decoys

Carbonic anhydrase II,
Class: enzyme, lyase

CHEMBL205 1631 16,310

Cyclin-dependent kinase 2,
Class: protein kinase

CHEMBL301 705 7050

HERG,
Class: Voltage-gated ion channel

CHEMBL240 700 7000

Dopamine D4 receptor,
Class: membrane receptor, GPCR

CHEMBL219 506 5060

Coagulation factor X,
Class: enzyme, serine protease

CHEMBL244 1144 11,440

Cannabinoid CB1 receptor,
Class: membrane receptor, GPCR

CHEMBL218 1911 19,013

Cytochrome P450 19A1,
Class: enzyme, cytochrome P450

CHEMBL1978 621 6210
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as a baseline method. Each dataset was split to 60% for 

hyper-parameters tuning using fivefold cross validation 

and the rest 40% was used as validation set, with the 

experiments repeated three times for each dataset. Per-

formance achieved by each algorithm on validation sets 

is presented in Table 4. Wilcoxon paired signed-rank sta-

tistical test was applied, with confidence intervals 99%, to 

compare the performance achieved by DNN against each 

of the rest methods, results are shown in Table 5. 

�e differences measured in MCC units between DNN 

and the rest algorithms are visualized in boxplot Fig.  4. 

Here DNN achieved on average MCC units of 0.149 

higher than NB, 0.092 than kNN, 0.052 than SVM with 

linear kernel, 0.021 than RF and finally 0.009 higher than 

SVM with radial basis function kernel. �ese results 

demonstrate that deep neural nets, when tuned accord-

ingly, are capable of achieving strong performance for 

modeling bioactivity data for small molecules and out-

perform popular machine learning methods when com-

bined with simple circular fingerprints as molecular 

descriptors.

Structure–activity relationships collected from medici-

nal literature and stored in bioactivity databases may 

contain noise or erroneous reported activity measure-

ments, due to human error or experimental uncertainty, 

that could potentially affect the performance of data-

mining techniques [40–43]. Furthermore, results from 

high-throughput screenings (HTS) are known to suffer 

from false positive hits. Hence, we explored robustness 

of machine learning algorithms to noise by introducing 

Table 2 Hyper-parameters values explored for Bernoulli Naïve Bayes, k-nearest neighbor, random forest, support vector 

machines and deep neural networks

Hyper-parameters Values explored Parameter

Bernoulli Naïve Bayes

 Alpha 1, 0.5, 0.1 Laplace/Lidstone smoothing parameter

 Fit_prior True, false Class prior probabilities. In case of false, a uniform prior was 
used

k-Nearest neighbor

 Nn 1, 3, 5, 7, 9, 11 Number of nearest neighbors

Random forest

 Ntrees 10, 50, 100, 300, 700, 1000 Number of trees

 Criterion Gini, entropy Functions used to measure the quality of each split

 Max_features Sqrt(n_features), log2(n_features) Number of features considered for each split

Support vector machines

 Kernel rbf Radial basis function

 C 103,  102, 10, 1 Cost

 γ 10−5,  10−4,  10−3,  10−2,  10−1 Gamma

 Kernel Linear Linear kernel

 C 103,  102, 10, 1,  10−1,  10−2,  10−3,  10−4 Cost

Deep neural networks

 η 1,  10−1,  10−2,  10−3,  10−4 Learning rate for the stochastic gradient descent (“SGD”)

 Momentum (μ) 0.9 Weight of the previous update

 Weight decay 0.0005

 Epochs 300 Number of training epochs

 Batch size 256 mini-batch training size

 Hidden layers 1, 2, 3, 4 Number of hidden layers

 Number neurons 5, 10, 50, 100, 200, 500, 700, 1000, 1500, 2000, 2500, 3000, 
3500

Number of neurons per hidden layer

 Activation function ReLU, Sigmoid, Tanh Neuron activation functions

 Regularization No, Dropout Regularization techniques

 Dropout (0%, 20%, 50%) input layer, 50% hidden layers % of neurons “dropped” using the Drop-out technique

 Weight and bias initiation Gaussian {SD: 0.01} Function used to initiate weights and biases.

 Loss function SoftmaxWithLoss Function used to minimize loss

 Output function Softmax Function used to calculate probability for predictions

 Number of classes 2 Binary classification
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artificial noise to the datasets and measuring the effect 

on the performance of the data mining techniques. Noise 

was introduced by randomly sampling and flipping the 

labels of a percentage of active instances onto inactive 

and vice versa equal number of randomly sampled inac-

tive instances to active, in total five levels of noise were 

introduced in each activity dataset, ranging from 10 and 

up to 50%. �is process was applied on the training sets, 

while the validation sets were not altered to serve as 

ground truth when measuring performance. �e results 

from the process for 4 of the dataset are presented in 

Fig. 5. When examining robustness of machine learning 

algorithms to different levels of noise it was observed that 

non-linear methods overall outperformed Naïve Bayes 

when dealing with low levels of noise, lower or equal to 

20%, where performance was retained equal to or higher 

than MCC of 0.7 on average. Instead, at higher level of 

noise equal or higher than 30% Naïve Bayes reached or 

even outperformed the rest methods, e.g. in cases of 

datasets CDK2 and CB1, demonstrating higher tolerance 

to noise. Naïve Bayes has been previously reported to 

perform well when dealing with noisy high-throughput 

screening data and achieve good enrichments among top 

retrieved compounds [44]. DNN overall outperformed 

the rest methods across most tested datasets, when dealt 

with noisy data their performance in several datasets 

dropped below that of other methods included in the 

study indicating that these methods might be more sen-

sitive to noise that the rest methods. Hence when deal-

ing with experimental datasets where low level of noise 
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Fig. 2 Comparison of activation functions rectified linear units (ReLU), Tanh and Sigmoid (Sigm) on the performance of DNNs. DNNs with a single 

hidden layer and variable number of neurons were trained and tested using the activation functions ReLU (red), Sigm (green) and Tanh (blue) over 

fivefold cross validation. The performance was measured using MCC as evaluation metric

Table 3 Pairwise comparison of performance between deep 

neural networks with recti�ed linear units (ReLU) against Sig-

moid (Sigm) and Tanh activation functions based on the Wil-

coxon paired signed rank test, with con�dence intervals 99%

DNN combined with ReLU function were found to statistically outperform Sigm 

and Tanh functions

Activation
functions

Mean of MCC di�. SD of MCC di�. p value

ReLU—Sigm 0.018 0.022 3.922e−11

ReLU—Tanh 0.029 0.033 3.417e−14
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is expected non-linear methods are likely be a better 

option, e.g. measurements generated from confirmatory 

screening campaigns, instead when dealing with data 

where high level of noise is expected, e.g. high-through-

put screening campaigns, methods such as Naïve Bayes 

might be of value.

Conclusions
In this study feed-forward deep neural networks were 

investigated for modeling bioactivity data. �e aim of the 

study was dual, first DNN hyper-parameters values were 

explored to investigate how they affect the performance 

of feed-forward DNN. Below we summarize and com-

pare our findings with those reported by Ma et al. [19], 

where strong agreement were observed:

  • Rectified linear units (ReLU) activation function per-

formed overall better than Sigmoid or Tanh. Hence, 

it is highly recommended to use ReLU activation 

function when training DNN.

  • �e number of hidden layers should be at least 2 or 

3 in order for DNN to achieve strong performance. 

Further increase of number of hidden layers had 

diminishing returns as best results were obtained 

when using 2 or 3 hidden layers.

  • �e number of neurons per hidden layer was found 

to depend on the dataset and should be optimized on 

a case-by-case basis. While it’s recommended to use 

at least 100 neurons in each hidden layer, best results 

were obtained when using larger number of neurons, 

e.g. 700, 1000, 2000 or higher.

  • Dropout regularization technique was found to have 

great impact on the performance of DNN by pre-

venting co-adaption of neurons. Here it was found 

that dropout should be applied to both input and 

hidden layers. Good performance was achieved when 

dropout of 50% was applied to both input and hidden 

layers.

  • No pre-training of DNN was performed and both the 

weights and biases were randomly initialized from 

Gaussian distribution. Similarly, Ma et  al. reported 

that no unsupervised pre-training is needed and net-

work parameters should be initialized as random val-

ues.

Fig. 3 Effect of the hyper-parameters (i) number of hidden layers, (ii) number of neurons and (iii) dropout regularization on the performance of 

DNNs measured by MCC as evaluation metric. DNN configuration A shows results obtained by DNN with a single hidden layer and 10 neurons, ReLU 

activation function and no regularization averaged over the seven activity datasets, B a two hidden layered DNN with 500 neurons in each layer, 

ReLU activation function and no regularization, C two hidden layers with 3000 neurons per hidden layer and dropout regularization (0% for the 

input and 50% for hidden layers), D two hidden layers with 3000 neurons per hidden layer and dropout regularization (20% for the input and 50% 

for hidden layers), E two hidden layers with 3000 neurons per hidden layer and dropout regularization (50% for both the input and hidden layers), 

F three hidden layers with 3000 neurons per layer and dropout regularization (50% for both the input and hidden layers) and G four hidden layers 

with 3500 neurons per layer and dropout regularization (50% for the input and hidden layers)
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  • �e number of epochs should be as many as possi-

ble, at least 300, given the local computing capability. 

Modern GPU units provide adequate computational 

power to optimizing DNN configurations in reason-

able time. Combined with Dropout technique over-

fitting shouldn’t be a major concern.

In the second part of the study, the performance of 

DNNs was compared to widely popular shallow meth-

ods Bernoulli Naïve Bayes, k-nearest neighbor, random 

forest and support vector machines. Here it was found 

that optimized deep neural nets achieved statistically 

better performance, measured by the Wilcoxon test on 

Table 4 Performance achieved by DNN, NB, kNN, RF and SVM measured using MCC as evaluation metric

Results for each activity class and validation set from three experiments as shown. Best recorded results for each activity class are highlighted in italic

Dataset Algorithm MCC 1st MCC 2nd MCC 3rd Mean MCC Std MCC

DRD4 DNN 0.900 0.895 0.867 0.887 0.018

SVM_rbf 0.889 0.876 0.865 0.876 0.012

SVM_linear 0.828 0.816 0.840 0.828 0.012

RF 0.867 0.854 0.862 0.861 0.007

kNN 0.762 0.778 0.763 0.767 0.009

NB 0.742 0.761 0.750 0.751 0.009

HERG DNN 0.858 0.913 0.880 0.884 0.028

SVM_rbf 0.845 0.891 0.872 0.869 0.023

SVM_linear 0.773 0.782 0.780 0.778 0.005

RF 0.838 0.857 0.848 0.847 0.010

kNN 0.818 0.813 0.825 0.819 0.006

NB 0.612 0.620 0.602 0.611 0.009

CDK2 DNN 0.919 0.932 0.927 0.926 0.007

SVM_rbf 0.920 0.913 0.922 0.919 0.005

SVM_linear 0.863 0.889 0.864 0.872 0.015

RF 0.895 0.912 0.902 0.903 0.008

kNN 0.895 0.904 0.910 0.903 0.007

NB 0.769 0.773 0.780 0.774 0.006

CogX DNN 0.982 0.981 0.987 0.983 0.003

SVM_rbf 0.978 0.979 0.980 0.979 0.001

SVM_linear 0.971 0.970 0.977 0.973 0.004

RF 0.973 0.979 0.982 0.978 0.004

kNN 0.968 0.971 0.971 0.970 0.002

NB 0.889 0.897 0.882 0.889 0.008

CYP_19A1 DNN 0.893 0.920 0.899 0.904 0.014

SVM_rbf 0.886 0.896 0.889 0.890 0.005

SVM_linear 0.849 0.866 0.862 0.859 0.009

RF 0.873 0.910 0.879 0.887 0.020

kNN 0.805 0.811 0.821 0.812 0.008

NB 0.755 0.821 0.775 0.784 0.034

CB1 DNN 0.943 0.941 0.940 0.941 0.002

SVM_rbf 0.941 0.937 0.931 0.936 0.005

SVM_linear 0.885 0.893 0.881 0.886 0.007

RF 0.908 0.923 0.914 0.915 0.008

kNN 0.906 0.921 0.901 0.909 0.011

NB 0.758 0.781 0.765 0.768 0.012

CAII DNN 0.858 0.885 0.843 0.862 0.021

SVM_rbf 0.857 0.851 0.866 0.858 0.007

SVM_linear 0.828 0.826 0.830 0.828 0.002

RF 0.836 0.857 0.861 0.851 0.013

kNN 0.558 0.557 0.577 0.564 0.011

NB 0.754 0.769 0.783 0.769 0.015
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the tested datasets. �ese results demonstrate the deep-

learning techniques can serve as powerful modeling tech-

niques for modeling complex biological data. While deep 

learning techniques are highly unlikely to replace existing 

algorithms any time soon, their popularity in the field of 

Cheminformatics is expected to grow as the availability 

of GPU hardware and of stable and well-documented 

software packages become more accessible to Chemin-

formatic practitioners.

Interpretation of local and global SAR captured by 

complex QSAR models remains a challenging task, in 

particular when nonlinear algorithms are employed [45]. 

Several approaches in the literature have been proposed 

for interpreting local and global QSAR models based on 

support vector machine and random forest techniques 

[46, 47]. DNNs are generally considered as “black boxes” 

and are difficult to be interpreted [15]. Hence, future 

studies should aim to investigate how models learned by 

DNN could be interpreted, as this could help rationaliz-

ing structure–activity relationships encoded by models. 

�is knowledge could drive the lead optimization pro-

cess by suggesting structural modifications that might be 

beneficial for the primary activity, while decreasing any 

undesired off-target interactions.

Methods and Materials
Bioactivity datasets

As source of structure–activity relationships (SARs) the 

ChEMBL database was employed [48, 49]. ChEMBL, ver-

sion 20, was used in this study. In total seven diverse bio-

activity classes were selected and used in the study: (a) 

Carbonic Anhydrase II (ChEMBL205), a protein lyase, 

(b) Cyclin-dependent kinase 2 (CHEMBL301), a protein 

kinase, (c) ether-a-go-go-related gene potassium channel 

1 (HERG) (CHEMBL240), a voltage-gated ion channel, 

(d) Dopamine D4 receptor (CHEMBL219), a monoamine 

GPCR, (e) Coagulation factor X (CHEMBL244), a serine 

protease, (f ) Cannabinoid CB1 receptor (CHEMBL218), 

a lipid-like GPCR and (g) Cytochrome P450 19A1 

(CHEMBL1978), a cytochrome P450. �e activity classes 

were selected based on data availability and as represent-

atives of therapeutically important target classes or as 

anti-targets.

SARs data were extracted following the criteria: (a) 

Only human direct protein targets were considered, (b) 

confidence score equal to 9, (c) MW up to 900, (d) activ-

ity was defined based on pKi or pIC50, depending which 

type of measurement was the majority of available per 

activity class, (e) active compounds were defined those 

with potency, pKi or pIC50, better than or equal to 5, 

which equals to or better than 10 μM. Decoys were ran-

domly sampled from a large pool of drug-like compounds 

extracted from ChEMBL, covering small bioactive mol-

ecules reported against protein targets with potencies 

(Ki/IC50/Kd) up to 10  μM and MW up to 900. As an 

additional step chemical structures with Tanimoto simi-

larity coefficient larger than 0.9 were removed. For each 

active structure, 10 decoys were randomly sampled. �e 

main motivation here was to assemble reasonably sized 

datasets for each activity class, suitable for comparing the 

performance of the machine learning methods included 

in the study while avoiding creating highly unbalanced 

datasets. Number of active and decoys assembled per 

activity class is shown in Table 1.

Chemical structures were standardized using the 

MOE software package with the options on: (a) discon-

nect group/metals in simple salts, (b) keep only largest 

molecular fragments, (c) deprotonate strong acids, (d) 

protonate strong bases and (e) replace coordinates with 

a generated 2D depiction [50]. As molecular descriptors 

Table 5 Wilcoxon paired signed-rank test was employed 

to compare the performance of DNN against the rest algo-

rithms NB, kNN, RF and SVM across the datasets, with con-

�dence intervals 99%

Below are reported the means and standard deviations of the observed MCC for 

each algorithm and the p value

Algorithms Mean MCC di�. SD of MCC di�. p value

DNN-NB 0.149 0.061 4.768E−07

DNN-kNN 0.092 0.095 4.768E−07

DNN-SVM (linear) 0.052 0.031 3.2E−5

DNN-RF 0.021 0.016 8.6E−5

DNN-SVM (rbf ) 0.009 0.012 5.075E−4

Fig. 4 Boxplot of differences between performances achieved by 

tuned DNN and the rest algorithms measured using MCC as evalu-

ation metric on the validation sets over the seven activity classes. 

Results are ranked by decreased mean differences. The differences 

ranged on average from 0.149 MCC units between DNN and NB, 

0.092 DNN and kNN, 0.052 DNN and SVM with linear kernel, 0.021 

DNN and RF and 0.009 DNN and SVM with “rbf” kernel
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the Morgan fingerprints as implemented in the Rdkit 

Cheminformatic toolkit were utilized with radius 2, 

which are equal to extended connectivity fingerprints 

(ECFP_4), and stored in hashed 1024 bit length binary 

vectors [51, 52]. ECFP fingerprints were selected for this 

study as they have been previously shown to perform well 

and are commonly employed in virtual screening applica-

tions [53]. �e datasets utilized in this study are provided 

in Additional file 1.

Machine learning methods

Bernoulli Naïve Bayes

�e first of the shallow algorithms employed in this 

study was the Bernoulli Naïve Bayes classifier (NB) 

[54]. Naïve Bayes classifier is a probabilistic super-

vised machine-learning algorithm based on the Bayes’ 

theorem with the strong “naive” assumption of feature 

independence [54–56]. NB was included as a baseline 

method in this study as implemented in the Scikit-

learn library utilizing the “BernoulliNB” function [57]. 

�e explored hyper-parameters values are presented in 

Table 2.

k-Nearest neighbor

�e second algorithm employed was the k-nearest 

neighbor (kNN) [58]. K-Nearest Neighbor was uti-

lized as implemented in the Scikit-learn library. Here 

the “KNeighborsClassifier” function was employed. 

Only the hyper-parameter number of nearest neigh-

bors was explored while the rest were retained default. 

�e explored hyper-parameters values are presented in 

Table 2.
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Fig. 5 Robustness of machine learning methods to different levels of noise for 4 out of 7 activity classes. At low levels of noise, lower that 20%, non-

linear methods performed well achieving performance higher than 0.7 MCC units for most of the tested datasets. Instead, at higher level of noise, 

equal to or higher than 30%, performance for most algorithms dropped below 0.7 MCC and in several occasions even lower than 0.6 at 50% of 

noise. Naïve Bayes method was found to be the least affected method achieving in several tested datasets performance higher than 0.6 MCC even 

at the highest level of noise tested 50% and outperforming more complex methods
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Random forest

�e third algorithm employed was the random forest 

(RF). RF is an ensemble of multiple weak un-pruned clas-

sification or regression trees created by using bootstrap 

samples of the training data and random feature selec-

tion in tree induction [59]. RF was developed by Breiman 

and Cutler [60] and presents a number of advantages, 

which makes it attractive and well suited for chemin-

formatic applications; (a) it is robust when dealing with 

large number of features, (b) achieves generally good 

performance, (c) resilient to over-fitting and (d) can be 

parallelized across multiple CPU cores. Furthermore, it 

can be employed to assess the relevance of features, effec-

tively acting as a feature selection algorithm [61, 62]. RF 

as implemented in the scikit-learn library was employed, 

“RandomForestClassifier” function from the ensemble 

family [57]. �e explored hyper-parameters values are 

presented in Table 2.

Support vector machines

�e fourth algorithm employed was the support vec-

tor machines (SVMs). SVMs along with RF is a widely 

applied machine-learning algorithm in the field of 

Cheminformatics [63, 64]. SVMs was proposed by Cor-

tes and Vapnik and can be applied for classification, 

regression and outliers detection tasks [65]. In this study, 

two kernels were considered the non-linear radial-basis 

function and the linear kernel. SVM as implemented 

in the scikit-learn library was employed. Scikit-learn 

implementation of SVM is based on the Libsvm and the 

Liblinear libraries [66, 67]. When optimizing the SVM 

using the non-linear RBF kernel the values for hyper-

parameters gamma (γ) and Cost (C) where selected with 

similar range to those reported by Alvarsson et al. [68]. 

Here values for gamma (γ) tested were 10e−1, 10e−2, 

10e−3, 10e−4, 10e−5 and for cost (C) 1, 10, 100, 1000. 

�e explored hyper-parameters values are presented 

in Table  2. Results obtained when optimizing the SVM 

algorithm using the RBF kernel were in good agreement 

with those reported by Alvarsson et al., where for gamma 

(γ) equal to 0.01 and Cost (C) values of 10, 100 and 1000 

the highest values in performance were obtained across 

all datasets.

Deep neural networks

As mentioned earlier the Caffe deep learning framework 

was adopted in this study. In order to automate the pro-

cess and investigate multiple hyper-parameters configu-

rations the Python wrapper “ChemoCaffe_tune.py” and 

“ChemoCaffe_predict.py” were developed, which are 

built upon the pyCaffe module. Caffe requires the input 

data to be either in LMDB [69] or HDF5 [70] format; we 

opted for the HDF5 format mainly due to convenience. 

No feature transformation or pre-training of DNNs was 

employed in this study. DNNs were optimized on a dedi-

cated server with NVIDIA Tesla K40 GPU units.

�e hyper-parameters selected and explored for DNNs 

were: (A) Default parameters, those that were kept fixed 

across all tested configurations: (a) As optimization 

method the Stochastic Gradient Descent (“SGD”) with 

momentum μ  =  0.9 was used, (b) number of epochs 

was set to 300, (c) mini-batch size of 256, (d) Weights 

and biases were initialized from Gaussian distribution 

with Standard deviation of 0.01 and (e) As loss function 

the logistic softmax was used, “SoftmaxWithLoss” and 

(d) softmax as the output function for calculating class 

probabilities and (g) the weight_decay was set to 0.0005. 

(B) Variable hyper-parameters: (a) Activation functions 

compared the rectified linear units (ReLU), Sigmoid 

(“sigm”) and Tanh (“tanh”), Fig. 1c illustrates the shapes 

of the functions. (b) Number of neurons in each hid-

den layer (5, 10, 50, 100, 200, 500, 700, 1000, 1500, 2000, 

2500, 3000, 3500), (c) learning rate “η” of (1,  10−1,  10−2, 

 10−3,  10−4), (d) number of hidden layers up to 4, (e) reg-

ularization technique applied; (1) no regularization and 

(2) dropout. In case of dropout regularization: for input 

layer dropout of 0, 20 and 50% were applied and for the 

hidden layer of 50%. �e explored hyper-parameters val-

ues are presented in Table  2. �e python wrappers for 

tuning hyper-parameters “ChemoCaffe_tune.py” and 

generating predictions “ChemoCaffe_predict.py” used to 

carry out this study as also the configuration files con-

taining the tested configurations are provided in Addi-

tional file 2.

Performance metric

Matthews correlation coe�cient (MCC)

As performance evaluation metric the Matthews cor-

relation coefficient (MCC) was utilized to measure and 

compare the performance of machine learning algo-

rithms employed in the study [71, 72]. MCC is a com-

monly applied performance evaluation metric to measure 

the quality of binary classification and can be calculated 

according to the Eq.  (1). It measures the correlation 

between predicted and the actual class labels. MCC is 

generally considered to be a balanced evaluation metric 

and takes values between −1 and +1, where −1 indi-

cates perfect anti-correlation between predicted and real 

observations, +1 represents perfect prediction and 0 that 

equals to no better than random,

where TP are true positives, TN true negatives, FP false 

positives and FN false negatives (Additional file 3).

(1)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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Wilcoxon signed-rank test

Wilcoxon paired singed-rank test a non-parametric sta-

tistical hypothesis test was used to compare matched 

samples to assess whether their population mean ranks 

differ [73]. Wilcoxon test as implemented in the R pro-

gramming language was utilized, part of the “stats” 

package, with confidence interval 99% and alternative 

hypothesis being “greater” [74].
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