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Pattern recognition and classification of images are key 

challenges throughout the life sciences. We combined two 

approaches for large-scale classification of fluorescence 

microscopy images. First, using the publicly available data 

set from the Cell Atlas of the Human Protein Atlas (HPA), we 

integrated an image-classification task into a mainstream video 

game (EVE Online) as a mini-game, named Project Discovery. 

Participation by 322,006 gamers over 1 year provided nearly 

33 million classifications of subcellular localization patterns, 

including patterns that were not previously annotated by the 

HPA. Second, we used deep learning to build an automated 

Localization Cellular Annotation Tool (Loc-CAT). This tool 

classifies proteins into 29 subcellular localization patterns and 

can deal efficiently with multi-localization proteins, performing 

robustly across different cell types. Combining the annotations 

of gamers and deep learning, we applied transfer learning 

to create a boosted learner that can characterize subcellular 

protein distribution with F1 score of 0.72. We found that 

engaging players of commercial computer games provided data 

that augmented deep learning and enabled scalable and readily 

improved image classification.

Analysis of large data sets is an increasingly important challenge1. 
Although machine learning, artificial intelligence and citizen science 
offer potential solutions to coping with this explosion of data2–6, the 
large amounts of data that are generated as automated fluorescence 
microscopy systems become ever more widely used in quantitative 
biology create new challenges for automated image analysis.

The Human Protein Atlas (HPA) is an open-access database using 
antibody labeling and microscopy to systematically build an image-
based map that details the spatial distribution of proteins in human 

cells and tissues (http://www.proteinatlas.org)7. Subcellular compart-
mentalization is fundamental to eukaryotic cells enabling multiple 
cellular processes to occur in parallel. The Cell Atlas in the HPA is 
building a proteome scale map of protein subcellular localization via 
hundreds of thousands of high-resolution confocal immunofluores-
cent images8. This map aids researchers in understanding protein 
function, interactions, cellular biology and, ultimately, disease. Given 
the magnitude of images continuously collected by the HPA Cell Atlas, 
a detailed analysis of the data requires a very large number of accurate  
image classifications.

Previous efforts to automate the classification of protein subcel-
lular distribution from images have included methods such as k-NN 
classifiers, support vector machines, artificial neural networks and 
decision trees. Most studies have used hand-crafted feature sets9–14, 
whereas others have used inference and multi-resolution techniques15. 
Recently, deep convolutional neural networks (CNNs) have been suc-
cessful in classifying protein localization of single localizing proteins 
in budding yeast16,17 and human cells18. These approaches, however, 
have focused on a limited number of single patterns (9–18 patterns), 
most often in a single cell type. This number of labels only provides a 
coarse description of biology as cellular architecture is more refined 
with specialized sub-organelle compartments and dynamic structures. 
However, the severe class imbalance introduced when considering 
rare cellular structures makes it harder to create a classifier that is 
capable of accurately predicting all localizations19. An even greater 
limitation to previous methods is that they only consider proteins in 
a single subcellular location, making them unsuitable for the ~50% 
of the human proteome that are multi-localizing8. Multi-localizing 
proteins are likely to be important for the inter-connectedness and 
adaptivity of cellular processes; thus, correctly localizing these pro-
teins is key to our understanding of cell biology. Although methods 
of ‘unmixing’ a pair of known individual patterns have been put for-
ward20,21, to the best of our knowledge no global image-based sub-
cellular protein classification method that handles multi-localizing 
proteins has been presented until now22.

Crowd-sourced citizen science offers an alternative for large-scale 
image classification6. Projects such as FoldIt23,24, Galaxy Zoo25–27, 
EyeWire, EteRNA28 and Quantum moves29 represent implementa-
tions of citizen science in which large numbers of non-expert vol-
unteers have contributed valuable scientific information. The major 
drawback of this approach is that implementing an engaging citizen 
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science project requires resources, knowledge and time that most 
laboratories lack. Furthermore, creating and maintaining an engaged 
user base is difficult in one-off citizen science projects. One method 
of dealing with this is paying for citizen science efforts, as in Amazon’s 
mechanical turk (mturk)30; however, this method is prone to exploita-
tion and low data quality31.

Here we demonstrate two complementary and successful 
approaches for large-scale classification of protein localization pat-
terns in microscopy images from the HPA Cell Atlas. The first utilizes 
the power of massive multiplayer online (MMO) games to create a 
new approach to citizen science and was a collaborative effort between 
the HPA, Massive Multiplayer Online Science (MMOS) and the video 
game developer CCP Games. This partnership substantially reduced 
the effort to the lab by allowing CCP Games to develop the interface 
and MMOS to handle data management and serving. The result was 
the scientific project of image classification seamlessly integrated 
into the EVE Online universe, an MMO science fiction game with 
~500,000 active players each month. The resulting mini-game, Project 
Discovery (PD), was successful in terms of participation, player 
retention, number of images classified and accuracy. In the second 
approach, we present Loc-CAT, a model for automated image classi-
fication of subcellular protein distribution patterns using deep neural 
networks (DNNs). To the best of our knowledge, this method repre-
sents the first tool for classifying protein distribution in human cells 
in microscope images capable of predicting robustly across cell types 
for proteins with an unknown number of locations. Furthermore, we 
compared the performance of the respective approaches and found 
that the gamer output could be used to improve deep learning models. 
Altogether, both approaches provide a refinement of the biological 
details in the HPA Cell Atlas. We believe that integration of scientific 
tasks into established computer games can be a valuable approach in 
the future with the power of rapidly leveraging the output of large-scale  
science efforts.

RESULTS

Subcellular distribution of proteins in microscopy images

Each sample in the HPA Cell Atlas consists of human cells that are 
immunofluorescently labeled for one protein of interest and three 
reference markers: DAPI for the nucleus and antibody-based labe-
ling of microtubules and the endoplasmic reticulum. High-resolution  
images were acquired using confocal microscopy (Fig. 1a). The result-
ing images were annotated to determine the localization(s) of the 
protein of interest with the help of the three cellular reference mark-
ers. This study was performed using the Cell Atlas of the Human 
Protein Atlas version 14.0 (HPA Cell Atlas v14; Supplementary Data  

Set 1) in which protein distributions were classified into 20 organelles 
and subcellular structures (Fig. 1b). To refine the biological details 
of the HPA Cell Atlas, players in PD were asked to re-classify these 
images and classify the protein distribution into an additional ten 
patterns (Fig. 1c,d), for a total of 29 patterns in 17 human cell lines 
(Supplementary Table 1).

Some protein localization patterns, such as the centrosome, were 
small and easily overlooked, whereas others, such as the cytoki-
netic bridge, occurred in only a small fraction of cells. Adding to 
the complexity, some compartments, such as actin filaments, the 
Golgi apparatus and mitochondria, displayed highly heterogeneous 
morphologies across cell lines, making them more difficult to recog-
nize (Fig. 1e). Class frequency (that is, protein localization) varied 
widely in human cells, from 0.016–24.3% in the HPA Cell Atlas v14. 
Furthermore, ~50% of proteins were localized to multiple cellular 
compartments8 (Fig. 1f). Cell-to-cell variability could create further 

confusion (Fig. 1g). Together, these findings demonstrate that loca-
tion classification is hardly a trivial task.

Image classification by citizen science task in EVE Online

In PD, players in EVE Online performed the aforementioned protein 
image classification. This project represents the first time a scientific 
task has been directly and seamlessly integrated into a mainstream 
video game narrative (Fig. 2a). The resulting mini-game was acces-
sible from anywhere and at any time in the virtual universe of EVE 
Online. Participants were trained using a small set of preselected 
images gradually increasing in difficulty. Classification options 
were initially restricted to ease players into the complexity of the 
task. Participants in PD were motivated with leveled badges and in-
game currency with which they could purchase exclusive items. This 
approach was able to easily gather and maintain participants, some-
thing other citizen science projects have struggled with, as measured 
by ‘project appeal’32 (Fig. 2b and Online Methods). This participation 
drive can particularly be seen when EVE became free to play, causing 
an increase in PD participation (day 250; Fig. 2c).

Participation peaked on day 3, with 5,507 players contributing 
292,374 classifications (Fig. 2c). In total, 322,006 players of EVE 
Online played PD and contributed ~33 million image classifications. 
Of these, 59,901 players passed the training and tutorial phases and 
had above threshold performance, leading to 23.7 million high-quality  
image classifications. From this set of 59,901 players, on average 6,846 
unique players contributed each month with a 30-d monthly retention 
rate of 32% (68% churn), and a rolling retention of 53% (47% churn) 
over the first 6 months, which was very good compared with other 
in-game features over the same period and vastly improves on previ-
ous citizen science efforts (Supplementary Fig. 1)33.

Measuring player performance

To assess data quality, we used the F1 score, a measure of accuracy 
suitable for multi-label data, with the HPA Cell Atlas v14 image labels 
as ground truth. Initially, players received an additional reward for 
agreeing with the eventual community consensus. This reward was 
quickly exploited by gamers converging to a single annotation (cyto-
plasm, day 0–20; Fig. 2d) and was therefore removed. This resulted 
in a rapid improvement of accuracy (Fig. 2d). On the basis of player 
feedback, we created and implemented a larger set of more difficult 
control images including multi-localizing proteins and image arti-
facts. This led to a significant increase in data quality (day 50, P < 4 × 
10−70, day 0–50 versus 50+, two-tailed t test; Fig. 2d).

To guard against erroneous annotations, we required a minimum of 
12 votes per image before evaluating each task for a consensus using a 
hypergeometric test. Consensus was considered to be reached only if 
the number of votes for at least one class was significantly greater than 
would be expected at random (P < 0.01) and no other classes were near 
the decision threshold (P < 0.1). If consensus was not reached, the task 
was kept open and more votes were acquired. On average, each task 
required 15 player votes (median = 13) to reach a consensus. Given 
the speed of players, the data set was annotated six times, resulting in a 
median of 78 annotations per image. This statistical approach, together 
with the high number of annotations per image, allowed us to tolerate 
annotations from players performing worse than naively guessing the 
single most common class, accounting for ~10% of the annotations 
(Fig. 3a). The overall F1 score was 0.55 with a mean per-class F1 score 
of 0.50. In general, gamers performed better for common categories, 
presumably because they are more accustomed to these. Microtubules 
were a notable exception, as the gamers had a reference channel, allow-
ing them to easily recognize this pattern (F1 = 0.78).
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An alternative would be expectation maximization for jointly esti-
mating player bias and protein localization34. This approach was not 
feasible during gameplay given the computation time, and did not 
perform as well as the aforementioned consensus approach in post hoc 
analysis (Supplementary Table 1). As a result of the large number of 
annotations per image, it is also unlikely that additional annotations 
would improve the accuracy of PD without a shift in player behavior 
(retraining) or task (sub-set annotation)35. This is supported by the 
lack of correlation between the number of images analyzed, time-on-
task per player and performance (Supplementary Fig. 2).

The frequency at which players co-annotated classes was compared 
with the co-annotation frequencies in the HPA Cell Atlas v14 using 
independent Bonferroni corrected binomial tests to estimate multi-label 
confusion for each class (Fig. 3b and Supplementary Fig. 3a). Patterns 
of structurally similar organelles appeared to be frequently confused, 

such as centrosomes and microtubule organizing centers (Fig. 3c). 
Although much rarer, confusion across the nuclear and cytoplasmic 
spaces could also be observed, for example, when gamers annotated ves-
icles instead of nuclear bodies, both of which are dot-like structures.

Players were also able to report unusual findings in images. A 
review of all images with more than 20 such reports mainly revealed 
rare cellular morphologies such as blebs and membrane protrusions, 
or staining artifacts. However, this demonstrates that the players are 
capable of finding patterns that deviate from the common patterns, 
and identified several interesting and previously unannotated patterns 
such as vesicle fronts and condensed chromosomes.

Adjusting for PD player bias leads to improved data quality

Of the 29 patterns classified in PD, 20 were previously annotated 
in the HPA Cell Atlas v14 and 3 additional patterns were annotated 
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Figure 1 Illustrative data from the HPA Cell Atlas. The HPA Cell Atlas contains four-channel confocal images for the majority of all human proteins. 

Scale bars represent 20 µm (inner length). The experimental procedure was described previously8. (a) Example composite image (1) consisting of 

false-colored channels representing the protein of interest (green, 2), with DAPI labeling the nucleus (blue, 3), an antibody labeling the microtubules 

(red, 4). Each assay also contains an antibody labeling the endoplasmic reticulum (yellow, 5). (b) The images in HPA Cell Atlas v14 were classified into 

20 organelle patterns of major organelles. (c) In PD, players classified seven additional patterns. (d) Two additional patterns were classified to filter 

negative and unspecific experiments. (e) Organelles displayed morphological differences across cell lines such as actin filaments (1–3), Golgi (4–6) and 

mitochondria (7–9). (f) Multi-localizing proteins offer another challenge for accurate pattern classification. Often patterns were hard to distinguish when 

occurring together, such as Golgi and vesicles (1), or cytoplasm and plasma membrane (2). Some localizations were not visible or easily distinguishable 

in every field of view, particularly when they occurred in variable focal planes. For example, although focal adhesions, nucleoplasm, and cytosol were in 

focus, a Golgi apparatus localization in another focus plane could not be seen (3). (g) Cell-to-cell variations can be challenging and viewing images with 

various channel combinations can aid annotations of patterns such as cell junctions (1) or nucleoplasm (2 and 3).
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internally while PD was active (nucleoli fibrillar center, nuclear speck-
les and nuclear bodies). This allowed us to examine the annotation 
trends of the players. After initial assessment, it was clear that some 

classes such as cytoplasm, nucleus and vesicles were over-annotated 
(Fig. 4a). To correct for this bias, we used the class distribution in 
the reference HPA Cell Atlas v14 data set to create per-class cutoffs 
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went on to contribute over 23.7 million image classifications. (b) The log10 project appeal, defined as (number of volunteers)/(project time2), demonstrates 

the way that PD participation dwarfed previous citizen science efforts (gray indicates project). (c) Participation peaked on day 3, with over 17,000 images 

analyzed (minimum 12 players per image); however, throughput decreased over the first 150 d of the project (per day, gray; 10-d moving average, black). 

Participation substantially increased around day 250 of the project, when EVE Online went free to play, demonstrating that in-game mechanics can be 

directly used to influence participation. (d) Data quality also took time to stabilize, and removing rewards for community consensus agreement, together 

with new control samples integrated around day 50, significantly improved accuracy (P < 4 × 10–70, day 0–50 versus 50+, two-tailed t test).
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(Supplementary Table 2). This correction is not possible for data 
where the approximate proportions of classes are unknown. This 
approach led to a large improvement in per-class F1 score for over-
annotated classes such as cytosol and nucleus, resulting in an average 
per-class F1 score of 0.53 (Fig. 4b) and an overall mean F1-score of 
0.68. This includes novel classes for which we chose the most permis-
sive cutoff to maximize discovery (recall).

Refined classifications of images in the Cell Atlas

A major contribution of the participants in PD was to refine the clas-
sifications in the Cell Atlas. Although work is still underway to incor-
porate all this data, version 18 of the HPA Cell Atlas includes five 
new categories annotated by the gamers, in total refining localization 
information for 2,902 proteins. Gamer annotations of classifications 
such as ‘nucleoli fibrillar center’ or ‘nucleoli rim’ were nearly entirely 
contained in their previously annotated parent class ‘nucleoli’ (99%), 
indicating that many of these annotations are indeed refining annota-
tions in v14 (Supplementary Fig. 3b). Cytoophidium, or Rods and 
Rings (R&R), are an excellent example of a fairly uncharacterized 
transient cellular structure, with only three previously known protein 
members36,37. In addition to the known component protein encoded 
by IMPDH1, the gamers identified ten additional R&R proteins that 
were confirmed by colocalization analysis to localize to R&R after 
induction with ribavirin (Supplementary Table 3), such as UPF0769 
protein C21orf59 (Fig. 4c). By expanding the set of known R&R pro-
teins, players in PD have shed new light on this structure that may 
help in understanding its biological function.

Image classification with Loc-CAT using deep learning

Another approach for classification of image patterns is machine learn-
ing. Toward this end, we used a deep neural network to create Loc-
CAT. Inputs for this network were previously optimized subcellular 
localization features (SLFs; Supplementary Data Set 2) calculated on 
segmented single cells9,20. As with PD, the ground truth was the labels 
for images in the HPA Cell Atlas v14. Predictions by Loc-CAT were 
made per-cell. The mean per-cell predictions were then used to cre-
ate a per-image classifier on which class-specific decision boundaries 
were adjusted in a parameter tuning step (Supplementary Table 4). 
Along these lines, a major challenge with this approach is recognizing 
patterns that may occur in only a few cells in the image and discerning 
them from a false-positive prediction, such as the cytokinetic bridge, 
aggresome, centrosome and microtubule organizing center (Fig. 5a). 
Another challenge when classifying segmented cells is to recognize 
patterns at the cell periphery, such as plasma membrane, focal adhe-
sions and cell junctions. Representative samples for classes with poor 
performance demonstrate that Loc-CAT struggles to recognize cell-
to-cell variable patterns and patterns at the cell periphery (Fig. 5b).

Most previous methods12–14,17,38 have controlled for biological vari-
ance by restricting classification to a single cell line. To test the robust-
ness of Loc-CAT, we trained models on all 17 of the cell lines present 
in the HPA Cell Atlas v14 individually and applied each model to each 
cell line in turn (Fig. 5c). On the basis of this comparison, we can con-
clude that the performance of Loc-CAT was significantly higher when 
training on cell lines with more data (P < 10–10, two tailed t test). The 
generalized model trained on all of the cell lines was capable of predict-
ing subcellular localization across variations in morphology with high 
accuracy and performed best on nearly all of the cell lines tested.

Previous methods have also been limited to single label predic-
tions. To test the performance of Loc-CAT in classifying single labels, 
multiple labels and mixed labels (data set containing both single and 
multi-label images), we trained models on these groups separately and 

applied them to each group in turn (Fig. 5d). Loc-CAT significantly 
improved localization accuracy when predicting on multi-label or 
mixed single and multi-label data relative to a comparable single-
label-based approach (P < 10−4, two-tailed students t test), indicating 
that this method is more generally applicable for images where the 
number of localizations is not known a priori.

Evaluation of Loc-CAT and citizen science performance

Despite the high performance of Loc-CAT, players in PD (aver-
age per-class F1 = 0.53) outperformed Loc-CAT (average per-class  
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Figure 4 Correcting player bias. To improve data quality, the proportions 

of each class in the HPA Cell Atlas v14 were used to tune the significance 

levels for each class. (a) Bar plot showing relative proportion of data 

with an annotation in each class before (red) and after (blue) tuning as 

compared with the HPA Cell Atlas v14 (yellow). The bar for cytosol extends 

off the graph to a value of 0.73 before tuning (red bars). (b) Evaluation of 

classes in a tree-based hierarchy allowed evaluation of confusion between 

functionally and spatially similar patterns (ball size = log10 class size). As 

the depth in the tree decreased, cellular compartments were merged into 

meta-compartments. Votes from leaves were pooled before calculating 

consensus for each meta-compartment, showing player performance at 

different granularities. Vote pooling results in a stricter cutoff for each 

meta-class and, for this reason, nuclear membrane accuracy dropped in 

the second layer of the tree despite there being no branch. (c) Participants 

in PD shed new light on the little-known R&R structure, including correct 

identification of the IMPDH1 encoded protein known to localize to R&R 

and the novel discovery of the localization to R&R of the UPF0769 protein 

C21orf59. For each protein (green), localizations were verified by an 

independent colocalization study with a marker for R&R (red, 2, 4)  

after induction of R&R formation with ribavirin. Colocalization assays 

(2, 4) are shown beside the standard HPA Cell Atlas image (1, 3). High 

colocalization (yellow) confirmed that these proteins (green) were localized 

R&Rs (red). These experiments were performed in triplicate.
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F1 = 0.47), particularly in many of the less common classes, for example, 
microtubule ends, which has only 32 images. Loc-CAT outperformed 
PD in most other classes, particularly on classes with large amounts 

of training data and endoplasmic reticulum (ER) where Loc-CAT has 
access to an additional reference channel players in PD did not (Fig. 5a). 
This makes the two methods closer in performance when comparing  
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Figure 5 Loc-CAT DNN performance. (a) Loc-CAT, a DNN trained on HPA Cell Atlas v14 data, performed similarly to the participants in PD when viewing 

per-class F1 scores in a hierarchical tree format. Here, each level of the tree represents an independently trained version of the Loc-CAT DNN (ball 

size = log10 class size). (b) Worst-case images for classes in which Loc-CAT performed poorly are shown with the HPA annotation and Loc-CAT DNN 

annotation (images selected from false-negative rank list, lowest confidence in class of interest). Scale bars represent 20 µm (inner length). (c) Cross 

cell-line performance (average F1, fivefold cross validation) of Loc-CAT for the 17 cell types present in the HPA Cell Atlas v14. Number of cells used in 

training are shown in parentheses for each data set. (d) Loc-CAT networks trained (y axis) versus tested (x axis) on single-label (n = 55,083 cells, 5,234 

images), multi-label (n = 58,133 cells, 5,560 images) and a mixture of single and multi-label data (n = 57,320 cells, 5,416 images, 51% multi-label) 

using U-2 OS cells from the HPA Cell Atlas v14 demonstrate that a model trained on a mixture of single and multi-localizing proteins generalizes best to 

novel data in which the number of locations a protein is present in are not known a priori.
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overall F1 score (Loc-CAT = 0.65, PD = 0.68). PD continued to out-
perform Loc-CAT when examining the middle layer of resolution in 
the organelle hierarchy (Figs. 4b and 5a). Notably, gamers appeared 
to be more accurate at identifying nucleoli-related patterns and con-
tinued to outperform Loc-CAT in the cytoskeleton and microtubule 
organization meta-classes.

Loc-CAT and PD were also evaluated relative to previous methods 
for classification of localization patterns in images (Supplementary 

Table 1). A direct comparison was made by testing the proposed 
methods on the lower-complexity single-label data set used in other 
studies. Despite being trained on over twice as many classes, Loc-CAT 
was able to predict protein localization in these images with nearly 
equivalent per-class precision and recall as previous methods trained 
on this data set. PD was substantially better than all of the methods 
in per-class recall and overall precision, but struggled with some 
classes, lowering the per-class precision. In addition, a convolutional 
architecture based on SimpleNet was introduced to Loc-CAT instead 
of using traditional image features39. Although other convolutional 
architectures may perform well, this approach did not outperform the 
SLFs used in this work (Supplementary Table 1).

Gamer augmented transfer learning improves Loc-CAT accuracy

Although the overall accuracies of PD and Loc-CAT are relatively 
similar (Figs. 4b and 5a), per-class true-positive overlap revealed 
that correctly annotated images varied widely (Fig. 6a). This sug-
gests that labels generated in PD represent a substantial amount 
of per-image information in addition to the five novel classes. To 
leverage this information, we applied a transfer-learning approach 
in which we fed gamer annotations as a set of additional input fea-
tures to Loc-CAT, resulting in increased performance (GA Loc-CAT;  

Fig. 6c). Because we will not have gamer input for all future tasks, 
we extended this approach by training a shallow ‘pseudo-gamer’ 
network (Supplementary Fig. 4). The resulting pseudo-gamer pre-
dictions were then fed into the Loc-CAT DNN as additional input 
features. This combined network, henceforth referred to as Loc-
CAT+ (Fig. 6c and Supplementary Fig. 4), displays many of the 
same overrepresented co-annotations (Fig. 6b and Supplementary 

Fig. 5) as players in PD (Fig. 3c). Notably, however, overrepresented 
co-annotations between major compartments (Figs. 3c and 6b) dif-
fered between the two approaches. For example, Loc-CAT+ annotates 
endoplasmic reticulum together with nucleoli more frequently than 
expected, a behavior that was not seen by the gamers. Nevertheless, 
the Loc-CAT+ model allowed us to incorporate some of the insights 
of the gamers, improving the performance of Loc-CAT by raising the 
average per-class F1 score from 0.44 to 0.47. However, experts in the 
HPA Cell Atlas (Fig. 6c) still outperformed all of the methods in a 
randomized blind annotation test (per-class F1: 0.71, overall F1: 0.76; 
Supplementary Data Set 3), suggesting that there is room for further 
improvement in computational image classification.

DISCUSSION

This work presents two complementary approaches to high-through-
put classification of subcellular localizations in fluorescent micro-
scope images from the HPA Cell Atlas. Multi-localizing proteins, 
large class imbalance, cell line variations and rare patterns that may 
not be present in all of the cells in an image make annotation of this 
dataset challenging.

The first approach uses the power of MMO games through the PD 
mini-game in EVE Online to perform large-scale image classification. 
This is the first implementation of a scientific task into an existing 
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Figure 6 Transfer learning boosts Loc-CAT DNN performance. True positive percentages (recall) for each class identified by Loc-CAT (pink), PD (purple) 

and both (overlapping, yellow). (b) Loc-CAT over-represented co-annotations with solution classes from the HPA Cell Atlas v14 (P < 10–3, Bonferroni 

corrected one-tailed Binomial test, per-class sample sizes are found in Supplementary Fig. 5) serves as a proxy for multi-label confusion. Bars for each 

class are scaled to log2 class size and color (green) is used for visual clarity. Classes containing more than five over-represented co-annotations were 

considered to be ‘uniformly over-annotated’ and are shown in gray. Given that over-annotations are directional, tapering was used to indicate directional 
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6 respectively. Over-annotations were directional, with the thick end of the ribbon indicating which class was over-annotated by Loc-CAT relative to the 

HPA Cell Atlas v14. Two thick ends indicate a bi-directional over-representation. (c) Average per-class precision versus recall plot on HPA Cell Atlas 

v14 (all cell lines). PD bias corrected consensus (purple) compared with players in PD (gray points, contours). Loc-CAT (pink) performance was dragged 

down by low-frequency classes; however, transfer learning using both PD player input and computational features (GA Loc-CAT, red) outperformed both 

Loc-CAT and the PD results. Generation of ‘pseudo-gamer’ data for use in the transfer learner when player data was not available improved Loc-CAT 

(Loc-CAT+, gold); however, experts in the HPA Cell Atlas (experts, green) still vastly outperformed all of the other methods.
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mainstream video game. This approach reduces development costs to 
labs for citizen science and demonstrates that players in MMO games 
can produce high-quality data despite potentially being motivated by 
alternative in-game dynamics or fun, rather than connection to a cause. 
An equivalent annotation using mechanical turk and a reward of $0.01–
0.05 per task would result in costs of $0.33–1.65 million to obtain an 
equal number of annotations in addition to requiring the same effort in 
preparation, data management and analysis. This approach also solves 
issues surrounding the creation and maintenance of a user base in citi-
zen science, as in-game rewards can be used to drive participation.

Training of players proved to be important for obtaining good 
results. The initial training images were too simple relative to the gen-
eral population, and player performance improved significantly when 
more challenging training images were introduced (P < 4 × 10–70, 
day 0–50 versus 50+, two-tailed t test). Vote aggregation and statistics 
allowed us to tolerate noise in player annotations, and basic knowledge 
of the background distribution of classes allowed us to mitigate the 
effects of player bias. In future efforts, simplifying the task (for exam-
ple, binary classification for the presence of a single class) may improve 
accuracy in a cost-effective manner, as throughput is not a large con-
cern for this gamification paradigm. Through PD, players assisted in 
the refinement of annotations for thousands of samples, including 
several members of the largely uncharacterized R&R structure.

Participation in PD on behalf of the gaming company (CCP games) 
is voluntary based on their desire to promote scientific research and 
foster good will in their player base. This approach was highly reward-
ing and is promising for other massive analysis problems, with a major 
caveat being that the data set needs to be large, as the players were 
very fast. In addition to providing-high throughput image analysis, 
scientific outreach was a huge benefit of this method, reaching a broad 
community that is not necessarily invested in science. Future projects 
can further benefit from the development of the PD citizen science 
platform, even across disciplines, as exemplified by the recently 
launched Project Discovery Exoplanets in EVE Online.

Although PD represents one of the most successful citizen science 
efforts to date, it relies on continuous manual efforts of many partici-
pants administered by a third party and is therefore not sustainable for 
long-term generalized future use, as the gaming company may decide 
to take down the game. For this purpose, our DNN-based approach, 
Loc-CAT+, provides a promising method for annotating protein 
localizations in future work as it is fully automated. Loc-CAT+ repre-
sents major improvements on previous efforts, as a result of its ability 
to accurately classify a large number of patterns and mixtures thereof, 
as well as generalize across cell types with different morphologies. 
Thanks to this generalizability and ability to classify multi-localizing 
proteins, it is, to the best of our knowledge, the first automated image-
based protein localization method capable of accurately classifying 
images where no information about the protein is known a priori. 
Furthermore, by augmenting the quantitative image features used 
in Loc-CAT with PD gamer annotations we improved Loc-CAT to 
nearly human performance. One major challenge in machine learning 
remains the recognition of rare and novel classes in which there is lit-
tle or no training data. In our study, humans still clearly outperformed 
the algorithmic approaches. The refinement of the annotations in 
the HPA Cell Atlas made through PD and Loc-CAT, with the novel 
classification of seven additional subcellular localizations, present an 
exciting new resource for understanding cell biology. Although pre-
liminary tests of convolutional neural networks in this work did not 
improve results over the quantitative image features used, different 
model architectures and hyperparameters may provide the improve-
ments needed to reach expert performance.

To summarize, we demonstrated two alternative approaches for 
large-scale classification of protein distribution patterns in micros-
copy images. Furthermore, we showed how gamers and DNNs excel 
at different types of classifications and that gamer output can be used 
to augment and improve deep learning models. Finally, we speculate 
that the integration of scientific tasks into established computer games 
will be a commonly used approach in the future to harness the brain 
processing power of humans and that intricate designs of citizen sci-
ence games feeding directly into machine learning models through 
techniques such as reinforcement learning have the power of rapidly 
leveraging the output of large-scale science efforts.

METHODS

Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Images from the HPA Cell Atlas. In this article, we are classifying protein 
distribution patterns from the publically available Human Protein Atlas (HPA), 
Cell Atlas database (https://www.proteinatlas.org). The HPA Cell Atlas project 
aims to characterize the subcellular distribution patterns of the entire human 
proteome using an antibody-based approach and confocal microscopy. Here, 
we have used the images and annotations from v14 of the HPA Cell Atlas, 
where proteins were classified into one or more of 20 organelles and cellular 
structures (in total 226,732 images of which 65,596 were public in v14).

Proteins are cataloged serially using in-house generated antibodies and 
immunostaining in a gene-centric manner as described in detail previously7. 
Briefly, the spatial distribution of each protein is studied in three cell lines 
out of a panel of 17; U-2 OS and two additional selected to have the high-
est RNA expression level of the corresponding gene. Each antibody-cell line 
‘sample’ is then imaged to produce a minimum of two images per sample 
(average 2.93 images per sample). Each ‘image’ in the HPA Cell Atlas consists 
of four channels acquired sequentially with a Leica SP5 confocal microscope 
(DM6000CS) equipped with a 63× HCX PL APO 1.40 oil CS objective (Leica 
Microsystems). The settings for each image were as followed: Pinhole 1 Airy 
unit, 16bit acquisition and a pixel size of 0.08 µm. The detector gain measur-
ing the signal of each antibody was adjusted to a maximum of 800 V to avoid 
strong background noise. A small part of the plates was imaged automatically 
using the MatrixScreener M3 in LAS AF software (Leica Microsystem). Here, 
z-stacks at six FOVs were acquired. False-colored channels represent the pro-
tein of interest (green), DAPI labeling of the nucleus (blue), microtubules 
(red), and the endoplasmic reticulum (yellow). Each channel is stored as a 
separate 2,048 × 2,048 16-bit ome-tiff.

Additional information on the experimental materials and reproducibility 
can be found in the Life Sciences Reporting Summary.

Tree structured annotations. Classes in the HPA Cell Atlas can be viewed 
as a tree structure, where depth in the tree increases, annotations become 
more specific. At its base, the cell is divided into the nuclear and cytoplasmic 
spaces. These two super-classes can be further divided into meta-classes. The 
nuclear super-class into; nucleus, subnuclear structures, nucleoli, and nuclear 
membrane. The cytoplasmic super-class into; cytoplasm, cytoskeleton, MTOC, 
secretory, and cell periphery. Lastly, these meta classes can be divided into the 
leaf node classes used in this publication. When discussing this structure in 
terms of PD, votes are first pooled and a hypergeometric test is performed to 
calculate consensus as described below at each level of the tree. As there are 
fewer options to choose from, nodes near the root of the tree require more 
evidence to be considered significant (hypergeometric test P < 0.01). When 
discussing this structure in terms of the DNN approach using the localiza-
tion cellular annotation tool (Loc-CAT), each level of the tree represents a 
separately trained model.

Immunostaining after induction of R&R formation. U-2 OS cells were culti-
vated in McCoy’s 5A modified medium (Sigma Aldrich) with 10% FBS and 1% 
l-glutamine (Sigma Aldrich), at 37 °C in a 5% CO2 humidified environment. 
The cells were harvested at 60–70% confluency and seeded onto a glass bottom 
plate (Greiner Sensoplate Plus, Cat# 655892, Greiner Bio-One) coated with 
fibronectin (Sigma-Aldrich). 6 h before fixation Ribavirin was added to the 
growth medium to a final concentration of 0.15 mM. PBS-washed cells were 
fixed in 4% paraformaldehyde (PFA) in growth media supplemented with 10% 
FBS for 15 min, followed by permeabilization with 0.1% Triton X-100 in PBS 
for 3 × 5 min. After a washing step with PBS, cells were incubated with the 
primary antibody overnight at 4 °C. Rabbit polyclonal HPA antibodies were 
diluted to 2–4 µg/ml in blocking buffer (PBS with 4% FBS) containing the 
R&R marker (Abnova Corporation Cat#H00055466-M01, RRID:AB_426011) 
diluted to 1 µg/ml in blocking buffer. The next day, cells were washed 4 ×  
10 min with PBS followed by 90-min incubation at 20–22 °C with the fol-
lowing secondary antibodies (all from ThermoFisher Scientific) diluted to  
1 µg/ml in blocking buffer: goat anti-rabbit AlexaFluor 488 (A11034, RRID:
AB_2576217), goat anti-mouse AlexaFluor 555 (A21424, RRID:AB_2535845). 
Cells were finally counterstained with DAPI for 10 min, before being mounted 
in PBS containing 78% glycerol.

Ground truth for evaluation. The training labels for evaluating methods 
presented in this work are based on three rounds of manual curation per-
formed for the HPA Cell Atlas v14 (Supplementary Data Set 1). Images were 

first annotated manually by a trained expert and labels were given based on 
all images in a sample. This was followed by a review in which stainings from 
multiple cell types were compared and consistency of staining was assessed. 
Lastly, a thorough literature review was performed. Annotations were cor-
rected as needed throughout this process.

Expert reannotation. To assess consistency of labels in the HPA Cell Atlas, 
internal experts were presented with a random subset of 660 samples for rean-
notation from samples that were publicly available in the HPA Cell Atlas v14 
(Supplementary Data Set 3). All reannotations and statistics measuring the 
accuracy of these reannotations were calculated at the per-sample (group of 
images) level. This gives an advantage to experts over the other methods in 
this work as some images in a sample do not contain the annotated label. For 
historical reasons, this reannotation did not include a distinction between 
Nucleus and Nucleoplasm, so the expert score is inflated slightly. Assuming 
the expert performance on the Nucleus-Nucleoplasm split was comparable 
to Loc-CAT and gamers, the expert per-class precision and recall would drop 
from 0.74 and 0.69 to ~0.70 and ~0.66 respectively, still well above all other 
methods. Microtubule ends were not present in the reannotation set as it is 
very rare. As a proxy, average performance was assumed for this class. This 
may be generous considering both gamers and Loc-CAT struggled with this 
class. In the worst case, were experts to entirely miss this class, per-class preci-
sion and recall would drop to ~0.69 (~0.67 with nucleoplasm) and 0.63 (~0.62 
with nucleoplasm).

Statistics and reproducibility. In this work we used several metrics to measure 
the performance of both PD participants and the Loc-CAT DNNs, hence forth 
referred to as ‘predictors’.

Assessing performance. To assess the agreement between generated predictor 
annotations and HPA Cell Atlas v14 annotations, we assessed precision and 
recall as defined in equations (1) and (2) below.

Precision =
+( )
TP

TP FP

Recall =
+( )
TP

TP FN

Here, true positives (TP) are annotations for which the predicted label matches 
the prior HPA label, false positives (FP) are predicted labels that the HPA has 
not identified, and false negatives (FN) are labels that the HPA had annotated 
which the predictor did not predict. Again, note that in cases of labels which 
are novel to the HPA, such as nucleoli (rim), the FP = 1 and FN = 0 by defini-
tion as the HPA has never previously annotated this localization.

In the case of multi-label data, accuracy cannot directly be assessed, as label 
confusion cannot be readily defined. To measure per-class performance we 
used F1 score which is the harmonic mean between precision and recall.

F
precision recall

precision recall
1 2= ∗ ∗

+

Measuring cross-localization confusion. Due to the multi-label nature of the 
problem, it is impossible to construct a confusion matrix indicating what labels 
predictors select in comparison to those annotated in the HPA Cell Atlas v14. 
In an attempt to understand confusion, we compute a matrix indicating the 
probability that the frequency of specific multi-localizations occurs based on 
HPA Cell Atlas v14 colocalization probabilities. In doing this, we compare 
the probability of observing location BHPA given location AHPA as defined 
by the HPA Cell Atlas v14 annotations (P(BHPA|AHPA)) with the frequency 
of prediction for the localization B  given AHPA using a one-tailed binomial 
test as indicated in equation (4) below. Note that this test only measures over 
co-annotation.

P F B A F B P B AHPA HPA HPAbinomial ( | ) ( ), ( | ) ( )
Where F B AHPA( | )  is the frequency of predicted location B  given an 

observed label AHPA, and F B( )  is the number of all predicted localizations B  
independent of corresponding HPA annotation. The test is used to measure 
over co-annotation in the multilabel case, and will be significant if the predic-
tor annotates one category significantly more frequently than we expect given 

(1)(1)

(2)

(3)

(4)

https://www.proteinatlas.org
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the co-annotation probabilities by the HPA Cell Atlas v14. This can occur 
either via confusion, where one label is incorrectly identified as another with 
regularity, or general over-annotation where a predictor is biased to more 
frequent annotation of a given label. Note that the test is never significant 
on the diagonal where P(BHPA|AHPA) = 1. The resulting p-values were then 
subjected to a Bonferroni multiple hypothesis correction per-class (n = 29). 
These results are presented as a circular plot serving as a proxy for multi-label 
confusion (Figs. 3 and 6). As over-annotations are directional, tapering is used 
to indicate directional confusion, with the thick end of the ribbon indicating 
which class is over-annotated by the predictor (confused with) together with 
the HPA Cell Atlas v14. Ribbons with two thick ends indicate a bi-directional 
over-representation of the co-annotation. This can also be viewed in tabular 
form (Supplementary Figs. 3 and 5).

Reproducibility. All images in the HPA Cell Atlas v14 (n = 226,732 images 
of which 65,596 were public in v14) consist of 4 false-colored channels as 
shown in Figure 1a. The number of images containing each of the patterns in 
the Figure 1b–d can be found in Supplementary Figure 3. The authors note 
that this is not the number of images containing only this pattern as multi-
localization of proteins causes more than one pattern per image. All 10,003 
protein coding genes publicly available in HPA Cell Atlas v14 are assayed in 
three cell types; U-2 OS and two selected based on maximal RNA expression 
(FPKM/TPM) creating >10,003 such morphological variability replicates in 
HPA Cell Atlas v14 such as the examples seen in Figure 1e. The numbers for 
each specific cell type can be seen in Figure 5c. Of the proteins analyzed in 
this study, 44% (n = 101,903) of images (not proteins) contain multi-localizing 
proteins such as those shown in Figure 1f. Cell-to-cell variability (Fig. 1g) 
was a new category in v14 and therefore contained no true-positive images. 
In the updated Cell Atlas v16 containing this cell-to-cell variability analysis 
1,896 protein coding genes (most with 6+ images per protein coding gene) are 
annotated as having variable patterns.

Players in PD contributed ~33 million image annotations. Annotations for 
each image are pooled into a consensus using a hypergeometric test (minimum 
12 votes, see Online Methods). Results of these consensus annotations each day 
are compared with gold standard HPA Cell Atlas v14 to obtain an F1 score per 
day which demonstrates a stable behavior after 100 d (Fig. 2d).

Comparing the overall F1 score of players (n = 59,901) who have analyzed 
a minimum of ten images, with a consensus built on hypergeometric tests 
based on the cumulative consensus (pooling individual votes from all rounds, 
median 78 votes per image) demonstrates the power of pooling multiple votes 
(Fig. 3a). Over-represented co-annotations are measured using a set of pair-
wise binomial tests where the null hypothesis is the expected co-localization 
probability in the HPA Cell Atlas (Fig. 3b). Replicate numbers of images 
containing proteins annotated to each class under both the HPA Cell Atlas, 
and PD can be found in Supplementary Figure 3. There were 1,498 images 
annotated centrosome and 424 images annotated MTOC in the HPA Cell 
Atlas (Fig. 3c).

Histograms showing the counts of images annotated for each class are 
shown in Figure 4a. These numbers are either directly counted from the HPA 
Cell Atlas v14 data set (gold), or based on the 65,596 public images in the HPA 
Cell Atls v14, where a hypergeometric test is performed on the pooled annota-
tions for each image (median n = 78 annotations per image). Performances 
(F1 score) in the tree based hierarchy (Fig. 4b) are based on hypergeometric 
consensus for each image. The number of class instances in HPA Cell Atlas 
v14 can be found in Supplementary Figure 3, rows labels. Example images 
of Rods & Rings proteins are shown based on the ten proteins discovered by 
players of PD. Independent colocalization experiments under ribavirin induc-
tion with a marker for R&R for each protein were performed in triplicate (see 
Online Methods).

Performances in the tree based hierarchy (Fig. 5a) are based on the number 
of class instances in HPA Cell Atlas v14 (Supplementary Fig. 5). Example 
images (Fig. 5b) are the worst-case picked from a rank-list of each of the lowest 
performing classes from the hierarchical tree (Fig. 5a). These images are meant 
for illustrative purposes of the types of mistakes Loc-CAT makes in the worst 
case. Performance on each cell line (Fig. 5c) and compared across single and 
multi-label data (Fig. 5d) is based on the average of fivefold cross validation.

Overlap in Loc-CAT predictions and PD predictions (Fig. 6a) are based on 
the number of class instances in HPA Cell Atlas v14 (Supplementary Fig. 5).  

Over-represented co-annotations are measured using a set of pair-wise  
binomial tests where the null hypothesis is the expected co-localization prob-
ability in the HPA Cell Atlas (Fig. 6b). Replicate numbers of images containing 
proteins annotated to each class under both the HPA Cell Atlas, and Project 
Discovery can be found in Supplementary Figure 5. Individual player per-
formance (Fig. 6c), compared to consensus performance of Project Discovery, 
Loc-CAT performance using various training architectures (Loc-CAT, Loc-
CAT+, GA Loc-CAT), and expert annotations are based on the 65,596 images 
in the HPA Cell Atlas v14. Scores are computed per-class, where true-positive 
instances of each class can be seen in Supplementary Figure 5.

Experimental reproducibility. Additional information on the experimental 
materials and reproducibility can be found in the Life Sciences Reporting 
Summary.

PD: MMO science. This work presented a new approach to citizen science 
and gamification. Termed Project Discovery, this method is the first to utilize 
main-stream MMO games to perform real scientific research. This effort was 
a collaboration with CCP Games (EVE Online) and MMOS.

Image preparation. Images were converted from 2,048 × 2,048 16-bit greys-
cale tiff images to RGB false color 1,200 × 1,200 jpeg images with 89% compres-
sion. The resulting images were then given randomized names and uploaded 
to MMOS Amazon Web Servers. This configuration was chosen to limit server 
load as each color channel could be directly dropped on the EVE client side 
after the image was served. For this reason, the players did not receive a color 
channel for the endoplasmic reticulum (ER). This also limited the ability of 
colorblind players to participate, though we suggested that such players use a 
‘shader’ to shift the screen into a colorblind-friendly palate.

For each batch of images, a tab separated plain text metadata file was gener-
ated and uploaded to an MMOS Amazon Web Server. Each row of a metadata 
file represented one image in the batch and the columns of each metadata file 
were used to provide information about the image. In addition, a json format-
ted ‘control’ file was generated for each batch specifying information about the 
batch including the number of images, and version number.

Game play. The mini-game within the EVE Online universe was accessi-
ble from anywhere in-game allowing maximum access for players. The game 
design was created by CCP games and students at Reykjavik University.

In the game, players were presented a false-color confocal microscopy image 
and are tasked with classifying the green pattern into up to 5 of the 29 pre-
defined categories. Players could use the blue (nucleus) and red (microtubules) 
channels to assist them and could toggle these color channels on and off as 
well as zoom in on the image by hovering. Players could compare the patterns 
seen in each image with five reference images of each pattern visible upon 
hovering over each tool-tip in-game. These images were carefully selected to 
represent the diversity of the respective staining patterns across the multitude 
of cell lines.

After submitting a classification, players received an in-game reward in 
the form of in-game currencies that could be used to purchase in-game items 
exclusive to PD as well as level-badges. Players received one small reward 
per-sample analyzed, plus a larger reward for each time they leveled up. 
Initially players also received a bonus reward based on their agreement with 
the eventual community consensus, however this was quickly exploited with 
players converging on a single common class (Cytoplasm) and this reward 
was therefore discarded. Players were also provided with a ‘pass’ option after 
expressing that some images were too challenging and they would rather pass 
than make a bad guess.

In an additional attempt to control accuracy, control samples in which the 
solutions were known a priori were provided at random intervals. If player 
performance drops too low, the player is returned to the tutorial phase.

To view a tutorial of game play, please visit our youtube channel (https://
www.youtube.com/channel/UCfUAILRafjldAom5lzSQD7A/videos?view_
as=subscriber).

Tutorial and training. To control data quality, players were required to com-
plete a tutorial and training phase before contributing to classifications of 
unknown samples in PD. Players were entered into the tutorial and first asked 
to classify images of easy, single-localizing protein to a restricted set of localiza-
tions to familiarize themselves with the user interface. Once past the tutorial, 
players entered training, where players were presented with increasingly difficult 

https://www.youtube.com/channel/UCfUAILRafjldAom5lzSQD7A/videos?view_as=subscriber
https://www.youtube.com/channel/UCfUAILRafjldAom5lzSQD7A/videos?view_as=subscriber
https://www.youtube.com/channel/UCfUAILRafjldAom5lzSQD7A/videos?view_as=subscriber
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samples and were required to correctly annotate these before passing the train-
ing phase and being allowed to contribute annotations for unknown samples to 
the project. Player accuracy was measured with random control samples which 
were identical to test samples but had been pre-annotated by experts from the 
HPA Cell Atlas. If player performance dropped below a threshold, players were 
returned to the training phase of the game until their performance improved to 
a level that they were allowed to contribute to the consensus again.

Consensus calculation. Tasks were presented to gamers in a randomized 
order. To control for erroneous annotations, we asked multiple gamers to 
annotate each image. A minimum of twelve gamers assessed each image before 
it could be evaluated for consensus. We measured ‘consensus’ on a task using 
a hypergeometric test as described in equation (5) below assuming that each 
player chose the maximum of five classes per task. This test assumes each class 
is independent and as such it does not account for mutual exclusivity of tasks 
(for example, Nucleoplasm with Nucleoli). The test is given by

P
i
p

m n i
N n n

m n
N ni

m i
n

n i
n

n
n

= −
( )( )

( ) = −
( )( )∗ −

∗ −

∗
∗=

∗ −
∗

∗
∗∑1 1

1

5
28

5
29(( )=∑i 1

5

where, n is the number of players that have voted on the task, N is the number of 
classes available (29), m is the maximum number of allowed classes per sample 
(5). This equation gives an estimate of the probability that each category had 
been selected m times given n tries (gamers). Once 12 votes were acquired, this 
CDF was evaluated after each subsequent vote. If the likelihood of at least one 
category was statistically significant (P < 0.01), and no other categories were near 
the significance boundary (0.01< P < 0.1) we considered a consensus reached 
and the task was closed. The hypergeometric test measures the probability of 
obtaining k ‘hits’ in n random draws from a set without replacement. This test is 
also extremely efficient to compute, making it feasible for the real-time computa-
tion with high server loads experienced of over 800 submissions per minute.

After six rounds of annotations, votes from each round were aggregated and 
the consensus recalculated (average 97 votes per image). As statistical signifi-
cance was increased due to the increased number of samples, this created a more 
sensitive test for rare and under annotated classes, however it also exacerbated 
the over-annotation problem for common classes. To correct for this effect p-
value cutoffs were tuned per class on a held out 10% of the data of the based on 
the expected class distribution from the previously annotated HPA data. Novel 
classes were set to the highest allowable p-value cutoff (0.01) for discovery.

When constructing consensuses for meta classes, votes were merged into 
super categories, and then re-evaluated using the hypergeometric test and the 
aforementioned procedure given the presence of fewer classes.

Expectation maximization. Jointly estimating individual player bias together 
with the true label can be done via expectation maximization (EM). In this 
work, we implemented a binary EM for each class based on the STAPLE 
method39, as multi-label data makes direct multi-class evaluation impossible. 
Due to the computational time required, we ran the algorithm for 10–30% of 
the data set (n = 6,558–19,534) respectively. We observed no improvement 
when increasing the percentage of the data set evaluated and report the best 
accuracy of all runs (Supplementary Table 1). Unfortunately, as the number of 
single labels is very high (29), the frequency of most labels is very low (<0.1%), 
and the number of images analyzed per player is relatively low (mean = 44), 
this method did not improve results and the previously discussed consensus 
calculation was used instead.

Project appeal. Project appeal (Fig. 2b) was calculated as defined in32 and 
given in equation (6) below.

Project Appeal
Number of volunteers

Project active period
=
( )

2

Loc-CAT: DNN protein localization. This work presented a feature based multi-
label DNN model for predicting subcellular protein localization. This network 
outputs a real-valued confidence vector with a score for each possible class.

Image feature extraction. Quantitative image features were calculated using 
MATLAB 2016a. Image processing was performed at a per-cell level on each 
image consisting of four fluorescent microscopy images, one for each acquisi-
tion channel. The DAPI images were first treated with a low pass filter followed 
by active contour segmentation. Cells were then segmented using a combination  
of the microtubule and ER channels and seeded watershed. Cells with nuclei 

touching the image edge are removed from classification, though the cyto-
plasm of the cell can contact the edge of the image.

After segmentation, a set of 2,233 quantitative SLF image features were extracted 
based on work by the Murphy Lab9,20. Of these, the 719 features describing the 
green fluorescent channel in relation to the other channels, were passed to Loc-
CAT (https://github.com/CellProfiling/Loc-CAT). These features describe the 
intensity, texture, and spatial relationships between the protein of interest (green) 
and remaining fluorescent channels of the image. The remaining unused features 
describe the relationship of reference channels to themselves and are used inter-
nally in other applications. Details on each feature can be found at (http://murphy-
lab.web.cmu.edu/services/SLF/features.html, Supplementary Data Set 2).

Data partitioning. Images are shuffled at the sample level, meaning though 
images of the same antibody in another cell line may be present in the test set 
(for cross-cell line classification), all images of an antibody in a specific cell type 
will be in a single fold. Images are then partitioned into five folds by sample. 
Each training set contains 80% and each testing set contains 20% of the available 
data. Training sets are then split again by sample into training (90% of training 
set) and validation (10% of training set) sets. The resulting training set was then 
shuffled per-cell to avoid bias in the training. Because folds were shuffled created 
per-sample, it is possible that each fold contains variable number of images and 
cells. After data partitioning, input features to Loc-CAT are Z-normalized on 
the training set (excluding the validation subset).

Neural network architecture. In Loc-CAT, CPython 3.5.2 with CUDA gpu-
accelerated TensorFlow (v1.3.0) was used to train a feed-forward deep artificial 
neural network containing three hidden ReLU6 layers with 800 neurons per 
layer and a sigmoid output function. Dropout was applied to reduce the risk of 
overfitting and better generalize the network, 20% on the input layer and 40% 
on each hidden layer. The network was optimized using the ADAM optimizer 
and a binary-cross entropy loss function. In the development of Loc-CAT, 
several network architectures were tested using a multidimensional parameter 
sweep (trained and tested on U-2 OS images from HPA Cell Atlas v.14).

Stopping rule: during training, if the cost on the held-out validation set did 
not decrease for ten epochs, training was halted. The network weights were 
then reset to the epoch before those ten epochs.

Prediction aggregation. As the quantitative image features are extracted 
per cell, the classifier predicts localization for individual cells rather than 
images. When training the network, binary cross entropy was applied to 
these per-cell annotations, using the HPA annotation for the image the 
cells came from as the true label. Location predictions were aggregated for 
all cells from the same image by taking the mean predicted value for each 
class. The cutoffs for each class are then tuned at the IMAGE level for the 
first fold of the testing set to optimize the per-class performance. Average 
performance for each of the remaining four test-set accuracies are reported 
using these cutoffs.

All single-cell line classifiers reported the average statistics of fivefold cross 
validation. Cross-cell line classification statistics are based on predictions for 
all samples in the testing cell type and therefore cross validation does not apply. 
In the hierarchical tree (Fig. 5), each level of the tree was trained separately 
and tested using fivefold cross validation.

Gamer-augmented transfer learning. The gamer transfer learning network 
was trained using the same network structure as before with the P values cal-
culated from the gamers’ consensus added concatenated to the input features 
(Supplementary Fig. 4).

For the pseudo-gamer transfer learning network (Loc-CAT+), a secondary 
network was trained to predict the gamer consensus P values (Supplementary 

Fig. 4). The secondary network was trained for 100 epochs on the same SLF 
input features with two hidden ReLU6 layers containing 200 and 100 neurons, 
respectively. Dropout was applied to the secondary network as well, 20% on 
the input layer and 40% on each of the hidden layers. The predicted P values 
are then concatenated to the standard SLF features as input to the standard 
Loc-CAT network.

CNN. We evaluated a convolutional neural network using the SimpleNet 
architecture with dropout39. The network was trained using versions of HPA 
images scaled to 128 × 128 pixels as input. Each input image contained all four 
available image channels. The network was trained for 600 epochs with no 
substantial validation loss change seen for the last 200 of those epochs. The 
performance, although inferior to the other methods presented in this paper, 

(5)

(6)

https://github.com/CellProfiling/Loc-CAT
http://murphylab.web.cmu.edu/services/SLF/features.html
http://murphylab.web.cmu.edu/services/SLF/features.html
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showed great promise for a convolutional network properly trained and tuned 
for protein localization.

Protein of interest only classifier. Loc-CAT architecture was trained using 
only features from the protein of interest; however, performance of this clas-
sifier was substantially inferior to that of the model trained with the three 
cellular reference channels (data not shown). This suggests that the contex-
tualization of the protein in a cell using such reference markers is crucial for 
accurate protein localization from images.

Life Sciences Reporting Summary. Further information on experimental design 
is available in the Nature Research Reporting Summary linked to this article.

Data availability statement. The images included in this study are available in 
the HPA Cell Atlas (https://www.proteinatlas.org), specifically the HPA Cell 
Atlas v14 can be found at (https://v14.proteinatlas.org). The data from Project 
Discovery is available upon request.

Code availability statement. Code for extracting features from images in the HPA 
Cell Atlas is available at: https://github.com/CellProfiling/FeatureExtraction. 
Code for the analysis of data from Project Discovery presented in this work 
is available at: https://github.com/CellProfiling/ProjectDiscovery. Code for 
the Loc-CAT presented in this publication is available at: https://github.com/
CellProfiling/Loc-CAT.

https://www.proteinatlas.org
https://v14.proteinatlas.org
https://github.com/CellProfiling/FeatureExtraction
https://github.com/CellProfiling/ProjectDiscovery
https://github.com/CellProfiling/Loc-CAT
https://github.com/CellProfiling/Loc-CAT
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 

text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 

variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 

State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection Project Discovery was run inside of EVE Online. Data was served by Massive Multi-player Online Science (MMOS). Analysis of the 

resulting data was performed in MATLAB 2016a. Quantitative image features were calculated using MATLAB 2016a. CPython 3.5.2 with 

CUDA gpu-accelerated TensorFlow (v1.3.0) was used to train the feed-forward deep artificial neural networks used in this work. All 

analysis and modeling software is available through the CellProfiling GitHub at the addresses noted in the manuscript. 

Data analysis Analysis of the resulting data was performed in MATLAB 2016a. Quantitative image features were calculated using MATLAB 2016a. 

CPython 3.5.2 with CUDA gpu-accelerated TensorFlow (v1.3.0) was used to train the feed-forward deep artificial neural networks used in 

this work. All analysis and modeling software is available through the CellProfiling GitHub at the addresses noted in the manuscript. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 

upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

The images included in this study are available in the HPA Cell Atlas (www.proteinatlas.org)

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Samples in this paper were taken from version 14 of the Cell Atlas, a part of the Human Protein Atlas. The entire dataset was included.

Data exclusions Two types of data were excluded in the analysis. First, internal data from experiments not passing the quality controls of the Human Protein 

Atlas, or having a "Negative" or "Unspecific" label were excluded from the analysis due to quality concerns. Second, proteins identified by the 

Human Protein Atlas as containing cell-to-cell variation were excluded as no ground-truth was available for which cells displayed a given 

pattern. Proteins identified as cell-to-cell variable by gamers within Project Discovery were not excluded if they were not previously annotated 

as such by the Human Protein Atlas. These exclusions were pre-determined.

Replication All attempts at replication of results showed consistency via cross validation. 

Randomization In all generalized models and Project Discovery, sample allocation was randomized from Human Protein Atlas version 14 data using PRNG. 

Below are the specific non-random cases from the Loc-CAT machine learning approach.  

1. Per-cell line models: only samples from a given cell line were used when training/testing the models respectively. All other aspects of the 

sampling were randomized.  

2. "Single" localization model (Fig 5d): Only images containing a single annotation in the Human Protein Atlas v14 were included in this model. 

The number of samples was restricted to 10,000. All other aspects of the sampling were randomized.  

3. "Multi" localization model (Fig 5d): Only images containing multiple annotations in the Human Protein Atlas v14 were included in this 

model. The number of samples was restricted to 10,000. All other aspects of the sampling were randomized.  

4. "Mixed" localization model (Fig 5d): The number of samples was restricted to 10,000. 50% of the samples are taken from the "Single" 

dataset, and 50% from the "Multi" dataset. All other aspects of the sampling were randomized. 

Blinding For Project Discovery, players were blind to what images they were presented, what annotations the HPA Cell Atlas had made previously if 

any, and what other players had input until after submission of their analysis. 

For the machine learning approach, the learner was blind in the held out testing sets to the labels given to the image by the HPA Cell Atlas, 

and any labels derived from the gamer input excluding the Gamer-Augmented model, which used gamer input to improve accuracy (Fig 6b). 

For internal expert reannotation, experts were blind to the previous annotation(s) for each image. 

Reporting for specific materials, systems and methods

Materials & experimental systems

n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Nature Biotechnology: doi:10.1038/nbt.4225
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Antibodies

Antibodies used The entire collection of antibodies publically available in the Human Protein Atlas were included in this study. A list of them, 

validation and RRID for tracking can be found at www.proteinatlas.org.  

 

The listed antibodies do not contain lot numbers as they are produced in-house and then sold by Atlas Antibodies. Therefore the 

lot number is identical to the antibody ID. We also provide RRID numbers as a means of identification. There is no CloneID as 

they are polyclonal antibodies.  

 

The antibodies specifically investigated in this study were those used to characterize the Rods & Rings structure. Specifically:  

Target Gene, Catalog number, Supplier, Clone, Name,  Dilution, Original Concentration,RRID 

ENSG00000204310, HPA048478, Atlas Antibodies, polyclonal, 1:56, 0.1128 mg/ml,AB_2680411 

ENSG00000159079, sc-83559 (CAB034170), Santa Cruz-Biotechnology, polyclonal Y-18, 1:87, Unavailable, AB_1564311 

ENSG00000168237, HPA006913, Atlas Antibodies, polyclonal, 1:20, 0.0425 mg/ml, AB_1078993 

ENSG00000106348, HPA001400, Atlas Antibodies, polyclonal, 1:29, 0.0575 mg/ml, AB_1079139 

ENSG00000188647, HPA021248, Atlas Antibodies, polyclonal, 1:40, 0.08 mg/ml, AB_1855872 

ENSG00000133872, HPA040400, Atlas Antibodies, polyclonal, 1:94, 0.188 mg/ml, AB_2676962 

ENSG00000180900, HPA064312, Atlas Antibodies, polyclonal, 1:200, 0.6489 mg/ml, AB_2685242 

ENSG00000104375, HPA007120, Atlas Antibodies, polyclonal, 1:30, 0.06 mg/ml, AB_10601664 

ENSG00000213186, HPA017750, Atlas Antibodies, polyclonal, 1:12, 0.0240 mg/ml, AB_1858312 

ENSG00000118420, HPA027231, Atlas Antibodies, polyclonal, 1:91, 0.1825 mg/ml, AB_2256689 

ENSG00000121417, HPA049967, Atlas Antibodies, polyclonal, 1:43, 0.0865 mg/ml, AB_2680973

Validation As described in Thul et al. 2017 - "All antibodies generated and validated within the HPA project were rabbit polyclonal 

antibodies. They were designed to bind specifically to as many isoforms of the target protein as possible. The antigens consisted 

of recombinant protein epitope signature tags (PrEST) with a typical length between 50 and 100 amino acids. The resulting 

antibodies were affinity purified using the antigen as affinity ligand. All antibodies used were first approved for sensitivity and 

lack of cross-reactivity to other proteins, on arrays consisting of glass slides with spotted PrEST fragments. Commercial 

antibodies were provided by the suppliers and used according to the supplier’s recommendations."  

 

All antibodies produced internally within the Human Protein Atlas project (HPA antibodies) must pass steps 1-3 in the list below 

in order to be used for immunohistochemistry and immunocytochemistry/IF. Steps 4-6 provide the basis for evaluating and 

scoring the antibody reliability. All antibodies that provide a reasonable pattern of immunoreactivity are added to the Human 

Protein Atlas portal. Feedback from the research community is appreciated and needed for continuous curation of data.  

Quality assurance steps for antibodies generated within the Human Protein Atlas project: 

 

1. Plasmid inserts are sequenced to assure that the correct protein epitope signature tag (PrEST) sequence is cloned. 

2. Size of the resulting recombinant protein (including the specific PrEST) is analyzed using mass spectrometry to assure that the 

correct antigen has been produced and purified. 

3. To control for cross-reactivity, affinity purified antibodies are tested for sensitivity and specificity on protein arrays consisting 

of glass slides with spotted PrEST fragments. 

4. Antibody specificity is analyzed using Western blot in a standardized setup. Total protein lysates from a limited number of 

tissues (liver and tonsil), cell lines (RT4 and U-251 MG), and human plasma are used to evaluate the antibody target binding in a 

Western blot setting. Antibodies with an uncertain standard Western blot are reanalyzed using an over-expression lysate as a 

positive control. 

5. Immunohistochemical staining of normal and cancer tissue is examined and annotated by specially educated personnel, and 

the staining patterns are compared with available gene/RNA/protein characterization data. 

6. High resolution confocal microscopy images of human cell lines stained by indirect immunofluorescence are annotated for 

subcellular localizations by trained cell biologists, and the subcellular localization patterns are compared with the 

immunohistochemical staining and available experimental protein characterization data. 

 

For antibodies supplied through commercial or other academic sources (CAB antibodies), immunocytochemistry and 

immunohistochemistry have been performed and validated in a similar manner as for HPA antibodies. These antibodies have 

also been tested on Western blot in a standardized setup. For each commercially available antibody, a link to the antibody 

provider is given on the "Antibody validation" page. For further validation we refer to quality controls provided by the respective 

company.  

 

 

detailed information on antibody sources can be found in the Protein Atlas database (https://www.proteinatlas.org/about/

antibody+validation)

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) ATCC

Authentication All cell lines used to generate the data in the Cell Atlas have been authenticated and their transcriptome sequenced as 

previously described (Thul 2017, Uhlen 2015). This includes the HeLa cell line sourced by DSMZ.

Mycoplasma contamination All cell lines were tested mycoplasma negative

Nature Biotechnology: doi:10.1038/nbt.4225
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Commonly misidentified lines
(See ICLAC register)

All cell lines used to generate the data in the Cell Atlas have been authenticated and their transcriptome sequenced as 

previously described (Thul 2017, Uhlen 2015) 

The commonly misidentified cell lines used in the Cell Atlas are:  

MCF-7: source - DSMZ, authenticated by transcriptome sequencing 

RT4: source - DSMZ/ECACC, authenticated by transcriptome sequencing  

Nature Biotechnology: doi:10.1038/nbt.4225


