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Abstract

This monograph provides an overview of general deep learning method-

ology and its applications to a variety of signal and information pro-

cessing tasks. The application areas are chosen with the following three

criteria in mind: (1) expertise or knowledge of the authors; (2) the

application areas that have already been transformed by the successful

use of deep learning technology, such as speech recognition and com-

puter vision; and (3) the application areas that have the potential to be

impacted significantly by deep learning and that have been experienc-

ing research growth, including natural language and text processing,

information retrieval, and multimodal information processing empow-

ered by multi-task deep learning.

L. Deng and D. Yu. Deep Learning: Methods and Applications. Foundations and
Trends R© in Signal Processing, vol. 7, nos. 3–4, pp. 197–387, 2013.

DOI: 10.1561/2000000039.
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Introduction

1.1 Definitions and background

Since 2006, deep structured learning, or more commonly called deep

learning or hierarchical learning, has emerged as a new area of machine

learning research [20, 163]. During the past several years, the techniques

developed from deep learning research have already been impacting

a wide range of signal and information processing work within the

traditional and the new, widened scopes including key aspects of

machine learning and artificial intelligence; see overview articles in

[7, 20, 24, 77, 94, 161, 412], and also the media coverage of this progress

in [6, 237]. A series of workshops, tutorials, and special issues or con-

ference special sessions in recent years have been devoted exclusively

to deep learning and its applications to various signal and information

processing areas. These include:

• 2008 NIPS Deep Learning Workshop;

• 2009 NIPS Workshop on Deep Learning for Speech Recognition

and Related Applications;

• 2009 ICML Workshop on Learning Feature Hierarchies;

198
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• 2011 ICML Workshop on Learning Architectures, Representa-

tions, and Optimization for Speech and Visual Information Pro-

cessing;

• 2012 ICASSP Tutorial on Deep Learning for Signal and Informa-

tion Processing;

• 2012 ICML Workshop on Representation Learning;

• 2012 Special Section on Deep Learning for Speech and Language

Processing in IEEE Transactions on Audio, Speech, and Lan-

guage Processing (T-ASLP, January);

• 2010, 2011, and 2012 NIPS Workshops on Deep Learning and

Unsupervised Feature Learning;

• 2013 NIPS Workshops on Deep Learning and on Output Repre-

sentation Learning;

• 2013 Special Issue on Learning Deep Architectures in IEEE

Transactions on Pattern Analysis and Machine Intelligence

(T-PAMI, September).

• 2013 International Conference on Learning Representations;

• 2013 ICML Workshop on Representation Learning Challenges;

• 2013 ICML Workshop on Deep Learning for Audio, Speech, and

Language Processing;

• 2013 ICASSP Special Session on New Types of Deep Neural Net-

work Learning for Speech Recognition and Related Applications.

The authors have been actively involved in deep learning research and

in organizing or providing several of the above events, tutorials, and

editorials. In particular, they gave tutorials and invited lectures on

this topic at various places. Part of this monograph is based on their

tutorials and lecture material.

Before embarking on describing details of deep learning, let’s pro-

vide necessary definitions. Deep learning has various closely related

definitions or high-level descriptions:

• Definition 1 : A class of machine learning techniques that

exploit many layers of non-linear information processing for



200 Introduction

supervised or unsupervised feature extraction and transforma-

tion, and for pattern analysis and classification.

• Definition 2 : “A sub-field within machine learning that is based

on algorithms for learning multiple levels of representation in

order to model complex relationships among data. Higher-level

features and concepts are thus defined in terms of lower-level

ones, and such a hierarchy of features is called a deep architec-

ture. Most of these models are based on unsupervised learning of

representations.” (Wikipedia on “Deep Learning” around March

2012.)

• Definition 3 : “A sub-field of machine learning that is based

on learning several levels of representations, corresponding to a

hierarchy of features or factors or concepts, where higher-level

concepts are defined from lower-level ones, and the same lower-

level concepts can help to define many higher-level concepts. Deep

learning is part of a broader family of machine learning methods

based on learning representations. An observation (e.g., an image)

can be represented in many ways (e.g., a vector of pixels), but

some representations make it easier to learn tasks of interest (e.g.,

is this the image of a human face?) from examples, and research

in this area attempts to define what makes better representations

and how to learn them.” (Wikipedia on “Deep Learning” around

February 2013.)

• Definition 4 : “Deep learning is a set of algorithms in machine

learning that attempt to learn in multiple levels, correspond-

ing to different levels of abstraction. It typically uses artificial

neural networks. The levels in these learned statistical models

correspond to distinct levels of concepts, where higher-level con-

cepts are defined from lower-level ones, and the same lower-

level concepts can help to define many higher-level concepts.”

See Wikipedia http://en.wikipedia.org/wiki/Deep_learning on

“Deep Learning” as of this most recent update in October 2013.

• Definition 5 : “Deep Learning is a new area of Machine Learning

research, which has been introduced with the objective of moving

Machine Learning closer to one of its original goals: Artificial
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Intelligence. Deep Learning is about learning multiple levels of

representation and abstraction that help to make sense of data

such as images, sound, and text.” See https://github.com/lisa-

lab/DeepLearningTutorials

Note that the deep learning that we discuss in this monograph is

about learning with deep architectures for signal and information pro-

cessing. It is not about deep understanding of the signal or infor-

mation, although in many cases they may be related. It should also

be distinguished from the overloaded term in educational psychology:

“Deep learning describes an approach to learning that is character-

ized by active engagement, intrinsic motivation, and a personal search

for meaning.” http://www.blackwellreference.com/public/tocnode?id=

g9781405161251_chunk_g97814051612516_ss1-1

Common among the various high-level descriptions of deep learning

above are two key aspects: (1) models consisting of multiple layers

or stages of nonlinear information processing; and (2) methods for

supervised or unsupervised learning of feature representation at

successively higher, more abstract layers. Deep learning is in the

intersections among the research areas of neural networks, artificial

intelligence, graphical modeling, optimization, pattern recognition,

and signal processing. Three important reasons for the popularity

of deep learning today are the drastically increased chip processing

abilities (e.g., general-purpose graphical processing units or GPGPUs),

the significantly increased size of data used for training, and the recent

advances in machine learning and signal/information processing

research. These advances have enabled the deep learning methods

to effectively exploit complex, compositional nonlinear functions, to

learn distributed and hierarchical feature representations, and to make

effective use of both labeled and unlabeled data.

Active researchers in this area include those at University of

Toronto, New York University, University of Montreal, Stanford

University, Microsoft Research (since 2009), Google (since about

2011), IBM Research (since about 2011), Baidu (since 2012), Facebook

(since 2013), UC-Berkeley, UC-Irvine, IDIAP, IDSIA, University

College London, University of Michigan, Massachusetts Institute of
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Technology, University of Washington, and numerous other places; see

http://deeplearning.net/deep-learning-research-groups-and-labs/ for

a more detailed list. These researchers have demonstrated empirical

successes of deep learning in diverse applications of computer vision,

phonetic recognition, voice search, conversational speech recognition,

speech and image feature coding, semantic utterance classifica-

tion, natural language understanding, hand-writing recognition, audio

processing, information retrieval, robotics, and even in the analysis of

molecules that may lead to discovery of new drugs as reported recently

by [237].

In addition to the reference list provided at the end of this mono-

graph, which may be outdated not long after the publication of this

monograph, there are a number of excellent and frequently updated

reading lists, tutorials, software, and video lectures online at:

• http://deeplearning.net/reading-list/

• http://ufldl.stanford.edu/wiki/index.php/

UFLDL_Recommended_Readings

• http://www.cs.toronto.edu/∼hinton/

• http://deeplearning.net/tutorial/

• http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial

1.2 Organization of this monograph

The rest of the monograph is organized as follows:

In Section 2, we provide a brief historical account of deep learning,

mainly from the perspective of how speech recognition technology has

been hugely impacted by deep learning, and how the revolution got

started and has gained and sustained immense momentum.

In Section 3, a three-way categorization scheme for a majority of

the work in deep learning is developed. They include unsupervised,

supervised, and hybrid deep learning networks, where in the latter cat-

egory unsupervised learning (or pre-training) is exploited to assist the

subsequent stage of supervised learning when the final tasks pertain to

classification. The supervised and hybrid deep networks often have the
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same type of architectures or the structures in the deep networks, but

the unsupervised deep networks tend to have different architectures

from the others.

Sections 4–6 are devoted, respectively, to three popular types of

deep architectures, one from each of the classes in the three-way cat-

egorization scheme reviewed in Section 3. In Section 4, we discuss

in detail deep autoencoders as a prominent example of the unsuper-

vised deep learning networks. No class labels are used in the learning,

although supervised learning methods such as back-propagation are

cleverly exploited when the input signal itself, instead of any label

information of interest to possible classification tasks, is treated as the

“supervision” signal.

In Section 5, as a major example in the hybrid deep network cate-

gory, we present in detail the deep neural networks with unsupervised

and largely generative pre-training to boost the effectiveness of super-

vised training. This benefit is found critical when the training data

are limited and no other appropriate regularization approaches (i.e.,

dropout) are exploited. The particular pre-training method based on

restricted Boltzmann machines and the related deep belief networks

described in this section has been historically significant as it ignited

the intense interest in the early applications of deep learning to speech

recognition and other information processing tasks. In addition to this

retrospective review, subsequent development and different paths from

the more recent perspective are discussed.

In Section 6, the basic deep stacking networks and their several

extensions are discussed in detail, which exemplify the discrimina-

tive, supervised deep learning networks in the three-way classification

scheme. This group of deep networks operate in many ways that are

distinct from the deep neural networks. Most notably, they use target

labels in constructing each of many layers or modules in the overall

deep networks. Assumptions made about part of the networks, such as

linear output units in each of the modules, simplify the learning algo-

rithms and enable a much wider variety of network architectures to

be constructed and learned than the networks discussed in Sections 4

and 5.
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In Sections 7–11, we select a set of typical and successful applica-

tions of deep learning in diverse areas of signal and information process-

ing. In Section 7, we review the applications of deep learning to speech

recognition, speech synthesis, and audio processing. Subsections sur-

rounding the main subject of speech recognition are created based on

several prominent themes on the topic in the literature.

In Section 8, we present recent results of applying deep learning to

language modeling and natural language processing, where we highlight

the key recent development in embedding symbolic entities such as

words into low-dimensional, continuous-valued vectors.

Section 9 is devoted to selected applications of deep learning to

information retrieval including web search.

In Section 10, we cover selected applications of deep learning to

image object recognition in computer vision. The section is divided to

two main classes of deep learning approaches: (1) unsupervised feature

learning, and (2) supervised learning for end-to-end and joint feature

learning and classification.

Selected applications to multi-modal processing and multi-task

learning are reviewed in Section 11, divided into three categories

according to the nature of the multi-modal data as inputs to the deep

learning systems. For single-modality data of speech, text, or image,

a number of recent multi-task learning studies based on deep learning

methods are reviewed in the literature.

Finally, conclusions are given in Section 12 to summarize the mono-

graph and to discuss future challenges and directions.

This short monograph contains the material expanded from two

tutorials that the authors gave, one at APSIPA in October 2011 and

the other at ICASSP in March 2012. Substantial updates have been

made based on the literature up to January 2014 (including the mate-

rials presented at NIPS-2013 and at IEEE-ASRU-2013 both held in

December of 2013), focusing on practical aspects in the fast develop-

ment of deep learning research and technology during the interim years.
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Some Historical Context of Deep Learning

Until recently, most machine learning and signal processing techniques

had exploited shallow-structured architectures. These architectures

typically contain at most one or two layers of nonlinear feature transfor-

mations. Examples of the shallow architectures are Gaussian mixture

models (GMMs), linear or nonlinear dynamical systems, conditional

random fields (CRFs), maximum entropy (MaxEnt) models, support

vector machines (SVMs), logistic regression, kernel regression, multi-

layer perceptrons (MLPs) with a single hidden layer including extreme

learning machines (ELMs). For instance, SVMs use a shallow linear

pattern separation model with one or zero feature transformation layer

when the kernel trick is used or otherwise. (Notable exceptions are the

recent kernel methods that have been inspired by and integrated with

deep learning; e.g. [9, 53, 102, 377]). Shallow architectures have been

shown effective in solving many simple or well-constrained problems,

but their limited modeling and representational power can cause dif-

ficulties when dealing with more complicated real-world applications

involving natural signals such as human speech, natural sound and

language, and natural image and visual scenes.

205
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Human information processing mechanisms (e.g., vision and audi-

tion), however, suggest the need of deep architectures for extracting

complex structure and building internal representation from rich sen-

sory inputs. For example, human speech production and perception

systems are both equipped with clearly layered hierarchical structures

in transforming the information from the waveform level to the linguis-

tic level [11, 12, 74, 75]. In a similar vein, the human visual system is

also hierarchical in nature, mostly in the perception side but interest-

ingly also in the “generation” side [43, 126, 287]). It is natural to believe

that the state-of-the-art can be advanced in processing these types of

natural signals if efficient and effective deep learning algorithms can be

developed.

Historically, the concept of deep learning originated from artifi-

cial neural network research. (Hence, one may occasionally hear the

discussion of “new-generation neural networks.”) Feed-forward neural

networks or MLPs with many hidden layers, which are often referred

to as deep neural networks (DNNs), are good examples of the models

with a deep architecture. Back-propagation (BP), popularized in 1980s,

has been a well-known algorithm for learning the parameters of these

networks. Unfortunately BP alone did not work well in practice then

for learning networks with more than a small number of hidden layers

(see a review and analysis in [20, 129]. The pervasive presence of local

optima and other optimization challenges in the non-convex objective

function of the deep networks are the main source of difficulties in the

learning. BP is based on local gradient information, and starts usu-

ally at some random initial points. It often gets trapped in poor local

optima when the batch-mode or even stochastic gradient descent BP

algorithm is used. The severity increases significantly as the depth of

the networks increases. This difficulty is partially responsible for steer-

ing away most of the machine learning and signal processing research

from neural networks to shallow models that have convex loss func-

tions (e.g., SVMs, CRFs, and MaxEnt models), for which the global

optimum can be efficiently obtained at the cost of reduced modeling

power, although there had been continuing work on neural networks

with limited scale and impact (e.g., [42, 45, 87, 168, 212, 263, 304].
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The optimization difficulty associated with the deep models was

empirically alleviated when a reasonably efficient, unsupervised learn-

ing algorithm was introduced in the two seminar papers [163, 164].

In these papers, a class of deep generative models, called deep belief

network (DBN), was introduced. A DBN is composed of a stack of

restricted Boltzmann machines (RBMs). A core component of the

DBN is a greedy, layer-by-layer learning algorithm which optimizes

DBN weights at time complexity linear to the size and depth of the

networks. Separately and with some surprise, initializing the weights

of an MLP with a correspondingly configured DBN often produces

much better results than that with the random weights. As such,

MLPs with many hidden layers, or deep neural networks (DNN),

which are learned with unsupervised DBN pre-training followed by

back-propagation fine-tuning is sometimes also called DBNs in the

literature [67, 260, 258]. More recently, researchers have been more

careful in distinguishing DNNs from DBNs [68, 161], and when DBN

is used to initialize the training of a DNN, the resulting network is

sometimes called the DBN–DNN [161].

Independently of the RBM development, in 2006 two alternative,

non-probabilistic, non-generative, unsupervised deep models were pub-

lished. One is an autoencoder variant with greedy layer-wise training

much like the DBN training [28]. Another is an energy-based model

with unsupervised learning of sparse over-complete representations

[297]. They both can be effectively used to pre-train a deep neural

network, much like the DBN.

In addition to the supply of good initialization points, the DBN

comes with other attractive properties. First, the learning algorithm

makes effective use of unlabeled data. Second, it can be interpreted

as a probabilistic generative model. Third, the over-fitting problem,

which is often observed in the models with millions of parameters such

as DBNs, and the under-fitting problem, which occurs often in deep

networks, can be effectively alleviated by the generative pre-training

step. An insightful analysis on what kinds of speech information DBNs

can capture is provided in [259].

Using hidden layers with many neurons in a DNN significantly

improves the modeling power of the DNN and creates many closely
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optimal configurations. Even if parameter learning is trapped into a

local optimum, the resulting DNN can still perform quite well since

the chance of having a poor local optimum is lower than when a small

number of neurons are used in the network. Using deep and wide neu-

ral networks, however, would cast great demand to the computational

power during the training process and this is one of the reasons why it

is not until recent years that researchers have started exploring both

deep and wide neural networks in a serious manner.

Better learning algorithms and different nonlinearities also con-

tributed to the success of DNNs. Stochastic gradient descend (SGD)

algorithms are the most efficient algorithm when the training set is large

and redundant as is the case for most applications [39]. Recently, SGD is

shown to be effective for parallelizing over many machines with an asyn-

chronous mode [69] or over multiple GPUs through pipelined BP [49].

Further, SGD can often allow the training to jump out of local optima

due to the noisy gradients estimated from a single or a small batch of

samples. Other learning algorithms such as Hessian free [195, 238] or

Krylov subspace methods [378] have shown a similar ability.

For the highly non-convex optimization problem of DNN learn-

ing, it is obvious that better parameter initialization techniques will

lead to better models since optimization starts from these initial mod-

els. What was not obvious, however, is how to efficiently and effec-

tively initialize DNN parameters and how the use of large amounts of

training data can alleviate the learning problem until more recently

[28, 20, 100, 64, 68, 163, 164, 161, 323, 376, 414]. The DNN parameter

initialization technique that attracted the most attention is the unsu-

pervised pretraining technique proposed in [163, 164] discussed earlier.

The DBN pretraining procedure is not the only one that allows

effective initialization of DNNs. An alternative unsupervised approach

that performs equally well is to pretrain DNNs layer by layer by con-

sidering each pair of layers as a de-noising autoencoder regularized by

setting a random subset of the input nodes to zero [20, 376]. Another

alternative is to use contractive autoencoders for the same purpose by

favoring representations that are more robust to the input variations,

i.e., penalizing the gradient of the activities of the hidden units with

respect to the inputs [303]. Further, Ranzato et al. [294] developed the
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sparse encoding symmetric machine (SESM), which has a very similar

architecture to RBMs as building blocks of a DBN. The SESM may also

be used to effectively initialize the DNN training. In addition to unsu-

pervised pretraining using greedy layer-wise procedures [28, 164, 295],

the supervised pretraining, or sometimes called discriminative pretrain-

ing, has also been shown to be effective [28, 161, 324, 432] and in cases

where labeled training data are abundant performs better than the

unsupervised pretraining techniques. The idea of the discriminative

pretraining is to start from a one-hidden-layer MLP trained with the

BP algorithm. Every time when we want to add a new hidden layer we

replace the output layer with a randomly initialized new hidden and

output layer and train the whole new MLP (or DNN) using the BP

algorithm. Different from the unsupervised pretraining techniques, the

discriminative pretraining technique requires labels.

Researchers who apply deep learning to speech and vision analyzed

what DNNs capture in speech and images. For example, [259] applied

a dimensionality reduction method to visualize the relationship among

the feature vectors learned by the DNN. They found that the DNN’s

hidden activity vectors preserve the similarity structure of the feature

vectors at multiple scales, and that this is especially true for the fil-

terbank features. A more elaborated visualization method, based on

a top-down generative process in the reverse direction of the classi-

fication network, was recently developed by Zeiler and Fergus [436]

for examining what features the deep convolutional networks capture

from the image data. The power of the deep networks is shown to

be their ability to extract appropriate features and do discrimination

jointly [210].

As another way to concisely introduce the DNN, we can review the

history of artificial neural networks using a “hype cycle,” which is a

graphic representation of the maturity, adoption and social applica-

tion of specific technologies. The 2012 version of the hype cycles graph

compiled by Gartner is shown in Figure 2.1. It intends to show how

a technology or application will evolve over time (according to five

phases: technology trigger, peak of inflated expectations, trough of dis-

illusionment, slope of enlightenment, and plateau of production), and

to provide a source of insight to manage its deployment.
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Figure 2.1: Gartner hyper cycle graph representing five phases of a technology
(http://en.wikipedia.org/wiki/Hype_cycle).

Applying the Gartner hyper cycle to the artificial neural network

development, we created Figure 2.2 to align different generations of

the neural network with the various phases designated in the hype

cycle. The peak activities (“expectations” or “media hype” on the ver-

tical axis) occurred in late 1980s and early 1990s, corresponding to the

height of what is often referred to as the “second generation” of neu-

ral networks. The deep belief network (DBN) and a fast algorithm for

training it were invented in 2006 [163, 164]. When the DBN was used

to initialize the DNN, the learning became highly effective and this has

inspired the subsequent fast growing research (“enlightenment” phase

shown in Figure 2.2). Applications of the DBN and DNN to industry-

scale speech feature extraction and speech recognition started in 2009

when leading academic and industrial researchers with both deep learn-

ing and speech expertise collaborated; see reviews in [89, 161]. This

collaboration fast expanded the work of speech recognition using deep

learning methods to increasingly larger successes [94, 161, 323, 414],
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Figure 2.2: Applying Gartner hyper cycle graph to analyzing the history of artificial
neural network technology (We thank our colleague John Platt during 2012 for
bringing this type of “Hyper Cycle” graph to our attention for concisely analyzing
the neural network history).

many of which will be covered in the remainder of this monograph.

The height of the “plateau of productivity” phase, not yet reached in

our opinion, is expected to be higher than that in the stereotypical

curve (circled with a question mark in Figure 2.2), and is marked by

the dashed line that moves straight up.

We show in Figure 2.3 the history of speech recognition, which

has been compiled by NIST, organized by plotting the word error rate

(WER) as a function of time for a number of increasingly difficult

speech recognition tasks. Note all WER results were obtained using the

GMM–HMM technology. When one particularly difficult task (Switch-

board) is extracted from Figure 2.3, we see a flat curve over many

years using the GMM–HMM technology but after the DNN technology

is used the WER drops sharply (marked by the red star in Figure 2.4).
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Figure 2.3: The famous NIST plot showing the historical speech recognition error
rates achieved by the GMM-HMM approach for a number of increasingly difficult
speech recognition tasks. Data source: http://itl.nist.gov/iad/mig/publications/
ASRhistory/index.html

Figure 2.4: Extracting WERs of one task from Figure 2.3 and adding the signifi-
cantly lower WER (marked by the star) achieved by the DNN technology.
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In the next section, an overview is provided on the various architec-

tures of deep learning, followed by more detailed expositions of a few

widely studied architectures and methods and by selected applications

in signal and information processing including speech and audio, natu-

ral language, information retrieval, vision, and multi-modal processing.



3

Three Classes of Deep Learning Networks

3.1 A three-way categorization

As described earlier, deep learning refers to a rather wide class of

machine learning techniques and architectures, with the hallmark

of using many layers of non-linear information processing that are

hierarchical in nature. Depending on how the architectures and tech-

niques are intended for use, e.g., synthesis/generation or recognition/

classification, one can broadly categorize most of the work in this area

into three major classes:

1. Deep networks for unsupervised or generative learn-

ing, which are intended to capture high-order correlation of the

observed or visible data for pattern analysis or synthesis purposes

when no information about target class labels is available. Unsu-

pervised feature or representation learning in the literature refers

to this category of the deep networks. When used in the genera-

tive mode, may also be intended to characterize joint statistical

distributions of the visible data and their associated classes when

available and being treated as part of the visible data. In the

214
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latter case, the use of Bayes rule can turn this type of generative

networks into a discriminative one for learning.

2. Deep networks for supervised learning, which are intended

to directly provide discriminative power for pattern classifica-

tion purposes, often by characterizing the posterior distributions

of classes conditioned on the visible data. Target label data are

always available in direct or indirect forms for such supervised

learning. They are also called discriminative deep networks.

3. Hybrid deep networks, where the goal is discrimination which

is assisted, often in a significant way, with the outcomes of genera-

tive or unsupervised deep networks. This can be accomplished by

better optimization or/and regularization of the deep networks

in category (2). The goal can also be accomplished when discrim-

inative criteria for supervised learning are used to estimate the

parameters in any of the deep generative or unsupervised deep

networks in category (1) above.

Note the use of “hybrid” in (3) above is different from that used

sometimes in the literature, which refers to the hybrid systems for

speech recognition feeding the output probabilities of a neural network

into an HMM [17, 25, 42, 261].

By the commonly adopted machine learning tradition (e.g.,

Chapter 28 in [264], and Reference [95], it may be natural to just clas-

sify deep learning techniques into deep discriminative models (e.g., deep

neural networks or DNNs, recurrent neural networks or RNNs, convo-

lutional neural networks or CNNs, etc.) and generative/unsupervised

models (e.g., restricted Boltzmann machine or RBMs, deep belief

networks or DBNs, deep Boltzmann machines (DBMs), regularized

autoencoders, etc.). This two-way classification scheme, however,

misses a key insight gained in deep learning research about how gener-

ative or unsupervised-learning models can greatly improve the training

of DNNs and other deep discriminative or supervised-learning mod-

els via better regularization or optimization. Also, deep networks for

unsupervised learning may not necessarily need to be probabilistic or be

able to meaningfully sample from the model (e.g., traditional autoen-

coders, sparse coding networks, etc.). We note here that more recent
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studies have generalized the traditional denoising autoencoders so that

they can be efficiently sampled from and thus have become genera-

tive models [5, 24, 30]. Nevertheless, the traditional two-way classifi-

cation indeed points to several key differences between deep networks

for unsupervised and supervised learning. Compared between the two,

deep supervised-learning models such as DNNs are usually more effi-

cient to train and test, more flexible to construct, and more suitable for

end-to-end learning of complex systems (e.g., no approximate inference

and learning such as loopy belief propagation). On the other hand, the

deep unsupervised-learning models, especially the probabilistic gener-

ative ones, are easier to interpret, easier to embed domain knowledge,

easier to compose, and easier to handle uncertainty, but they are typi-

cally intractable in inference and learning for complex systems. These

distinctions are retained also in the proposed three-way classification

which is hence adopted throughout this monograph.

Below we review representative work in each of the above three

categories, where several basic definitions are summarized in Table 3.1.

Applications of these deep architectures, with varied ways of learn-

ing including supervised, unsupervised, or hybrid, are deferred to Sec-

tions 7–11.

3.2 Deep networks for unsupervised or generative learning

Unsupervised learning refers to no use of task specific supervision infor-

mation (e.g., target class labels) in the learning process. Many deep net-

works in this category can be used to meaningfully generate samples by

sampling from the networks, with examples of RBMs, DBNs, DBMs,

and generalized denoising autoencoders [23], and are thus generative

models. Some networks in this category, however, cannot be easily sam-

pled, with examples of sparse coding networks and the original forms

of deep autoencoders, and are thus not generative in nature.

Among the various subclasses of generative or unsupervised deep

networks, the energy-based deep models are the most common [28, 20,

213, 268]. The original form of the deep autoencoder [28, 100, 164],

which we will give more detail about in Section 4, is a typical example
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Table 3.1: Basic deep learning terminologies.

Deep Learning: a class of machine learning techniques, where many

layers of information processing stages in hierarchical supervised

architectures are exploited for unsupervised feature learning and for

pattern analysis/classification. The essence of deep learning is to

compute hierarchical features or representations of the observational

data, where the higher-level features or factors are defined from

lower-level ones. The family of deep learning methods have been

growing increasingly richer, encompassing those of neural networks,

hierarchical probabilistic models, and a variety of unsupervised and

supervised feature learning algorithms.

Deep belief network (DBN): probabilistic generative models

composed of multiple layers of stochastic, hidden variables. The top

two layers have undirected, symmetric connections between them.

The lower layers receive top-down, directed connections from the

layer above.

Boltzmann machine (BM): a network of symmetrically connected,

neuron-like units that make stochastic decisions about whether to be

on or off.

Restricted Boltzmann machine (RBM): a special type of BM

consisting of a layer of visible units and a layer of hidden units with

no visible-visible or hidden-hidden connections.

Deep neural network (DNN): a multilayer perceptron with many

hidden layers, whose weights are fully connected and are often

(although not always) initialized using either an unsupervised or a

supervised pretraining technique. (In the literature prior to 2012, a

DBN was often used incorrectly to mean a DNN.)

Deep autoencoder: a “discriminative” DNN whose output targets

are the data input itself rather than class labels; hence an

unsupervised learning model. When trained with a denoising

criterion, a deep autoencoder is also a generative model and can be

sampled from.

(Continued)
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Table 3.1: (Continued)

Distributed representation: an internal representation of the

observed data in such a way that they are modeled as being explained

by the interactions of many hidden factors. A particular factor

learned from configurations of other factors can often generalize well

to new configurations. Distributed representations naturally occur in

a “connectionist” neural network, where a concept is represented by a

pattern of activity across a number of units and where at the same

time a unit typically contributes to many concepts. One key

advantage of such many-to-many correspondence is that they provide

robustness in representing the internal structure of the data in terms

of graceful degradation and damage resistance. Another key

advantage is that they facilitate generalizations of concepts and

relations, thus enabling reasoning abilities.

of this unsupervised model category. Most other forms of deep autoen-

coders are also unsupervised in nature, but with quite different prop-

erties and implementations. Examples are transforming autoencoders

[160], predictive sparse coders and their stacked version, and de-noising

autoencoders and their stacked versions [376].

Specifically, in de-noising autoencoders, the input vectors are first

corrupted by, for example, randomly selecting a percentage of the

inputs and setting them to zeros or adding Gaussian noise to them.

Then the parameters are adjusted for the hidden encoding nodes to

reconstruct the original, uncorrupted input data using criteria such as

mean square reconstruction error and KL divergence between the orig-

inal inputs and the reconstructed inputs. The encoded representations

transformed from the uncorrupted data are used as the inputs to the

next level of the stacked de-noising autoencoder.

Another prominent type of deep unsupervised models with genera-

tive capability is the deep Boltzmann machine or DBM [131, 315, 316,

348]. A DBM contains many layers of hidden variables, and has no con-

nections between the variables within the same layer. This is a special

case of the general Boltzmann machine (BM), which is a network of
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symmetrically connected units that are on or off based on a stochastic

mechanism. While having a simple learning algorithm, the general BMs

are very complex to study and very slow to train. In a DBM, each layer

captures complicated, higher-order correlations between the activities

of hidden features in the layer below. DBMs have the potential of learn-

ing internal representations that become increasingly complex, highly

desirable for solving object and speech recognition problems. Further,

the high-level representations can be built from a large supply of unla-

beled sensory inputs and very limited labeled data can then be used to

only slightly fine-tune the model for a specific task at hand.

When the number of hidden layers of DBM is reduced to one, we

have restricted Boltzmann machine (RBM). Like DBM, there are no

hidden-to-hidden and no visible-to-visible connections in the RBM. The

main virtue of RBM is that via composing many RBMs, many hidden

layers can be learned efficiently using the feature activations of one

RBM as the training data for the next. Such composition leads to deep

belief network (DBN), which we will describe in more detail, together

with RBMs, in Section 5.

The standard DBN has been extended to the factored higher-order

Boltzmann machine in its bottom layer, with strong results obtained

for phone recognition [64] and for computer vision [296]. This model,

called the mean-covariance RBM or mcRBM, recognizes the limitation

of the standard RBM in its ability to represent the covariance structure

of the data. However, it is difficult to train mcRBMs and to use them

at the higher levels of the deep architecture. Further, the strong results

published are not easy to reproduce. In the architecture described by

Dahl et al. [64], the mcRBM parameters in the full DBN are not fine-

tuned using the discriminative information, which is used for fine tuning

the higher layers of RBMs, due to the high computational cost. Subse-

quent work showed that when speaker adapted features are used, which

remove more variability in the features, mcRBM was not helpful [259].

Another representative deep generative network that can be used

for unsupervised (as well as supervised) learning is the sum–product

network or SPN [125, 289]. An SPN is a directed acyclic graph with

the observed variables as leaves, and with sum and product operations

as internal nodes in the deep network. The “sum” nodes give mixture
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models, and the “product” nodes build up the feature hierarchy. Prop-

erties of “completeness” and “consistency” constrain the SPN in a desir-

able way. The learning of SPNs is carried out using the EM algorithm

together with back-propagation. The learning procedure starts with a

dense SPN. It then finds an SPN structure by learning its weights,

where zero weights indicate removed connections. The main difficulty

in learning SPNs is that the learning signal (i.e., the gradient) quickly

dilutes when it propagates to deep layers. Empirical solutions have been

found to mitigate this difficulty as reported in [289]. It was pointed

out in that early paper that despite the many desirable generative

properties in the SPN, it is difficult to fine tune the parameters using

the discriminative information, limiting its effectiveness in classifica-

tion tasks. However, this difficulty has been overcome in the subse-

quent work reported in [125], where an efficient BP-style discriminative

training algorithm for SPN was presented. Importantly, the standard

gradient descent, based on the derivative of the conditional likelihood,

suffers from the same gradient diffusion problem well known in the

regular DNNs. The trick to alleviate this problem in learning SPNs

is to replace the marginal inference with the most probable state of

the hidden variables and to propagate gradients through this “hard”

alignment only. Excellent results on small-scale image recognition tasks

were reported by Gens and Domingo [125].

Recurrent neural networks (RNNs) can be considered as another

class of deep networks for unsupervised (as well as supervised) learning,

where the depth can be as large as the length of the input data sequence.

In the unsupervised learning mode, the RNN is used to predict the data

sequence in the future using the previous data samples, and no addi-

tional class information is used for learning. The RNN is very powerful

for modeling sequence data (e.g., speech or text), but until recently

they had not been widely used partly because they are difficult to train

to capture long-term dependencies, giving rise to gradient vanishing or

gradient explosion problems which were known in early 1990s [29, 167].

These problems can now be dealt with more easily [24, 48, 85, 280].

Recent advances in Hessian-free optimization [238] have also partially

overcome this difficulty using approximated second-order information

or stochastic curvature estimates. In the more recent work [239], RNNs
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that are trained with Hessian-free optimization are used as a genera-

tive deep network in the character-level language modeling tasks, where

gated connections are introduced to allow the current input characters

to predict the transition from one latent state vector to the next. Such

generative RNN models are demonstrated to be well capable of gener-

ating sequential text characters. More recently, Bengio et al. [22] and

Sutskever [356] have explored variations of stochastic gradient descent

optimization algorithms in training generative RNNs and shown that

these algorithms can outperform Hessian-free optimization methods.

Mikolov et al. [248] have reported excellent results on using RNNs for

language modeling. Most recently, Mesnil et al. [242] and Yao et al.

[403] reported the success of RNNs in spoken language understanding.

We will review this set of work in Section 8.

There has been a long history in speech recognition research

where human speech production mechanisms are exploited to con-

struct dynamic and deep structure in probabilistic generative models;

for a comprehensive review, see the monograph by Deng [76]. Specif-

ically, the early work described in [71, 72, 83, 84, 99, 274] generalized

and extended the conventional shallow and conditionally independent

HMM structure by imposing dynamic constraints, in the form of poly-

nomial trajectory, on the HMM parameters. A variant of this approach

has been more recently developed using different learning techniques

for time-varying HMM parameters and with the applications extended

to speech recognition robustness [431, 416]. Similar trajectory HMMs

also form the basis for parametric speech synthesis [228, 326, 439, 438].

Subsequent work added a new hidden layer into the dynamic model to

explicitly account for the target-directed, articulatory-like properties in

human speech generation [45, 73, 74, 83, 96, 75, 90, 231, 232, 233, 251,

282]. More efficient implementation of this deep architecture with hid-

den dynamics is achieved with non-recursive or finite impulse response

(FIR) filters in more recent studies [76, 107, 105]. The above deep-

structured generative models of speech can be shown as special cases

of the more general dynamic network model and even more general

dynamic graphical models [35, 34]. The graphical models can comprise

many hidden layers to characterize the complex relationship between

the variables in speech generation. Armed with powerful graphical
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modeling tool, the deep architecture of speech has more recently been

successfully applied to solve the very difficult problem of single-channel,

multi-talker speech recognition, where the mixed speech is the visible

variable while the un-mixed speech becomes represented in a new hid-

den layer in the deep generative architecture [301, 391]. Deep generative

graphical models are indeed a powerful tool in many applications due

to their capability of embedding domain knowledge. However, they are

often used with inappropriate approximations in inference, learning,

prediction, and topology design, all arising from inherent intractability

in these tasks for most real-world applications. This problem has been

addressed in the recent work of Stoyanov et al. [352], which provides

an interesting direction for making deep generative graphical models

potentially more useful in practice in the future. An even more drastic

way to deal with this intractability was proposed recently by Bengio

et al. [30], where the need to marginalize latent variables is avoided

altogether.

The standard statistical methods used for large-scale speech recog-

nition and understanding combine (shallow) hidden Markov models

for speech acoustics with higher layers of structure representing dif-

ferent levels of natural language hierarchy. This combined hierarchical

model can be suitably regarded as a deep generative architecture, whose

motivation and some technical detail may be found in Section 7 of the

recent monograph [200] on “Hierarchical HMM” or HHMM. Related

models with greater technical depth and mathematical treatment can

be found in [116] for HHMM and [271] for Layered HMM. These early

deep models were formulated as directed graphical models, missing the

key aspect of “distributed representation” embodied in the more recent

deep generative networks of the DBN and DBM discussed earlier in this

chapter. Filling in this missing aspect would help improve these gener-

ative models.

Finally, dynamic or temporally recursive generative models based

on neural network architectures can be found in [361] for human motion

modeling, and in [344, 339] for natural language and natural scene pars-

ing. The latter model is particularly interesting because the learning

algorithms are capable of automatically determining the optimal model

structure. This contrasts with other deep architectures such as DBN
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where only the parameters are learned while the architectures need to

be pre-defined. Specifically, as reported in [344], the recursive struc-

ture commonly found in natural scene images and in natural language

sentences can be discovered using a max-margin structure prediction

architecture. It is shown that the units contained in the images or sen-

tences are identified, and the way in which these units interact with

each other to form the whole is also identified.

3.3 Deep networks for supervised learning

Many of the discriminative techniques for supervised learning in signal

and information processing are shallow architectures such as HMMs

[52, 127, 147, 186, 188, 290, 394, 418] and conditional random fields

(CRFs) [151, 155, 281, 400, 429, 446]. A CRF is intrinsically a shal-

low discriminative architecture, characterized by the linear relationship

between the input features and the transition features. The shallow

nature of the CRF is made most clear by the equivalence established

between the CRF and the discriminatively trained Gaussian models

and HMMs [148]. More recently, deep-structured CRFs have been devel-

oped by stacking the output in each lower layer of the CRF, together

with the original input data, onto its higher layer [428]. Various ver-

sions of deep-structured CRFs are successfully applied to phone recog-

nition [410], spoken language identification [428], and natural language

processing [428]. However, at least for the phone recognition task, the

performance of deep-structured CRFs, which are purely discrimina-

tive (non-generative), has not been able to match that of the hybrid

approach involving DBN, which we will take on shortly.

Morgan [261] gives an excellent review on other major existing

discriminative models in speech recognition based mainly on the tra-

ditional neural network or MLP architecture using back-propagation

learning with random initialization. It argues for the importance of

both the increased width of each layer of the neural networks and the

increased depth. In particular, a class of deep neural network models

forms the basis of the popular “tandem” approach [262], where the out-

put of the discriminatively learned neural network is treated as part
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of the observation variable in HMMs. For some representative recent

work in this area, see [193, 283].

In more recent work of [106, 110, 218, 366, 377], a new deep learning

architecture, sometimes called deep stacking network (DSN), together

with its tensor variant [180, 181] and its kernel version [102], are

developed that all focus on discrimination with scalable, parallelizable,

block-wise learning relying on little or no generative component. We

will describe this type of discriminative deep architecture in detail in

Section 6.

As discussed in the preceding section, recurrent neural networks

(RNNs) have been used as a generative model; see also the neural pre-

dictive model [87] with a similar “generative” mechanism. RNNs can

also be used as a discriminative model where the output is a label

sequence associated with the input data sequence. Note that such dis-

criminative RNNs or sequence models were applied to speech a long

time ago with limited success. In [17], an HMM was trained jointly with

the neural networks, with a discriminative probabilistic training crite-

rion. In [304], a separate HMM was used to segment the sequence during

training, and the HMM was also used to transform the RNN classifi-

cation results into label sequences. However, the use of the HMM for

these purposes does not take advantage of the full potential of RNNs.

A set of new models and methods were proposed more recently

in [133, 134, 135, 136] that enable the RNNs themselves to perform

sequence classification while embedding the long-short-term memory

into the model, removing the need for pre-segmenting the training data

and for post-processing the outputs. Underlying this method is the idea

of interpreting RNN outputs as the conditional distributions over all

possible label sequences given the input sequences. Then, a differen-

tiable objective function can be derived to optimize these conditional

distributions over the correct label sequences, where the segmentation

of the data is performed automatically by the algorithm. The effective-

ness of this method has been demonstrated in handwriting recognition

tasks and in a small speech task [135, 136] to be discussed in more

detail in Section 7 of this monograph.

Another type of discriminative deep architecture is the convo-

lutional neural network (CNN), in which each module consists of
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a convolutional layer and a pooling layer. These modules are often

stacked up with one on top of another, or with a DNN on top of it, to

form a deep model [212]. The convolutional layer shares many weights,

and the pooling layer subsamples the output of the convolutional layer

and reduces the data rate from the layer below. The weight sharing

in the convolutional layer, together with appropriately chosen pool-

ing schemes, endows the CNN with some “invariance” properties (e.g.,

translation invariance). It has been argued that such limited “invari-

ance” or equi-variance is not adequate for complex pattern recognition

tasks and more principled ways of handling a wider range of invariance

may be needed [160]. Nevertheless, CNNs have been found highly effec-

tive and been commonly used in computer vision and image recognition

[54, 55, 56, 57, 69, 198, 209, 212, 434]. More recently, with appropri-

ate changes from the CNN designed for image analysis to that taking

into account speech-specific properties, the CNN is also found effec-

tive for speech recognition [1, 2, 3, 81, 94, 312]. We will discuss such

applications in more detail in Section 7 of this monograph.

It is useful to point out that the time-delay neural network (TDNN)

[202, 382] developed for early speech recognition is a special case and

predecessor of the CNN when weight sharing is limited to one of the

two dimensions, i.e., time dimension, and there is no pooling layer. It

was not until recently that researchers have discovered that the time-

dimension invariance is less important than the frequency-dimension

invariance for speech recognition [1, 3, 81]. A careful analysis on the

underlying reasons is described in [81], together with a new strategy for

designing the CNN’s pooling layer demonstrated to be more effective

than all previous CNNs in phone recognition.

It is also useful to point out that the model of hierarchical tempo-

ral memory (HTM) [126, 143, 142] is another variant and extension of

the CNN. The extension includes the following aspects: (1) Time or

temporal dimension is introduced to serve as the “supervision” infor-

mation for discrimination (even for static images); (2) Both bottom-up

and top-down information flows are used, instead of just bottom-up in

the CNN; and (3) A Bayesian probabilistic formalism is used for fusing

information and for decision making.
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Finally, the learning architecture developed for bottom-up,

detection-based speech recognition proposed in [214] and developed

further since 2004, notably in [330, 332, 427] using the DBN–DNN

technique, can also be categorized in the discriminative or supervised-

learning deep architecture category. There is no intent and mecha-

nism in this architecture to characterize the joint probability of data

and recognition targets of speech attributes and of the higher-level

phone and words. The most current implementation of this approach

is based on the DNN, or neural networks with many layers using back-

propagation learning. One intermediate neural network layer in the

implementation of this detection-based framework explicitly represents

the speech attributes, which are simplified entities from the “atomic”

units of speech developed in the early work of [101, 355]. The simpli-

fication lies in the removal of the temporally overlapping properties

of the speech attributes or articulatory-like features. Embedding such

more realistic properties in the future work is expected to improve the

accuracy of speech recognition further.

3.4 Hybrid deep networks

The term “hybrid” for this third category refers to the deep architecture

that either comprises or makes use of both generative and discrimina-

tive model components. In the existing hybrid architectures published

in the literature, the generative component is mostly exploited to help

with discrimination, which is the final goal of the hybrid architecture.

How and why generative modeling can help with discrimination can be

examined from two viewpoints [114]:

• The optimization viewpoint where generative models trained in

an unsupervised fashion can provide excellent initialization points

in highly nonlinear parameter estimation problems (The com-

monly used term of “pre-training” in deep learning has been intro-

duced for this reason); and/or

• The regularization perspective where the unsupervised-learning

models can effectively provide a prior on the set of functions

representable by the model.
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The study reported in [114] provided an insightful analysis and exper-

imental evidence supporting both of the viewpoints above.

The DBN, a generative, deep network for unsupervised learning dis-

cussed in Section 3.2, can be converted to and used as the initial model

of a DNN for supervised learning with the same network structure,

which is further discriminatively trained or fine-tuned using the target

labels provided. When the DBN is used in this way we consider this

DBN–DNN model as a hybrid deep model, where the model trained

using unsupervised data helps to make the discriminative model effec-

tive for supervised learning. We will review details of the discriminative

DNN for supervised learning in the context of RBM/DBN generative,

unsupervised pre-training in Section 5.

Another example of the hybrid deep network is developed in [260],

where the DNN weights are also initialized from a generative DBN

but are further fine-tuned with a sequence-level discriminative crite-

rion, which is the conditional probability of the label sequence given

the input feature sequence, instead of the frame-level criterion of cross-

entropy commonly used. This can be viewed as a combination of the

static DNN with the shallow discriminative architecture of CRF. It can

be shown that such a DNN–CRF is equivalent to a hybrid deep architec-

ture of DNN and HMM whose parameters are learned jointly using the

full-sequence maximum mutual information (MMI) criterion between

the entire label sequence and the input feature sequence. A closely

related full-sequence training method designed and implemented for

much larger tasks is carried out more recently with success for a shallow

neural network [194] and for a deep one [195, 353, 374]. We note that

the origin of the idea for joint training of the sequence model (e.g., the

HMM) and of the neural network came from the early work of [17, 25],

where shallow neural networks were trained with small amounts of

training data and with no generative pre-training.

Here, it is useful to point out a connection between the above

pretraining/fine-tuning strategy associated with hybrid deep networks

and the highly popular minimum phone error (MPE) training technique

for the HMM (see [147, 290] for an overview). To make MPE training

effective, the parameters need to be initialized using an algorithm (e.g.,

Baum-Welch algorithm) that optimizes a generative criterion (e.g.,
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maximum likelihood). This type of methods, which uses maximum-

likelihood trained parameters to assist in the discriminative HMM

training can be viewed as a “hybrid” approach to train the shallow

HMM model.

Along the line of using discriminative criteria to train parameters in

generative models as in the above HMM training example, we here dis-

cuss the same method applied to learning other hybrid deep networks.

In [203], the generative model of RBM is learned using the discrimina-

tive criterion of posterior class-label probabilities. Here the label vector

is concatenated with the input data vector to form the combined vis-

ible layer in the RBM. In this way, RBM can serve as a stand-alone

solution to classification problems and the authors derived a discrim-

inative learning algorithm for RBM as a shallow generative model. In

the more recent work by Ranzato et al. [298], the deep generative model

of DBN with gated Markov random field (MRF) at the lowest level is

learned for feature extraction and then for recognition of difficult image

classes including occlusions. The generative ability of the DBN facil-

itates the discovery of what information is captured and what is lost

at each level of representation in the deep model, as demonstrated in

[298]. A related study on using the discriminative criterion of empirical

risk to train deep graphical models can be found in [352].

A further example of hybrid deep networks is the use of generative

models of DBNs to pre-train deep convolutional neural networks (deep

CNNs) [215, 216, 217]. Like the fully connected DNN discussed ear-

lier, pre-training also helps to improve the performance of deep CNNs

over random initialization. Pre-training DNNs or CNNs using a set of

regularized deep autoencoders [24], including denoising autoencoders,

contractive autoencoders, and sparse autoencoders, is also a similar

example of the category of hybrid deep networks.

The final example given here for hybrid deep networks is based

on the idea and work of [144, 267], where one task of discrimination

(e.g., speech recognition) produces the output (text) that serves

as the input to the second task of discrimination (e.g., machine

translation). The overall system, giving the functionality of speech

translation — translating speech in one language into text in another

language — is a two-stage deep architecture consisting of both
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generative and discriminative elements. Both models of speech

recognition (e.g., HMM) and of machine translation (e.g., phrasal

mapping and non-monotonic alignment) are generative in nature, but

their parameters are all learned for discrimination of the ultimate

translated text given the speech data. The framework described in

[144] enables end-to-end performance optimization in the overall deep

architecture using the unified learning framework initially published

in [147]. This hybrid deep learning approach can be applied to not

only speech translation but also all speech-centric and possibly other

information processing tasks such as speech information retrieval,

speech understanding, cross-lingual speech/text understanding and

retrieval, etc. (e.g., [88, 94, 145, 146, 366, 398]).

In the next three chapters, we will elaborate on three prominent

types of models for deep learning, one from each of the three classes

reviewed in this chapter. These are chosen to serve the tutorial purpose,

given their simplicity of the architectural and mathematical descrip-

tions. The three architectures described in the following three chapters

may not be interpreted as the most representative and influential work

in each of the three classes.
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Deep Autoencoders — Unsupervised Learning

This section and the next two will each select one prominent example

deep network for each of the three categories outlined in Section 3.

Here we begin with the category of the deep models designed mainly

for unsupervised learning.

4.1 Introduction

The deep autoencoder is a special type of the DNN (with no class

labels), whose output vectors have the same dimensionality as the input

vectors. It is often used for learning a representation or effective encod-

ing of the original data, in the form of input vectors, at hidden layers.

Note that the autoencoder is a nonlinear feature extraction method

without using class labels. As such, the features extracted aim at con-

serving and better representing information instead of performing clas-

sification tasks, although sometimes these two goals are correlated.

An autoencoder typically has an input layer which represents the

original data or input feature vectors (e.g., pixels in image or spec-

tra in speech), one or more hidden layers that represent the trans-

formed feature, and an output layer which matches the input layer for
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reconstruction. When the number of hidden layers is greater than one,

the autoencoder is considered to be deep. The dimension of the hidden

layers can be either smaller (when the goal is feature compression) or

larger (when the goal is mapping the feature to a higher-dimensional

space) than the input dimension.

An autoencoder is often trained using one of the many back-

propagation variants, typically the stochastic gradient descent method.

Though often reasonably effective, there are fundamental problems

when using back-propagation to train networks with many hidden

layers. Once the errors get back-propagated to the first few layers,

they become minuscule, and training becomes quite ineffective. Though

more advanced back-propagation methods help with this problem to

some degree, it still results in slow learning and poor solutions, espe-

cially with limited amounts of training data. As mentioned in the pre-

vious chapters, the problem can be alleviated by pre-training each layer

as a simple autoencoder [28, 163]. This strategy has been applied to

construct a deep autoencoder to map images to short binary code for

fast, content-based image retrieval, to encode documents (called seman-

tic hashing), and to encode spectrogram-like speech features which we

review below.

4.2 Use of deep autoencoders to extract speech features

Here we review a set of work, some of which was published in [100],

in developing an autoencoder for extracting binary speech codes from

the raw speech spectrogram data in an unsupervised manner (i.e., no

speech class labels). The discrete representations in terms of a binary

code extracted by this model can be used in speech information retrieval

or as bottleneck features for speech recognition.

A deep generative model of patches of spectrograms that con-

tain 256 frequency bins and 1, 3, 9, or 13 frames is illustrated in

Figure 4.1. An undirected graphical model called a Gaussian-Bernoulli

RBM is built that has one visible layer of linear variables with

Gaussian noise and one hidden layer of 500 to 3000 binary latent

variables. After learning the Gaussian-Bernoulli RBM, the activation
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Figure 4.1: The architecture of the deep autoencoder used in [100] for extracting
binary speech codes from high-resolution spectrograms. [after [100], @Elsevier].

probabilities of its hidden units are treated as the data for training

another Bernoulli-Bernoulli RBM. These two RBM’s can then be com-

posed to form a deep belief net (DBN) in which it is easy to infer the

states of the second layer of binary hidden units from the input in a

single forward pass. The DBN used in this work is illustrated on the left

side of Figure 4.1, where the two RBMs are shown in separate boxes.

(See more detailed discussions on the RBM and DBN in Section 5).

The deep autoencoder with three hidden layers is formed by

“unrolling” the DBN using its weight matrices. The lower layers of

this deep autoencoder use the matrices to encode the input and the

upper layers use the matrices in reverse order to decode the input.

This deep autoencoder is then fine-tuned using error back-propagation

to minimize the reconstruction error, as shown on the right side of Fig-

ure 4.1. After learning is complete, any variable-length spectrogram
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can be encoded and reconstructed as follows. First, N consecutive

overlapping frames of 256-point log power spectra are each normalized

to zero-mean and unit-variance across samples per feature to provide

the input to the deep autoencoder. The first hidden layer then uses the

logistic function to compute real-valued activations. These real values

are fed to the next, coding layer to compute “codes.” The real-valued

activations of hidden units in the coding layer are quantized to be

either zero or one with 0.5 as the threshold. These binary codes are

then used to reconstruct the original spectrogram, where individual

fixed-frame patches are reconstructed first using the two upper layers

of network weights. Finally, the standard overlap-and-add technique in

signal processing is used to reconstruct the full-length speech spectro-

gram from the outputs produced by applying the deep autoencoder to

every possible window of N consecutive frames. We show some illus-

trative encoding and reconstruction examples below.

Figure 4.2: Top to Bottom: The ordinal spectrogram; reconstructions using input
window sized of N = 1, 3, 9, and 13 while forcing the coding units to take values of
zero one (i.e., a binary code) . [after [100], @Elsevier].
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At the top of Figure 4.2 is the original, un-coded speech, followed

by the speech utterances reconstructed from the binary codes (zero

or one) at the 312 unit bottleneck code layer with encoding window

lengths of N = 1, 3, 9, and 13, respectively. The lower reconstruction

errors for N = 9 and N = 13 are clearly seen.

Encoding error of the deep autoencoder is qualitatively examined

in comparison with the more traditional codes via vector quantization

(VQ). Figure 4.3 shows various aspects of the encoding errors. At the

top is the original speech utterance’s spectrogram. The next two spec-

trograms are the blurry reconstruction from the 312-bit VQ and the

much more faithful reconstruction from the 312-bit deep autoencoder.

Coding errors from both coders, plotted as a function of time, are

Figure 4.3: Top to bottom: The original spectrogram from the test set; reconstruc-
tion from the 312-bit VQ coder; reconstruction from the 312-bit autoencoder; coding
errors as a function of time for the VQ coder (blue) and autoencoder (red); spec-
trogram of the VQ coder residual; spectrogram of the deep autoencoder’s residual.
[after [100], @ Elsevier].
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Figure 4.4: The original speech spectrogram and the reconstructed counterpart.
A total of 312 binary codes are with one for each single frame.

shown below the spectrograms, demonstrating that the autoencoder

(red curve) is producing lower errors than the VQ coder (blue curve)

throughout the entire span of the utterance. The final two spectrograms

show detailed coding error distributions over both time and frequency

bins.

Figures 4.4 to 4.10 show additional examples (unpublished) for the

original un-coded speech spectrograms and their reconstructions using

the deep autoencoder. They give a diverse number of binary codes for

either a single or three consecutive frames in the spectrogram samples.

4.3 Stacked denoising autoencoders

In early years of autoencoder research, the encoding layer had smaller

dimensions than the input layer. However, in some applications, it is

desirable that the encoding layer is wider than the input layer, in which

case techniques are needed to prevent the neural network from learning

the trivial identity mapping function. One of the reasons for using a
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Figure 4.5: Same as Figure 4.4 but with a different TIMIT speech utterance.

Figure 4.6: The original speech spectrogram and the reconstructed counterpart.
A total of 936 binary codes are used for three adjacent frames.
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Figure 4.7: Same as Figure 4.6 but with a different TIMIT speech utterance.

Figure 4.8: Same as Figure 4.6 but with yet another TIMIT speech utterance.

higher dimension in the hidden or encoding layers than the input layer

is that it allows the autoencoder to capture a rich input distribution.

The trivial mapping problem discussed above can be prevented by

methods such as using sparseness constraints, or using the “dropout”

trick by randomly forcing certain values to be zero and thus introducing

distortions at the input data [376, 375] or at the hidden layers [166]. For



238 Deep Autoencoders — Unsupervised Learning

Figure 4.9: The original speech spectrogram and the reconstructed counterpart.
A total of 2000 binary codes with one for each single frame.

Figure 4.10: Same as Figure 4.9 but with a different TIMIT speech utterance.

example, in the stacked denoising autoencoder detailed in [376], random

noises are added to the input data. This serves several purposes. First,

by forcing the output to match the original undistorted input data the

model can avoid learning the trivial identity solution. Second, since

the noises are added randomly, the model learned would be robust to

the same kind of distortions in the test data. Third, since each distorted
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input sample is different, it greatly increases the training set size and

thus can alleviate the overfitting problem.

It is interesting to note that when the encoding and decoding

weights are forced to be the transpose of each other, such denoising

autoencoder with a single sigmoidal hidden layer is strictly equiva-

lent to a particular Gaussian RBM, but instead of training it by the

technique of contrastive divergence (CD) or persistent CD, it is trained

by a score matching principle, where the score is defined as the deriva-

tive of the log-density with respect to the input [375]. Furthermore,

Alain and Bengio [5] generalized this result to any parameterization

of the encoder and decoder with squared reconstruction error and

Gaussian corruption noise. They show that as the amount of noise

approaches zero, such models estimate the true score of the underly-

ing data generating distribution. Finally, Bengio et al. [30] show that

any denoising autoencoder is a consistent estimator of the underly-

ing data generating distribution within some family of distributions.

This is true for any parameterization of the autoencoder, for any

type of information-destroying corruption process with no constraint

on the noise level except being positive, and for any reconstruction

loss expressed as a conditional log-likelihood. The consistency of the

estimator is achieved by associating the denoising autoencoder with

a Markov chain whose stationary distribution is the distribution esti-

mated by the model, and this Markov chain can be used to sample

from the denoising autoencoder.

4.4 Transforming autoencoders

The deep autoencoder described above can extract faithful codes for

feature vectors due to many layers of nonlinear processing. However, the

code extracted in this way is transformation-variant. In other words,

the extracted code would change in ways chosen by the learner when the

input feature vector is transformed. Sometimes, it is desirable to have

the code change predictably to reflect the underlying transformation-

invariant property of the perceived content. This is the goal of the

transforming autoencoder proposed in [162] for image recognition.
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The building block of the transforming autoencoder is a “capsule,”

which is an independent sub-network that extracts a single parameter-

ized feature representing a single entity, be it visual or audio. A trans-

forming autoencoder receives both an input vector and a target output

vector, which is transformed from the input vector through a simple

global transformation mechanism; e.g., translation of an image and

frequency shift of speech (the latter due to the vocal tract length

difference). An explicit representation of the global transformation is

assumed known. The coding layer of the transforming autoencoder con-

sists of the outputs of several capsules.

During the training phase, the different capsules learn to extract

different entities in order to minimize the error between the final output

and the target.

In addition to the deep autoencoder architectures described here,

there are many other types of generative architectures in the literature,

all characterized by the use of data alone (i.e., free of classification

labels) to automatically derive higher-level features.
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Pre-Trained Deep Neural Networks — A Hybrid

In this section, we present the most widely used hybrid deep archi-

tecture — the pre-trained deep neural network (DNN), and discuss

the related techniques and building blocks including the RBM and

DBN. We discuss the DNN example here in the category of hybrid

deep networks before the examples in the category of deep networks for

supervised learning (Section 6). This is partly due to the natural flow

from the unsupervised learning models to the DNN as a hybrid model.

The discriminative nature of artificial neural networks for supervised

learning has been widely known, and thus would not be required for

understanding the hybrid nature of the DNN that uses unsupervised

pre-training to facilitate the subsequent discriminative fine tuning.

Part of the review in this chapter is based on recent publications in

[68, 161, 412].

5.1 Restricted Boltzmann machines

An RBM is a special type of Markov random field that has one layer of

(typically Bernoulli) stochastic hidden units and one layer of (typically

Bernoulli or Gaussian) stochastic visible or observable units. RBMs can
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be represented as bipartite graphs, where all visible units are connected

to all hidden units, and there are no visible–visible or hidden–hidden

connections.

In an RBM, the joint distribution p(v, h; θ) over the visible units v

and hidden units h, given the model parameters θ, is defined in terms

of an energy function E(v, h; θ) of

p(v, h; θ) =
exp(−E(v, h; θ))

Z
,

where Z =
∑

v

∑

h exp(−E(v, h; θ)) is a normalization factor or parti-

tion function, and the marginal probability that the model assigns to

a visible vector v is

p(v; θ) =

∑

h exp(−E(v, h; θ))

Z

For a Bernoulli (visible)-Bernoulli (hidden) RBM, the energy function

is defined as

E(v, h; θ) = −
I

∑

i=1

J
∑

j=1

wijvihj −
I

∑

i=1

bivi −
J

∑

j=1

ajhj .

where wij represents the symmetric interaction term between visible

unit vi and hidden unit hj , bi and aj the bias terms, and I and J are

the numbers of visible and hidden units. The conditional probabilities

can be efficiently calculated as

p(hj = 1|v; θ) = σ

(

I
∑

i=1

wijvi + aj

)

,

p(vi = 1|h; θ) = σ





J
∑

j=1

wijhj+bi



 ,

where σ(x) = 1/(1 + exp(−x)).

Similarly, for a Gaussian (visible)-Bernoulli (hidden) RBM, the

energy is

E(v, h; θ) = −
I

∑

i=1

J
∑

j=1

wijvihj −
1

2

I
∑

i=1

(vi − bi)
2 −

J
∑

j=1

ajhj ,
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The corresponding conditional probabilities become

p(hj = 1|v; θ) = σ

(

I
∑

i=1

wijvi+aj

)

,

p(vi|h; θ) = N





J
∑

j=1

wijhj + bi, 1



 ,

where vi takes real values and follows a Gaussian distribution with

mean
∑J

j=1 wijhj + bi and variance one. Gaussian-Bernoulli RBMs can

be used to convert real-valued stochastic variables to binary stochastic

variables, which can then be further processed using the Bernoulli-

Bernoulli RBMs.

The above discussion used two of the most common conditional

distributions for the visible data in the RBM — Gaussian (for

continuous-valued data) and binomial (for binary data). More general

types of distributions in the RBM can also be used. See [386] for the

use of general exponential-family distributions for this purpose.

Taking the gradient of the log likelihood log p(v; θ) we can derive

the update rule for the RBM weights as:

∆wij = Edata(vihj) − Emodel(vihj),

where Edata(vihj) is the expectation observed in the training set (with

hj sampled given vi according to the model), and Emodel(vihj) is that

same expectation under the distribution defined by the model. Unfor-

tunately, Emodel(vihj) is intractable to compute. The contrastive diver-

gence (CD) approximation to the gradient was the first efficient method

proposed to approximate this expected value, where Emodel(vihj) is

replaced by running the Gibbs sampler initialized at the data for one

or more steps. The steps in approximating Emodel(vihj) is summarized

as follows:

• Initialize v0 at data

• Sample h0 ∼ p(h|v0)

• Sample v1 ∼ p(v|h0)

• Sample h1 ∼ p(h|v1)
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Figure 5.1: A pictorial view of sampling from a RBM during RBM learning (cour-
tesy of Geoff Hinton).

Here, (v1, h1) is a sample from the model, as a very rough estimate

of Emodel(vihj). The use of (v1, h1) to approximate Emodel(vihj) gives

rise to the algorithm of CD-1. The sampling process can be pictorially

depicted in Figure 5.1.

Note that CD-k generalizes this to more steps of the Markov chain.

There are other techniques for estimating the log-likelihood gradient of

RBMs, in particular the stochastic maximum likelihood or persistent

contrastive divergence (PCD) [363, 406]. Both work better than CD

when using the RBM as a generative model.

Careful training of RBMs is essential to the success of applying

RBM and related deep learning techniques to solve practical problems.

See Technical Report [159] for a very useful practical guide for training

RBMs.

The RBM discussed above is both a generative and an unsupervised

model, which characterizes the input data distribution using hidden

variables and there is no label information involved. However, when

the label information is available, it can be used together with the

data to form the concatenated “data” set. Then the same CD learn-

ing can be applied to optimize the approximate “generative” objective

function related to data likelihood. Further, and more interestingly, a

“discriminative” objective function can be defined in terms of condi-

tional likelihood of labels. This discriminative RBM can be used to

“fine tune” RBM for classification tasks [203].

Ranzato et al. [297, 295] proposed an unsupervised learning algo-

rithm called sparse encoding symmetric machine (SESM), which is

quite similar to RBM. They both have a symmetric encoder and
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decoder, and a logistic nonlinearity on the top of the encoder. The main

difference is that whereas the RBM is trained using (very approximate)

maximum likelihood, SESM is trained by simply minimizing the aver-

age energy plus an additional code sparsity term. SESM relies on the

sparsity term to prevent flat energy surfaces, while RBM relies on an

explicit contrastive term in the loss, an approximation of the log par-

tition function. Another difference is in the coding strategy in that the

code units are “noisy” and binary in the RBM, while they are quasi-

binary and sparse in SESM. The use of SESM in pre-training DNNs

for speech recognition can be found in [284].

5.2 Unsupervised layer-wise pre-training

Here we describe how to stack up RBMs just described to form a

DBN as the basis for DNN’s pre-training. Before delving into details,

we first note that this procedure, proposed by Hinton and Salakhut-

dinov [163] is a more general technique of unsupervised layer-wise

pretraining. That is, not only RBMs can be stacked to form deep gen-

erative (or discriminative) networks, but other types of networks can

also do the same, such as autoencoder variants as proposed by Bengio

et al. [28].

Stacking a number of the RBMs learned layer by layer from bottom

up gives rise to a DBN, an example of which is shown in Figure 5.2. The

stacking procedure is as follows. After learning a Gaussian-Bernoulli

RBM (for applications with continuous features such as speech) or

Bernoulli-Bernoulli RBM (for applications with nominal or binary fea-

tures such as black-white image or coded text), we treat the activation

probabilities of its hidden units as the data for training the Bernoulli-

Bernoulli RBM one layer up. The activation probabilities of the second-

layer Bernoulli-Bernoulli RBM are then used as the visible data input

for the third-layer Bernoulli-Bernoulli RBM, and so on. Some theoret-

ical justification of this efficient layer-by-layer greedy learning strat-

egy is given in [163], where it is shown that the stacking procedure

above improves a variational lower bound on the likelihood of the train-

ing data under the composite model. That is, the greedy procedure
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Figure 5.2: An illustration of the DBN-DNN architecture.

above achieves approximate maximum likelihood learning. Note that

this learning procedure is unsupervised and requires no class label.

When applied to classification tasks, the generative pre-training

can be followed by or combined with other, typically discriminative,

learning procedures that fine-tune all of the weights jointly to improve

the performance of the network. This discriminative fine-tuning is per-

formed by adding a final layer of variables that represent the desired

outputs or labels provided in the training data. Then, the back-

propagation algorithm can be used to adjust or fine-tune the network

weights in the same way as for the standard feed-forward neural net-

work. What goes to the top, label layer of this DNN depends on the

application. For speech recognition applications, the top layer, denoted

by “l1, l2, . . . , lj , . . . , lL,” in Figure 5.2, can represent either syllables,

phones, sub-phones, phone states, or other speech units used in the

HMM-based speech recognition system.

The generative pre-training described above has produced better

phone and speech recognition results than random initialization on

a wide variety of tasks, which will be surveyed in Section 7. Fur-

ther research has also shown the effectiveness of other pre-training

strategies. As an example, greedy layer-by-layer training may be carried
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out with an additional discriminative term to the generative cost func-

tion at each level. And without generative pre-training, purely discrim-

inative training of DNNs from random initial weights using the tradi-

tional stochastic gradient decent method has been shown to work very

well when the scales of the initial weights are set carefully and the mini-

batch sizes, which trade off noisy gradients with convergence speed,

used in stochastic gradient decent are adapted prudently (e.g., with

an increasing size over training epochs). Also, randomization order in

creating mini-batches needs to be judiciously determined. Importantly,

it was found effective to learn a DNN by starting with a shallow neural

network with a single hidden layer. Once this has been trained discrimi-

natively (using early stops to avoid overfitting), a second hidden layer is

inserted between the first hidden layer and the labeled softmax output

units and the expanded deeper network is again trained discrimina-

tively. This can be continued until the desired number of hidden layers

is reached, after which a full backpropagation “fine tuning” is applied.

This discriminative “pre-training” procedure is found to work well in

practice [324, 419], especially with a reasonably large amount of train-

ing data. When the amount of training data is increased even more,

then some carefully designed random initialization methods can work

well also without using the above pre-training schemes.

In any case, pre-training based on the use of RBMs to stack up in

forming the DBN has been found to work well in most cases, regardless

of a large or small amount of training data. It is useful to point out

that there are other ways to perform pre-training in addition to the

use of RBMs and DBNs. For example, denoising autoencoders have

now been shown to be consistent estimators of the data generating

distribution [30]. Like RBMs, they are also shown to be generative

models from which one can sample. Unlike RBMs, however, an

unbiased estimator of the gradient of the training objective function

can be obtained by the denoising autoencoders, avoiding the need for

MCMC or variational approximations in the inner loop of training.

Therefore, the greedy layer-wise pre-training may be performed as

effectively by stacking the denoising autoencoders as by stacking the

RBMs each as a single-layer learner.
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Further, a general framework for layer-wise pre-training can be

found in many deep learning papers; e.g., Section 2 of [21]. This

includes, as a special case, the use of RBMs as the single-layer build-

ing block as discussed in this section. The more general framework

can cover the RBM/DBN as well as any other unsupervised feature

extractor. It can also cover the case of unsupervised pre-training of the

representation only followed by a separate stage of learning a classifier

on top of the unsupervised, pre-trained features [215, 216, 217].

5.3 Interfacing DNNs with HMMs

The pre-trained DNN as a prominent example of the hybrid deep

networks discussed so far in this chapter is a static classifier with

input vectors having a fixed dimensionality. However, many practi-

cal pattern recognition and information processing problems, including

speech recognition, machine translation, natural language understand-

ing, video processing and bio-information processing, require sequence

recognition. In sequence recognition, sometimes called classification

with structured input/output, the dimensionality of both inputs and

outputs are variable.

The HMM, based on dynamic programing operations, is a con-

venient tool to help port the strength of a static classifier to han-

dle dynamic or sequential patterns. Thus, it is natural to combine

feed-forward neural networks and HMMs to bridge the gap between

the static and sequence pattern recognition, as was done in the early

days of neural networks for speech recognition [17, 25, 42]. A popu-

lar architecture to fulfill this role with the use of the DNN is shown

in Figure 5.3. This architecture has been successfully used in speech

recognition experiments as reported in [67, 68].

It is important to note that the unique elasticity of temporal dynam-

ics of speech as elaborated in [45, 73, 76, 83] would require temporally
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Figure 5.3: Interface between DBN/DNN and HMM to form a DNN–HMM. This
architecture, developed at Microsoft, has been successfully used in speech recognition
experiments reported in [67, 68]. [after [67, 68], @IEEE].

correlated models more powerful than HMMs for the ultimate success

of speech recognition. Integrating such dynamic models that have real-

istic co-articulatory properties with the DNN and possibly other deep

learning models to form the coherent dynamic deep architecture is a

challenging new research direction.
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Deep Stacking Networks and Variants —

Supervised Learning

6.1 Introduction

While the DNN just reviewed has been shown to be extremely power-

ful in connection with performing recognition and classification tasks

including speech recognition and image classification, training a DNN

has proven to be difficult computationally. In particular, conventional

techniques for training DNNs at the fine tuning phase involve the uti-

lization of a stochastic gradient descent learning algorithm, which is

difficult to parallelize across machines. This makes learning at large

scale nontrivial. For example, it has been possible to use one single,

very powerful GPU machine to train DNN-based speech recognizers

with dozens to a few hundreds or thousands of hours of speech training

data with remarkable results. It is less clear, however, how to scale up

this success with much more training data. See [69] for recent work in

this direction.

Here we describe a new deep learning architecture, the deep stacking

network (DSN), which was originally designed with the learning scal-

ability problem in mind. This chapter is based in part on the recent

publications of [106, 110, 180, 181] with expanded discussions.

250
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The central idea of the DSN design relates to the concept of stack-

ing, as proposed and explored in [28, 44, 392], where simple modules of

functions or classifiers are composed first and then they are “stacked”

on top of each other in order to learn complex functions or classifiers.

Various ways of implementing stacking operations have been developed

in the past, typically making use of supervised information in the sim-

ple modules. The new features for the stacked classifier at a higher

level of the stacking architecture often come from concatenation of the

classifier output of a lower module and the raw input features. In [60],

the simple module used for stacking was a conditional random field

(CRF). This type of deep architecture was further developed with hid-

den states added for successful natural language and speech recognition

applications where segmentation information is unknown in the train-

ing data [429]. Convolutional neural networks, as in [185], can also be

considered as a stacking architecture but the supervision information

is typically not used until in the final stacking module.

The DSN architecture was originally presented in [106] and was

referred as deep convex network or DCN to emphasize the convex

nature of a major portion of the algorithm used for learning the net-

work. The DSN makes use of supervision information for stacking each

of the basic modules, which takes the simplified form of multilayer per-

ceptron. In the basic module, the output units are linear and the hidden

units are sigmoidal nonlinear. The linearity in the output units permits

highly efficient, parallelizable, and closed-form estimation (a result of

convex optimization) for the output network weights given the hidden

units’ activities. Due to the closed-form constraints between the input

and output weights, the input weights can also be elegantly estimated in

an efficient, parallelizable, batch-mode manner, which we will describe

in some detail in Section 6.3.

The name “convex” used in [106] accentuates the role of convex

optimization in learning the output network weights given the hidden

units’ activities in each basic module. It also points to the importance

of the closed-form constraints, derived from the convexity, between the

input and output weights. Such constraints make the learning of the

remaining network parameters (i.e., the input network weights) much

easier than otherwise, enabling batch-mode learning of the DSN that
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can be distributed over CPU clusters. And in more recent publications,

the DSN was used when the key operation of stacking is emphasized.

6.2 A basic architecture of the deep stacking network

A DSN, as shown in Figure 6.1, includes a variable number of layered

modules, wherein each module is a specialized neural network con-

sisting of a single hidden layer and two trainable sets of weights. In

Figure 6.1, only four such modules are illustrated, where each module

is shown with a separate color. In practice, up to a few hundreds of

modules have been efficiently trained and used in image and speech

classification experiments.

The lowest module in the DSN comprises a linear layer with a set of

linear input units, a hidden nonlinear layer with a set of nonlinear units,

and a second linear layer with a set of linear output units. A sigmoidal

nonlinearity is typically used in the hidden layer. However, other non-

linearities can also be used. If the DSN is utilized in connection with rec-

ognizing an image, the input units can correspond to a number of pixels

(or extracted features) in the image, and can be assigned values based at

least in part upon intensity values, RGB values, or the like correspond-

ing to the respective pixels. If the DSN is utilized in connection with

speech recognition, the set of input units may correspond to samples

of speech waveform, or the extracted features from speech waveforms,

such as power spectra or cepstral coefficients. The output units in the

linear output layer represent the targets of classification. For instance,

if the DSN is configured to perform digit recognition, then the output

units may be representative of the values 0, 1, 2, 3, and so forth up to 9

with a 0–1 coding scheme. If the DSN is configured to perform speech

recognition, then the output units may be representative of phones,

HMM states of phones, or context-dependent HMM states of phones.

The lower-layer weight matrix, which we denote by W , connects

the linear input layer and the hidden nonlinear layer. The upper-layer

weight matrix, which we denote by U , connects the nonlinear hid-

den layer with the linear output layer. The weight matrix U can be

determined through a closed-form solution given the weight matrix W

when the mean square error training criterion is used.
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Figure 6.1: A DSN architecture using input–output stacking. Four modules are
illustrated, each with a distinct color. Dashed lines denote copying layers. [after
[366], @IEEE].

As indicated above, the DSN includes a set of serially connected,

overlapping, and layered modules, wherein each module has the same

architecture — a linear input layer followed by a nonlinear hidden

layer, which is connected to a linear output layer. Note that the output

units of a lower module are a subset of the input units of an adjacent

higher module in the DSN. More specifically, in a second module that

is directly above the lowest module in the DSN, the input units can

include the output units of the lowest module and optionally the raw

input feature.

This pattern of including output units in a lower module as a

portion of the input units in an adjacent higher module and thereafter
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learning a weight matrix that describes connection weights between

hidden units and linear output units via convex optimization can con-

tinue for many modules. A resultant learned DSN may then be deployed

in connection with an automatic classification task such as frame-level

speech phone or state classification. Connecting the DSN’s output to an

HMM or any dynamic programming device enables continuous speech

recognition and other forms of sequential pattern recognition.

6.3 A method for learning the DSN weights

Here, we provide some technical details on how the use of linear out-

put units in the DSN facilitates the learning of the DSN weights. A

single module is used to illustrate the advantage for simplicity rea-

sons. First, it is clear that the upper layer weight matrix U can

be efficiently learned once the activity matrix H over all training

samples in the hidden layer is known. Let’s denote the training vec-

tors by X = [x1, . . . , xi, . . . , xN ], in which each vector is denoted by

xi = [x1i, . . . , xji, . . . , xDi]
T where D is the dimension of the input vec-

tor, which is a function of the block, and N is the total number of

training samples. Denote by L the number of hidden units and by C

the dimension of the output vector. Then the output of a DSN block is

yi = U T hi where hi = σ(W T xi) is the hidden-layer vector for sample

i, U is an L × C weight matrix at the upper layer of a block. W is a

D ×L weight matrix at the lower layer of a block, and σ(·) is a sigmoid

function. Bias terms are implicitly represented in the above formulation

if xi and hi are augmented with ones.

Given target vectors in the full training set with a total of

N samples, T = [t1, . . . , ti, . . . , tN ], where each vector is ti =

[t1i, · · · , tji, . . . , tCi]
T, the parameters U and W are learned so as to

minimize the average of the total square error below:

E =
1

2

∑

i

‖yi − ti‖
2 =

1

2
Tr[(Y − T )(Y − T )T]

where the output of the network is

yi = U Thi = U Tσ(W Txi) = Gi(UW )
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which depends on both weight matrices, as in the standard neural net.

Assuming H = [h1, . . . , hi, . . . , hN ] is known, or equivalently, W is

known. Then, setting the error derivative with respective to U to zero

gives

U = (HH T)−1HTT = F(W ), where hi = σ(W Txi).

This provides an explicit constraint between U and W which were

treated independently in the conventional backpropagation algorithm.

Now, given the equality constraint U = F (W ), let’s use Lagrangian

multiplier method to solve the optimization problem in learning W

Optimizing the Lagrangian:

E =
1

2

∑

i

‖Gi(U , W ) − ti‖
2 + λ‖U − F(W )‖

we can derive batch-mode gradient descent learning algorithm where

the gradient takes the following form [106, 413]:

∂E

∂W
= 2X [H T ◦ (1 − H )T ◦ [H †(HTT)(TH †) − TT(TH †)]],

where H † = H T(HH T)−1 is pseudo-inverse of H and symbol ◦

denotes element-wise multiplication.

Compared with conventional backpropagation, the above method

has less noise in gradient computation due to the exploitation of the

explicit constraint U = F (W ). As such, it was found experimentally

that, unlike backpropagation, batch training is effective, which aids

parallel learning of the DSN.

6.4 The tensor deep stacking network

The above DSN architecture has recently been generalized to its ten-

sorized version, which we call the tensor DSN (TDSN) [180, 181]. It

has the same scalability as the DSN in terms of parallelizability in

learning, but it generalizes the DSN by providing higher-order feature

interactions missing in the DSN.

The architecture of the TDSN is similar to that of the DSN in the

way that stacking operation is carried out. That is, modules of the
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Figure 6.2: Comparisons of a single module of a DSN (left) and that of a tensor
DSN (TDSN). Two equivalent forms of a TDSN module are shown to the right.
[after [180], @IEEE].

TDSN are stacked up in a similar way to form a deep architecture.

The differences between the TDSN and the DSN lie mainly in how

each module is constructed. In the DSN, we have one set of hidden

units forming a hidden layer, as denoted at the left panel of Figure 6.2.

In contrast, each module of a TDSN contains two independent hidden

layers, denoted as “Hidden 1” and “Hidden 2” in the middle and right

panels of Figure 6.2. As a result of this difference, the upper-layer

weights, denoted by “U” in Figure 6.2, changes from a matrix (a two

dimensional array) in the DSN to a tensor (a three dimensional array)

in the TDSN, shown as a cube labeled by “U” in the middle panel.

The tensor U has a three-way connection, one to the prediction

layer and the remaining to the two separate hidden layers. An equiva-

lent form of this TDSN module is shown in the right panel of Figure 6.2,

where the implicit hidden layer is formed by expanding the two sepa-

rate hidden layers into their outer product. The resulting large vector

contains all possible pair-wise products for the two sets of hidden-layer

vectors. This turns tensor U into a matrix again whose dimensions are

(1) size of the prediction layer; and (2) product of the two hidden lay-

ers’ sizes. Such equivalence enables the same convex optimization for

learning U developed for the DSN to be applied to learning tensor U.

Importantly, higher-order hidden feature interactions are enabled in

the TDSN via the outer product construction for the large, implicit

hidden layer.
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Figure 6.3: Stacking of TDSN modules by concatenating prediction vector with
input vector. [after [180], @IEEE].

Stacking the TDSN modules to form a deep architecture pursues in

a similar way to the DSN by concatenating various vectors. Two exam-

ples are shown in Figures 6.3 and 6.4. Note stacking by concatenating

hidden layers with input (Figure 6.4) would be difficult for the DSN

since its hidden layer tends to be too large for practical purposes.

6.5 The Kernelized deep stacking network

The DSN architecture has also recently been generalized to its ker-

nelized version, which we call the kernel-DSN (K-DSN) [102, 171]. The

motivation of the extension is to increase the size of the hidden units in

each DSN module, yet without increasing the size of the free parameters

to learn. This goal can be easily accomplished using the kernel trick,

resulting in the K-DSN which we describe below.
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Figure 6.4: Stacking of TDSN modules by concatenating two hidden-layers’ vectors
with the input vector.

In the DSN architecture reviewed above optimizing the weight

matrix U given the hidden layers’ outputs in each module is a con-

vex optimization problem. However, the problem of optimizing weight

matrix W and thus the whole network is nonconvex. In a recent exten-

sion of DSN, a tensor structure was imposed, shifting most of the

nonconvex learning burden for W to the convex optimization of U

[180, 181]. In the new K-DSN extension, we completely eliminate non-

convex learning for W using the kernel trick.

To derive the K-DSN architecture and the associated learning algo-

rithm, we first take the bottom module of DSN as an example and

generalize the sigmoidal hidden layer hi = σ(W T
xi) in the DSN mod-

ule into a generic nonlinear mapping function G(X) from the raw

input feature X , with high dimensionality in G(X) (possibly infinite)

determined only implicitly by a kernel function to be chosen. Second,
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we formulate the constrained optimization problem of

minimize
1

2
Tr[EET] +

C

2
U TU

subject to T − U TG(X) = E.

Third, we make use of dual representations of the above constrained

optimization problem to obtain U = GTa, where vector a takes the

following form:

a = (CI + K)−1T

and K = G(X)GT(X) is a symmetric kernel matrix with elements

Knm = gT(xn)g(xm).

Finally, for each new input vector x in the test or dev set, we obtain

the K-DSN (bottom) module’s prediction as

y(x) = U
Tg(x) = aTG(X)g(x) = kT(x)(CI + K)−1T ,

where the kernel vector k(x) is so defined that its elements have values

of kn(x) = k(xn, x) in which xn is a training sample and x is the

current test sample.

For lth module in K-DCN where l ≥ 2, the kernel matrix is

modified to

K = G([X |Y (l−1)| Y (l−2)| . . . Y (1)])GT([X |Y (l−1)|Y (l−2)| . . . Y (1)]).

The key advantages of K-DSN can be analyzed as follows. First,

unlike DSN which needs to compute hidden units’ output, the K-DSN

does not need to explicitly compute hidden units’ output G(X) or

G([X |Y (l−1)|Y (l−2)| . . . Y (1)]). When Gaussian kernels are used, ker-

nel trick equivalently gives us an infinite number of hidden units with-

out the need to compute them explicitly. Further, we no longer need

to learn the lower-layer weight matrix W in DSN as described in [102]

and the kernel parameter (e.g., the single variance parameter σ in the

Gaussian kernel) makes K-DSN much less subject to overfitting than

DSN. Figure 6.5 illustrates the basic architecture of a K-DSN using the

Gaussian kernel and using three modules.

The entire K-DSN with Gaussian kernels is characterized by two

sets of module-dependent hyper-parameters: σ(l) and C(l) the kernel
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Figure 6.5: An example architecture of the K-DSN with three modules each of
which uses a Gaussian kernel with different kernel parameters. [after [102], @IEEE].

smoothing parameter and regularization parameter, respectively. While

both parameters are intuitive and their tuning (via line search or leave-

one-out cross validation) is straightforward for a single bottom mod-

ule, tuning the full network with all the modules is more difficult. For

example, if the bottom module is tuned too well, then adding more

modules would not benefit much. In contrast, when the lower modules

are loosely tuned (i.e., relaxed from the results obtained from straight-

forward methods), the overall K-DSN often performs much better. The

experimental results reported by Deng et al. [102] are obtained using a

set of empirically determined tuning schedules to adaptively regularize

the K-DSN from bottom to top modules.

The K-DSN described here has a set of highly desirable proper-

ties from the machine learning and pattern recognition perspectives. It

combines the power of deep learning and kernel learning in a principled
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way and unlike the basic DSN there is no longer nonconvex optimiza-

tion problem involved in training the K-DSN. The computation steps

make the K-DSN easier to scale up for parallel computing in distributed

servers than the DSN and tensor-DSN. There are many fewer param-

eters in the K-DSN to tune than in the DSN, T-DSN, and DNN, and

there is no need for pre-training. It is found in the study of [102] that

regularization plays a much more important role in the K-DSN than

in the basic DSN and Tensor-DSN. Further, effective regularization

schedules developed for learning the K-DSN weights can be motivated

by intuitive insight from useful optimization tricks such as the heuristic

in Rprop or resilient backpropagation algorithm [302].

However, as inherent in any kernel method, the scalability becomes

an issue also for the K-DSN as the training and testing samples become

very large. A solution is provided in the study by Huang et al. [171],

based on the use of random Fourier features, which possess the strong

theoretical property of approximating the Gaussian kernel while render-

ing efficient computation in both training and evaluation of the K-DSN

with large training samples. It is empirically demonstrated that just like

the conventional K-DSN exploiting rigorous Gaussian kernels, the use

of random Fourier features also enables successful stacking of kernel

modules to form a deep architecture.
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Selected Applications in Speech

and Audio Processing

7.1 Acoustic modeling for speech recognition

As discussed in Section 2, speech recognition is the very first success-

ful application of deep learning methods at an industry scale. This

success is a result of close academic-industrial collaboration, initiated

at Microsoft Research, with the involved researchers identifying and

acutely attending to the industrial need for large-scale deployment

[68, 89, 109, 161, 323, 414]. It is also a result of carefully exploiting

the strengths of the deep learning and the then-state-of-the-art speech

recognition technology, including notably the highly efficient decoding

techniques.

Speech recognition has long been dominated by the GMM–HMM

method, with an underlying shallow or flat generative model of context-

dependent GMMs and HMMs (e.g., [92, 93, 187, 293]). Neural networks

once were a popular approach but had not been competitive with the

GMM–HMM [42, 87, 261, 382]. Generative models with deep hidden

dynamics likewise have also not been clearly competitive (e.g., [45, 73,

108, 282]).

Deep learning and the DNN started making their impact in speech

recognition in 2010, after close collaborations between academic and

262
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industrial researchers; see reviews in [89, 161]. The collaborative work

started in phone recognition tasks [89, 100, 135, 136, 257, 260, 258,

309, 311, 334], demonstrating the power of hybrid DNN architec-

tures discussed in Section 5 and of subsequent new architectures

with convolutional and recurrent structure. The work also showed

the importance of raw speech features of spectrogram — back from

the long-popular MFCC features toward but not yet reaching the

raw speech-waveform level [183, 327]. The collaboration continued to

large vocabulary tasks with more convincing, highly positive results

[67, 68, 94, 89, 161, 199, 195, 223, 323, 353, 399, 414]. The success in

large vocabulary speech recognition is in large part attributed to the

use of a very large DNN output layer structured in the same way as

the GMM–HMM speech units (senones), motivated partially by the

speech researchers’ desires to take advantage of the context-dependent

phone modeling techniques that have been proven to work well in the

GMM–HMM framework, and to keep the change of the already highly

efficient decoder software’s infrastructure developed for the GMM–

HMM systems to a minimum. In the meantime, this body of work

also demonstrated the possibility to reduce the need for the DBN-

like pre-training in effective learning of DNNs when a large amount

of labeled data is available. A combination of three factors helped

to quickly spread the success of deep learning in speech recognition

to the entire speech industry and academia: (1) significantly lowered

errors compared with the then-state-of-the-art GMM-HMM systems;

(2) minimal decoder changes required to deploy the new DNN-based

speech recognizer due to the use of senones as the DNN output; and

(3) reduced system complexity empowered by the DNN’s strong mod-

eling power. By the ICASSP-2013 timeframe, at least 15 major speech

recognition groups worldwide confirmed experimentally the success of

DNNs with very large tasks and with the use of raw speech spectral

features other than MFCCs. The most notable groups include major

industrial speech labs worldwide: Microsoft [49, 89, 94, 324, 399, 430],

IBM [195, 309, 311, 307, 317], Google [69, 150, 184, 223], iFlyTek, and

Baidu. Their results represent a new state-of-the-art in speech recog-

nition widely deployed in these companies’ voice products and services

with extensive media coverage in recent years.
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In the remainder of this chapter, we review a wide range of speech

recognition work based on deep learning methods according to several

major themes expressed in the section titles.

7.1.1 Back to primitive spectral features of speech

Deep learning, also referred as representation learning or (unsuper-

vised) feature learning, sets an important goal of automatic discovery

of powerful features from raw input data independent of application

domains. For speech feature learning and for speech recognition, this

goal is condensed to the use of primitive spectral or possibly wave-

form features. Over the past 30 years or so, largely “hand-crafted”

transformations of speech spectrogram have led to significant accuracy

improvements in the GMM-based HMM systems, despite the known

loss of information from the raw speech data. The most successful

transformation is the non-adaptive cosine transform, which gave rise to

Mel-frequency cepstral coefficients (MFCC) features. The cosine trans-

form approximately de-correlates feature components, which is impor-

tant for the use of GMMs with diagonal covariance matrices. However,

when GMMs are replaced by deep learning models such as DNNs, deep

belief nets (DBNs), or deep autoencoders, such de-correlation becomes

irrelevant due to the very strength of the deep learning methods in

modeling data correlation. As discussed in detail in Section 4, early

work of [100] demonstrated this strength and in particular the benefit

of spectrograms over MFCCs in effective coding of bottleneck speech

features using autoencoders in an unsupervised manner.

The pipeline from speech waveforms (raw speech features) to

MFCCs and their temporal differences goes through intermediate

stages of log-spectra and then (Mel-warped) filter-banks, with learned

parameters based on the data. An important character of deep learn-

ing is to move away from separate design of feature representations and

of classifiers. This idea of jointly learning classifier and feature trans-

formation for speech recognition was already explored in early studies

on the GMM–HMM based systems; e.g., [33, 50, 51, 299]. However,

greater speech recognition performance gain is obtained only recently
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in the recognizers empowered by deep learning methods. For example,

Mohamed et al. [259], Li et al. [221], and Deng et al. [94] showed signif-

icantly lowered speech recognition errors using large-scale DNNs when

moving from the MFCC features back to more primitive (Mel-scaled)

filter-bank features. These results indicate that DNNs can learn a bet-

ter transformation than the original fixed cosine transform from the

Mel-scaled filter-bank features.

Compared with MFCCs, “raw” spectral features not only retain

more information, but also enable the use of convolution and pool-

ing operations to represent and handle some typical speech variabil-

ity — e.g., vocal tract length differences across speakers, distinct speak-

ing styles causing formant undershoot or overshoot, etc. — expressed

explicitly in the frequency domain. For example, the convolutional neu-

ral network (CNN) can only be meaningfully and effectively applied to

speech recognition [1, 2, 3, 94] when spectral features, instead of MFCC

features, are used.

More recently, Sainath et al. [307] went one step further toward

raw features by learning the parameters that define the filter-banks

on power spectra. That is, rather than using Mel-warped filter-bank

features as the input features as in [1, 3, 50, 221], the weights corre-

sponding to the Mel-scale filters are only used to initialize the param-

eters, which are subsequently learned together with the rest of the

deep network as the classifier. The overall architecture of the jointly

learned feature generator and classifier is shown in Figure 7.1. Substan-

tial speech recognition error reduction is reported in [307].

It has been shown that not only learning the spectral aspect of

the features are beneficial for speech recognition, learning the tempo-

ral aspect of the features is also helpful [332]. Further, Yu et al. [426]

carefully analyzed the properties of different layers in the DNN as the

layer-wise extracted features starting from the lower raw filter-bank

features. They found that the improved speech recognition accuracy

achieved by the DNNs partially attributes to DNN’s ability to extract

discriminative internal representations that are robust to the many

sources of variability in speech signals. They also show that these rep-

resentations become increasingly insensitive to small perturbations in
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Figure 7.1: Illustration of the joint learning of filter parameters and the rest of the
deep network. [after [307], @IEEE].

the input at higher layers, which helps to achieve better speech recog-

nition accuracy.

To the extreme end, deep learning would promote to use the lowest

level of raw features of speech, i.e., speech sound waveforms, for speech

recognition, and learn the transformation automatically. As an initial

attempt toward this goal the study carried out by Jaitly and Hinton

[183] makes use of speech sound waves as the raw input feature to an

RBM with a convolutional structure as the classifier. With the use

of rectified linear units in the hidden layer [130], it is possible, to a

limited extent, to automatically normalize the amplitude variation

in the waveform signal. Although the final results are disappointing,

the work shows that much work is needed along this direction. For

example, just as demonstrated by Sainath et al. [307] that the use of

raw spectra as features requires additional attention in normalization

than MFCCs, the use of speech waveforms demands even more

attention in normalization [327]. This is true for both GMM-based

and deep learning based methods.
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7.1.2 The DNN–HMM architecture versus use of
DNN-derived features

Another major theme in the recent studies reported in the literature on

applying deep learning methods to speech recognition is two disparate

ways of using the DNN: (1) Direct applications of the DNN-HMM

architecture as discussed in Section 5.3 to perform speech recognition;

and (2) The use of DNNs to extract or derive features, which are then

fed into a separate sequence classifier. In the speech recognition lit-

erature [42], a system, in which a neural network’s output is directly

used to estimate the emission probabilities of an HMM, is often called

an ANN/HMM hybrid system. This should be distinguished from the

use of “hybrid” in Section 5 and throughout this monograph, where

a hybrid of unsupervised pre-training and of supervised fine tuning is

exploited to learn the parameters of DNNs.

7.1.2.1 The DNN–HMM architecture as a recognizer

An early DNN–HMM architecture [257] was presented at the NIPS

Workshop [109], developed, analyzed, and assisted by University of

Toronto and MSR speech researchers. In this work, a five-layer DNN

(called the DBN in the paper) was used to replace the Gaussian mixture

models in the GMM–HMM system, and the monophone state was used

as the modeling unit. Although monophones are generally accepted

as a weaker phonetic representation than triphones, the DNN–HMM

approach with monophones was shown to achieve higher phone recog-

nition accuracy than the state-of-the-art triphone GMM–HMM sys-

tems. Further, the DNN results were found to be slightly superior to

the then-best-performing single system based on the generative hid-

den trajectory model (HTM) in the literature [105, 108] evaluated on

the same, commonly used TIMIT task by many speech researchers

[107, 108, 274, 313]. At MSR, Redmond, the error patterns produced

by these two separate systems (the DNN vs. the HTM) were carefully

analyzed and found to be very different, reflecting distinct core capa-

bilities of the two approaches and igniting intensive further studies on

the DNN–HMM approach described below.
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MSR and University of Toronto researchers [67, 68, 414] extended

the DNN–HMM system from the monophone phonetic representation of

the DNN outputs to the triphone or context-dependent counterpart and

from phone recognition to large vocabulary speech recognition. Experi-

ments conducted at MSR on the 24-hour and 48-hour Bing mobile voice

search datasets collected under the real usage scenario demonstrate

that the context-dependent DNN–HMM significantly outperforms the

state-of-the-art GMM-HMM system. Three factors, in addition to the

use of the DNN, contribute to the success: the use of tied triphones

as the DNN modeling units, the use of the best available tri-phone

GMM–HMM to generate the tri-phone state alignment, and the effec-

tive exploitation of a long window of input features. Experiments also

indicate that the decoding time of a five-layer DNN–HMM is almost

the same as that of the state-of-the-art triphone GMM–HMM.

The success was quickly extended to large vocabulary speech recog-

nition tasks with hundreds and even thousands of hours of training set

and with thousands of tri-phone states, including the Switchboard and

Broadcast News databases, and Google’s voice search and YouTube

tasks [94, 161, 184, 309, 311, 324]. For example, on the Switchboard

benchmark, the context-dependent DNN–HMM (CD-DNN–HMM) is

shown to cut error by one third compared to the state-of-the-art GMM–

HMM system [323]. As a summary, we show in Table 7.1 some quanti-

tative recognition error rates in relatively early literature produced by

the basic DNN–HMM architecture in comparison with those by the pre-

vious state-of-the-art systems based on the generative models. (More

advanced architectures have produced better results than shown here).

Note from sub-tables A to D, the training data are increased approx-

imately one order of magnitude from one task to the next. Not only

the computation scales up well (i.e., almost linearly) with the training

size, but most importantly the relative error rate reduction increases

substantially with increasing amounts of training data — from approx-

imately 10% to 20%, and then to 30%. This set of results highlight the

strongly desirable properties of the DNN-based methods, despite the

conceptual simplicity of the overall DNN–HMM architecture and some

known weaknesses.
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Table 7.1: Comparisons of the DNN–HMM architecture with the generative model
(e.g., the GMM–HMM) in terms of phone or word recognition error rates. From
sub-tables A to D, the training data are increased approximately three orders of
magnitudes.

Features Setup Error Rates

A: TIMIT Phone recognition (3 hours of training)

GMM w. Hidden dynamics 24.8%

DNN 5 layers × 2048 23.0%

B: Voice Search SER (24–48 hours of training)

GMM MPE (760 24-mix) 36.2%

DNN 5 layers × 2048 30.1%

C: Switch Board WER (309 hours of training)

GMM BMMI (9K 40-mix) 23.6%

DNN 7 layers × 2048 15.8%

D: Switch Board WER (2000 hours of training)

GMM BMMI (18K 72-mix) 21.7%

DNN 7 layers × 2048 14.6%

7.1.2.2 The use of DNN-derived features in a separate recognizer

One clear weakness of the above DNN–HMM architecture for speech

recognition is that much of the highly effective techniques for the

GMM–HMM systems, including discriminative training (in both fea-

ture space and model space), unsupervised speaker adaptation, noise

robustness, and scalable batch training tools for big training data,

developed over the past 20 some years may not be directly applica-

ble to the new systems although similar techniques have been recently

developed for DNN–HMMs. To remedy this problem, the “tandem”

approach, developed originally by Hermansky et al. [154], has been

adopted, where the output of the neural networks in the form of pos-

terior probabilities for phone classes, are used, often in conjunction

with the acoustic features to form new augmented input features, in a

separate GMM–HMM system.
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This tandem approach is used by Vinyals and Ravuri [379] where a

DNN’s outputs are extracted to serve as the features for mismatched

noisy speech. It is reported that DNNs outperform the neural net-

works with a single hidden layer under the clean condition, but the

gains slowly diminish as the noise level is increased. Furthermore, using

MFCCs in conjunction with the posteriors computed from DNNs out-

performs using the DNN features alone in low to moderate noise con-

ditions with the tandem architecture. Comparisons of such tandem

approach with the direct DNN–HMM approach are made by Tüske

et al. [368] and Imseng et al. [182].

An alternative way of extracting the DNN features is to use the

“bottleneck” layer, which is narrower than other layers in the DNN,

to restrict the capacity of the network. Then, such bottleneck features

are fed to a GMM–HMM system, often in conjunction with the orig-

inal acoustic features and some dimensionality reduction techniques.

The bottleneck features derived from the DNN are believed to capture

information complementary to conventional acoustic features derived

from the short-time spectra of the input. A speech recognizer based on

the above bottleneck feature approach is built by Yu and Seltzer [425],

with the overall architecture shown in Figure 7.2. Several variants of

the DNN-based bottleneck-feature approach have been explored; see

details in [16, 137, 201, 285, 308, 368].

Yet another method to derive the features from the DNN is to feed

its top-most hidden layer as the new features for a separate speech

Figure 7.2: Illustration of the use of bottleneck (BN) features extracted from a
DNN in a GMM–HMM speech recognizer. [after [425], @IEEE].
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recognizer. In [399], a GMM–HMM is used as such a recognizer, and

the high-dimensional, DNN-derived features are subject to dimension-

ality reduction before feeding them into the recognizer. More recently,

a recurrent neural network (RNN) is used as the “backend” recognizer

receiving the high-dimensional, DNN-derived features as the input

without dimensionality reduction [48, 85]. These studies also show

that the use of the top-most hidden layer of the DNN as features is

better than other hidden layers and also better than the output layer

in terms of recognition accuracy for the RNN sequence classifier.

7.1.3 Noise robustness by deep learning

The study of noise robustness in speech recognition has a long his-

tory, mostly before the recent rise of deep learning. One major con-

tributing factor to the often observed brittleness of speech recogni-

tion technology is the inability of the standard GMM–HMM-based

acoustic model to accurately model noise-distorted speech test data

that differs in character from the training data, which may or may

not be distorted by noise. A wide range of noise-robust techniques

developed over past 30 years can be analyzed and categorized using

five different criteria: (1) feature-domain versus model-domain pro-

cessing, (2) the use of prior knowledge about the acoustic environ-

ment distortion, (3) the use of explicit environment-distortion mod-

els, (4) deterministic versus uncertainty processing, and (5) the use of

acoustic models trained jointly with the same feature enhancement or

model adaptation process used in the testing stage. See a comprehen-

sive review in [220] and some additional review literature or original

work in [4, 82, 119, 140, 230, 370, 404, 431, 444].

Many of the model-domain techniques developed for GMM–HMMs

(e.g., model-domain noise robustness techniques surveyed by Li et al.

[220] and Gales [119]) are not directly applicable to the new deep

learning models for speech recognition. The feature-domain techniques,

however, can be directly applied to the DNN system. A detailed inves-

tigation of the use of DNNs for noise robust speech recognition in the

feature domain was reported by Seltzer et al. [325], who applied the

C-MMSE [415] feature enhancement algorithm on the input feature
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used in the DNN. By processing both the training and testing data

with the same algorithm, any consistent errors or artifacts introduced

by the enhancement algorithm can be learned by the DNN–HMM rec-

ognizer. This study also successfully explored the use of the noise aware

training paradigm for training the DNN, where each observation was

augmented with an estimate of the noise. Strong results were obtained

on the Aurora4 task. More recently, Kashiwagi et al. [191] applied the

SPLICE feature enhancement technique [82] to a DNN speech rec-

ognizer. In that study the DNN’s output layer was determined on

clean data instead of on noisy data as in the study reported by Seltzer

et al. [325].

Besides DNN, other deep architectures have also been proposed to

perform feature enhancement and noise-robust speech recognition. For

example, Mass et al. [235] applied a deep recurrent auto encoder neural

network to remove noise in the input features for robust speech recogni-

tion. The model was trained on stereo (noisy and clean) speech features

to predict clean features given noisy input, similar to the SPLICE setup

but using a deep model instead of a GMM. Vinyals and Ravuri [379]

investigated the tandem approaches to noise-robust speech recognition,

where DNNs were trained directly with noisy speech to generate pos-

terior features. Finally, Rennie et al. [300] explored the use of a version

of the RBM, called the factorial hidden RBM, for noise-robust speech

recognition.

7.1.4 Output representations in the DNN

Most deep learning methods for speech recognition and other infor-

mation processing applications have focused on learning represen-

tations from input acoustic features without paying attention to

output representations. The recent 2013 NIPS Workshop on Learning

Output Representations (http://nips.cc/Conferences/2013/Program/

event.php?ID=3714) was dedicated to bridging this gap. For exam-

ple, the Deep Visual-Semantic Embedding Model described in [117],

to be discussed more in Section 11) exploits continuous-valued out-

put representations obtained from the text embeddings to assist in the
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branch of the deep network for classifying images. For speech recogni-

tion, the importance of designing effective linguistic representations for

the output layers of deep networks is highlighted in [79].

Most current DNN systems use a high-dimensional output represen-

tation to match the context-dependent phonetic states in the HMMs.

For this reason, the output layer evaluation can cost 1/3 of the total

computation time. To improve the decoding speed, techniques such

as low-rank approximation is typically applied to the output layer.

In [310] and [397], the DNN with high-dimensional output layer was

trained first. The singular value decomposition (SVD)-based dimen-

sion reduction technique was then performed on the large output-layer

matrix. The resulting matrices are further combined and as the result

the original large weight matrix is approximated by a product of two

much smaller matrices. This technique in essence converts the origi-

nal large output layer to two layers — a bottleneck linear layer and

a nonlinear output layer — both with smaller weight matrices. The

converted DNN with reduced dimensionality is further refined. The

experimental results show that no speech recognition accuracy reduc-

tion was observed even when the size is cut to half, while the run-time

computation is significantly reduced.

The output representations for speech recognition can benefit from

the structured design of the symbolic or phonological units of speech

as presented in [79]. The rich phonological structure of symbolic nature

in human speech has been well known for many years. Likewise, it has

also been well understood for a long time that the use of phonetic

or its finer state sequences, even with contextual dependency, in engi-

neering speech recognition systems, is inadequate in representing such

rich structure [86, 273, 355], and thus leaving a promising open direc-

tion to improve the speech recognition systems’ performance. Basic

theories about the internal structure of speech sounds and their rel-

evance to speech recognition technology in terms of the specification,

design, and learning of possible output representations of the underly-

ing speech model for speech target sequences are surveyed in [76] and

more recently in [79].

There has been a growing body of deep learning work in speech

recognition with their focus placed on designing output representations
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related to linguistic structure. In [383, 384], a limitation of the out-

put representation design, based on the context-dependent phone units

as proposed in [67, 68], is recognized and a solution is offered. The

root cause of this limitation is that all context-dependent phone states

within a cluster created by the decision tree share the same set of

parameters and this reduces its resolution power for fine-grained states

during the decoding phase. The solution proposed formulates output

representations of the context-dependent DNN as an instance of the

canonical state modeling technique, making use of broad phonetic

classes. First, triphones are clustered into multiple sets of shorter bi-

phones using broad phone contexts. Then, the DNN is trained to dis-

criminate the bi-phones within each set. Logistic regression is used

to transform the canonical states into the detailed triphone state

output probabilities. That is, the overall design of the output rep-

resentation of the context-dependent DNN is hierarchical in nature,

solving both the data sparseness and low-resolution problems at the

same time.

Related work on designing the output linguistic representations for

speech recognition can be found in [197] and in [241]. While the designs

are in the context of GMM–HMM-based speech recognition systems,

they both can be extended to deep learning models.

7.1.5 Adaptation of the DNN-based speech recognizers

The DNN–HMM is an advanced version of the artificial neural net-

work and HMM “hybrid” system developed in 1990s, for which several

adaptation techniques have been developed. Most of these techniques

are based on linear transformation of the network weights of either

input or output layers. A number of exploratory studies on DNN adap-

tation made use of the same or related linear transformation methods

[223, 401, 402]. However, compared with the earlier narrower and shal-

lower neural network systems, the DNN–HMM has significantly more

parameters due to wider and deeper hidden layers used and the much

larger output layer designed to model context dependent phones and

states. This difference casts special challenges to adapting the DNN–

HMM, especially when the adaptation data is small. Here we discuss
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representative recent studies on overcoming such challenges in adapting

the large-sized DNN weights in distinct ways.

Yu et al. [430] proposed a regularized adaptation technique for

DNNs. It adapts the DNN weights conservatively by forcing the distri-

bution estimated from the adapted model to be close to that estimated

from those before the adaptation. This constraint is realized by adding

Kullback–Leibler divergence (KLD) regularization to the adaptation

criterion. This type of regularization is shown to be equivalent to a

modification of the target distribution in the conventional backprop-

agation algorithm and thus the training of the DNN remains largely

unchanged. The new target distribution is derived to be a linear inter-

polation of the distribution estimated from the model before adaptation

and the ground truth alignment of the adaptation data. This interpola-

tion prevents overtraining by keeping the adapted model from straying

too far from the speaker-independent model. This type of adaptation

differs from L2 regularization, which constrains the model parameters

themselves rather than the output probabilities.

In [330], adaptation of the DNN was applied not on the conventional

network weights but on the hidden activation functions. In this way, the

main limitation of current adaptation techniques based on adaptable

linear transformation of the network weights in either the input or the

output layer is effectively overcome, since the new method only needs

to adapt a more limited number of hidden activation functions.

Several studies were carried out on unsupervised or semi-supervised

adaptation of DNN acoustic models with different types of input fea-

tures with success [223, 405].

Most recently, Saon et al. [317] explored a new and highly effective

method in adapting DNNs for speech recognition. The method com-

bined I-vector features with fMLLR (feature-domain max-likelihood

linear regression) features as the input into a DNN. I-vectors or

(speaker) identity vectors are commonly used for speaker verifica-

tion and speaker recognition applications, as they encapsulate relevant

information about a speaker’s identity in a low-dimensional feature

vector. The fMLLR is an effective adaptation technique developed for

GMM–HMM systems. Since I-vectors do not obey locality in frequency,

they must be combined carefully with the fMLLR features that obey
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locality. The architecture of the multi-scale CNN–DNN was shown to

be effective for the combination of these two different types of features.

During both training and decoding, the speaker-specific I-vector was

appended to the frame-based fMLLR features.

7.1.6 Better architectures and nonlinear units

Over recent years, since the success of the (fully-connected) DNN–

HMM hybrid system was demonstrated in [67, 68, 109, 161, 257, 258,

308, 309, 324, 429], many new architectures and nonlinear units have

been proposed and evaluated for speech recognition. Here we provide

an overview of this progress, extending the overview provided in [89].

The tensor version of the DNN is reported by Yu et al. [421, 422],

which extends the conventional DNN by replacing one or more of its

layers with a double-projection layer and a tensor layer. In the double-

projection layer, each input vector is projected into two nonlinear sub-

spaces. In the tensor layer, two subspace projections interact with each

other and jointly predict the next layer in the overall deep architecture.

An approach is developed to map the tensor layers to the conventional

sigmoid layers so that the former can be treated and trained in a simi-

lar way to the latter. With this mapping the tensor version of the DNN

can be treated as the DNN augmented with double-projection layers

so that the backpropagation learning algorithm can be cleanly derived

and relatively easily implemented.

A related architecture to the above is the tensor version of the DSN

described in Section 6, also usefully applied to speech classification

and recognition [180, 181]. The same approach applies to mapping the

tensor layers (i.e., the upper layer in each of the many modules in the

DSN context) to the conventional sigmoid layers. Again, this mapping

simplifies the training algorithm so that it becomes not so far apart

from that for the DSN.

As discussed in Section 3.2, the concept of convolution in time

was originated in the TDNN (time-delay neural network) as a shallow

neural network [202, 382] developed during early days of speech

recognition. Only recently and when deep architectures (e.g. deep

convolutional neural network or deep CNN) were used, it has been
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found that frequency-dimension weight sharing is more effective

for high-performance phone recognition, when the HMM is used to

handle the time variability, than time-domain weight sharing as in the

previous TDNN in which the HMM was not used [1, 2, 3, 81]. These

studies also show that designing the pooling scheme in the deep CNN

to properly trade-off between invariance to vocal tract length and

discrimination among speech sounds, together with a regularization

technique of “dropout” [166], leads to even better phone recognition

performance. This set of work further points to the direction of

trading-off between trajectory discrimination and invariance expressed

in the whole dynamic pattern of speech defined in mixed time and

frequency domains using convolution and pooling. Moreover, the

most recent studies reported in [306, 307, 312] show that CNNs also

benefit large vocabulary continuous speech recognition. They further

demonstrate that multiple convolutional layers provide even more

improvement when the convolutional layers use a large number of

convolution kernels or feature maps. In particular, Sainath et al. [306]

extensively explored many variants of the deep CNN. In combination

with several novel methods the deep CNN is shown to produce state

of the art results in a few large vocabulary speech recognition tasks.

In addition to the DNN, CNN, and DSN, as well as their tensor

versions, other deep models have also been developed and reported in

the literature for speech recognition. For example, the deep-structured

CRF, which stacks many layers of CRFs, have been usefully applied

to the task of language identification [429], phone recognition [410],

sequential labeling in natural language processing [428], and confi-

dence calibration in speech recognition [423]. More recently, Demuynck

and Triefenbach [70] developed the deep GMM architecture, where the

aspects of DNNs that lead to strong performance are extracted and

applied to build hierarchical GMMs. They show that by going “deep

and wide” and feeding windowed probabilities of a lower layer of GMMs

to a higher layer of GMMs, the performance of the deep-GMM system

can be made comparable to a DNN. One advantage of staying in the

GMM space is that the decades of work in GMM adaptation and dis-

criminative learning remains applicable.
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Perhaps the most notable deep architecture among all is the recur-

rent neural network (RNN) as well as its stacked or deep versions

[135, 136, 153, 279, 377]. While the RNN saw its early success in phone

recognition [304], it was not easy to duplicate due to the intricacy

in training, let alone to scale up for larger speech recognition tasks.

Learning algorithms for the RNN have been dramatically improved

since then, and much better results have been obtained recently using

the RNN [48, 134, 235], especially when the bi-directional LSTM (long

short-term memory) is used [135, 136]. The basic information flow in

the bi-directional RNN and a cell of LSTM is shown in Figures 7.3 and

7.4, respectively.

Learning the RNN parameters is known to be difficult due to van-

ishing or exploding gradients [280]. Chen and Deng [48] and Deng and

Figure 7.3: Information flow in the bi-directional RNN, with both diagrammatic
and mathematical descriptions. W’s are weight matrices, not shown but can be easily
inferred in the diagram. [after [136], @IEEE].
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Figure 7.4: Information flow in an LSTM unit of the RNN, with both diagrammatic
and mathematical descriptions. W’s are weight matrices, not shown but can easily
be inferred in the diagram. [after [136], @IEEE].

Chen [85] developed a primal-dual training method that formulates

the learning of the RNN as a formal optimization problem, where cross

entropy is maximized subject to the condition that the infinity norm of

the recurrent matrix of the RNN is less than a fixed value to guarantee

the stability of RNN dynamics. Experimental results on phone recog-

nition demonstrate: (1) the primal-dual technique is highly effective

in learning RNNs, with superior performance to the earlier heuristic

method of truncating the size of the gradient; (2) The use of a DNN

to compute high-level features of speech data to feed into the RNN

gives much higher accuracy than without using the DNN; and (3) The
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accuracy drops progressively as the DNN features are extracted from

higher to lower hidden layers of the DNN.

A special case of the RNN is reservoir models or echo state networks,

where the output layers are fixed to be linear instead of nonlinear as

in the regular RNN, and where the recurrent matrices are carefully

designed but not learned. The input matrices are also fixed and not

learned, due partly to the difficulty of learning. Only the weight matri-

ces between the hidden and output layers are learned. Since the output

layer is linear, the learning is very efficient and with global optimum

achievable by a closed-form solution. But due to the fact that many

parameters are not learned, the hidden layer needs to be very large

in order to obtain good results. Triefenbach et al. [365] applied such

models to phone recognition, with reasonably good accuracy obtained.

Palangi et al. [276] presented an improved version of the reservoir

model by learning both the input and recurrent matrices which were

fixed in the previous model that makes use of the linear output (or

readout) units to simplify the learning of only the output matrix in the

RNN. Rather, a special technique is devised that takes advantage of the

linearity in the output units in the reservoir model to learn the input

and recurrent matrices. Compared with the backpropagation through

time (BPTT) algorithm commonly used in learning the general RNNs,

the proposed technique makes use of the linearity in the output units

to provide constraints among various matrices in the RNN, enabling

the computation of the gradients as the learning signal in an analytical

form instead of by recursion as in the BPTT.

In addition to the recent innovations in better architectures of deep

learning models for speech recognition reviewed above, there is also a

growing body of work on developing and implementing better nonlinear

units. Although sigmoidal and tanh functions are the most commonly

used nonlinear types in DNNs their limitations are well known. For

example, it is slow to learn the whole network due to weak gradients

when the units are close to saturation in both directions. Jaitly and

Hinton [183] appear to be the first to apply the rectified linear units

(ReLU) in the DNNs to speech recognition to overcome the weakness

of the sigmoidal units. ReLU refers to the units in a neural network

that use the activation function of f(x) = max(0, x). Dahl et al. [65]
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and Mass et al. [234] successfully applied ReLU to large vocabulary

speech recognition, with the best accuracy obtained when combining

ReLU with the “Dropout” regularization technique.

Another new type of DNN units demonstrated more recently to be

useful for speech recognition is the “maxout” units, which were used

for forming the deep maxout network as described in [244]. A deep

maxout network consists of multiple layers which generate hidden acti-

vations via the maximum or “maxout” operation over a fixed number

of weighted inputs called a “group.” This is the same operation as

the max pooling used in the CNN as discussed earlier for both speech

recognition and computer vision. The maximal value within each group

is taken as the output from the previous layer. Most recently, Zhang

et al. [441] generalize the above “maxout” units to two new types. The

“soft-maxout” type of units replace the original max operation with

the soft-max function. The second, p-norm type of units used the non-

linearity of y = ‖x‖p. It is shown experimentally that the p-norm units

with p = 2 perform consistently better than the maxout, tanh, and

ReLU units. In Gulcehre et al. [138], techniques that automatically

learn the p-norm was proposed and investigated.

Finally, Srivastava et al. [350] propose yet another new type of non-

linear units, called winner-take-all units. Here, local competition among

neighboring neurons are incorporated into the otherwise regular feed-

forward architecture, which is then trained via backpropagation with

different gradients than the normal one. Winner-take-all is an inter-

esting new form of nonlinearity, and it forms groups of (typically two)

neurons where all the neurons in a group are made zero-valued except

the one with the largest value. Experiments show that the network does

not forget as much as networks with standard sigmoidal nonlinearity.

This new type of nonlinear units are yet to be evaluated in speech

recognition tasks.

7.1.7 Better optimization and regularization

Another area where significant advances are made recently in

applying deep learning to acoustic model for speech recognition is

on optimization criteria and methods, as well as on the related
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regularization techniques to help prevent overfitting during the deep

network training.

One of the early studies on DNNs for speech recognition, conducted

at Microsoft Research and reported in [260], first recognizes the mis-

match between the desired error rate and the cross-entropy training

criterion in the conventional DNN training. The solution is provided by

replacing the frame-based, cross-entropy training criterion with the full-

sequence-based maximum mutual information optimization objective,

in a similar way to defining the training objective for the shallow neu-

ral network interfaced with an HMM [194]. Equivalently, this amounts

to putting the model of conditional random field (CRF) at the top of

the DNN, replacing the original softmax layer which naturally leads to

cross entropy. (Note the DNN was called the DBN in the paper). This

new sequential discriminative learning technique is developed to jointly

optimize the DNN weights, CRF transition weights, and bi-phone lan-

guage model. Importantly, the speech task is defined in TIMIT, with

the use of a simple bi-phone-gram “language” model. The simplicity of

the bi-gram language model enables the full-sequence training to carry

out without the need to use lattices, drastically reducing the training

complexity.

As another way to motivate the full-sequence training method of

[260], we note that the earlier DNN phone recognition experiments

made use of the standard frame-based objective function in static pat-

tern classification, cross-entropy, to optimize the DNN weights. The

transition parameters and language model scores were obtained from

an HMM and were trained independently of the DNN weights. However,

it has been known during the long history of the HMM research that

sequence classification criteria can be very helpful in improving speech

and phone recognition accuracy. This is because the sequence classifica-

tion criteria are more directly correlated with the performance measure

(e.g., the overall word or phone error rate) than frame-level criteria.

More specifically, the use of frame-level cross entropy to train the DNN

for phone sequence recognition does not explicitly take into account the

fact that the neighboring frames have smaller distances between the

assigned probability distributions over phone class labels. To overcome

this deficiency, one can optimize the conditional probability of the
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whole sequence of labels, given the whole visible feature utterance or

equivalently the hidden feature sequence extracted by DNN. To opti-

mize the log conditional probability on the training data, the gradi-

ent can be taken over the activation parameters, transition parame-

ters and lower-layer weights, and then pursue back-propagation of the

error defined at the sentence level. We remark that in a much earlier

study [212], combining a neural network with a CRF-like structure was

done, where the mathematical formulation appears to include CRFs as

a special case. Also, the benefit of using the full-sequence classification

criteria was shown earlier on shallow neural networks in [194, 291].

In implementing the above full-sequence learning algorithm for the

DNN system as described in [260], the DNN weights are initialized

using the frame-level cross entropy as the objective. The transition

parameters are initialized from the combination of the HMM tran-

sition matrices and the “bi-phone language” model scores, and are

then further optimized by tuning the transition features while fixing

the DNN weights before the joint optimization. Using joint optimiza-

tion with careful scheduling to reduce overfitting, it is shown that the

full-sequence training outperforms the DNN trained with frame-level

cross entropy by approximately 5% relative [260]. Without the effort

to reduce overfitting, it is found that the DNN trained with MMI is

much more prone to overfitting than that trained with frame-level cross

entropy. This is because the correlations across frames in speech tend

to be different among the training, development, and test data. Impor-

tantly, such differences do not show when frame-based objective func-

tions are used for training.

For large vocabulary speech recognition where more complex lan-

guage models are in use, the optimization methods for full-sequence

training of the DNN–HMM are much more sophisticated. Kingsbury

et al. [195] reported the first success of such training using parallel,

second-order, Hessian-free optimization techniques, which are carefully

implemented for large vocabulary speech recognition. Sainath et al.

[305] improved and speeded up the Hessian-free techniques by reduc-

ing the number of Krylov subspace solver iterations [378], which are

used for implicit estimation of the Hessian. They also use sampling
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methods to decrease the amount of training data to speed up the train-

ing. While the batch-mode, second-order Hessian-free techniques prove

successful for full-sequence training of large-scale DNN–HMM systems,

the success of the first-order stochastic gradient descent methods is also

reported recently [353]. It is found that heuristics are needed to handle

the problem of lattice sparseness. That is, the DNN must be adjusted to

the updated numerator lattices by additional iterations of frame-based

cross-entropy training. Further, artificial silence arcs need to be added

to the denominator lattices, or the maximum mutual information objec-

tive function needs to be smoothed with the frame-based cross entropy

objective. The conclusion is that for large vocabulary speech recog-

nition tasks with sparse lattices, the implementation of the sequence

training requires much greater engineering skills than the small tasks

such as reported in [260], although the objective function as well as the

gradient derivation are essentially the same. Similar conclusions are

reached by Vesely et al. [374] when carrying out full-sequence training

of DNN–HMMs for large-vocabulary speech recognition. However, dif-

ferent heuristics from [353] are shown to be effective in the training.

Separately, Wiesler et al. [390] investigated the Hessian-free optimiza-

tion method for training the DNN with the cross-entropy objective and

empirically analyzed the properties of the method. And finally, Dognin

and Goel [113] combined stochastic average gradient and Hessian-free

optimization for sequence training of deep neural networks with suc-

cess in that the training procedure converges in about half the time

compared with the full Hessian-free sequence training.

For large DNN–HMM systems with either frame-level or sequence-

level optimization objectives, speeding up the training is essential

to take advantage of large amounts of training data and of large

model sizes. In addition to the methods described above, Dean et al.

[69] reported the use of the asynchronous stochastic gradient descent

(ASGD) method, the adaptive gradient descent (Adagrad) method, and

the large-scale limited-memory BFGS (L-BFGS) method for very large

vocabulary speech recognition. Sainath et al. [312] provided a review

of a wide range of optimization methods for speeding up the training

of DNN-based systems for large speech recognition tasks.
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In addition to the advances described above focusing on optimiza-

tion with the fully supervised learning paradigm, where all train-

ing data contain the label information, the semi-supervised training

paradigm is also exploited for learning DNN–HMM systems for speech

recognition. Liao et al. [223] reported the exploration of using semi-

supervised training on the DNN–HMM system for the very challenging

task of recognizing YouTube speech. The main technique is based on the

use of “island of confidence” filtering heuristics to select useful training

segments. Separately, semi-supervised training of DNNs is explored by

Vesely et al. [374], where self-training strategies are used as the basis

for data selection using both the utterance-level and frame-level con-

fidences. Frame-selection based on per-frame confidences derived from

confusion in a lattice is found beneficial. Huang et al. [176] reported

another variant of semi-supervised training technique in which multi-

system combination and confidence recalibration is applied to select

the training data. Further, Thomas et al. [362] overcome the problem

of lacking sufficient training data for acoustic modeling in a number of

low-resource scenarios. They make use of transcribed multilingual data

and semi-supervised training to build the proposed feature front-ends

for subsequent speech recognition.

Finally, we see important progress in deep learning based speech

recognition in recent years with the introduction of new regulariza-

tion methods based on “dropout” originally proposed by Hinton et al.

[166]. Overfitting is very common in DNN training and co-adaptation is

prevalent within the DNN with multiple activations adapting together

to explain input acoustic data. Dropout is a technique to limit co-

adaptation. It operates as follows. On each training instance, each hid-

den unit is randomly omitted with a fixed probability (e.g., p = 0.5).

Then, decoding is done normally except with straightforward scaling

of the DNN weights (by a factor of 1 − p). Alternatively, the scaling of

the DNN weights can be done during training [by a factor of 1/(1 − p)]

rather than in decoding. The benefits of dropout regularization for

training DNNs are to make a hidden unit in the DNN act strongly by

itself without relying on others, and to serve a way to do model averag-

ing of different networks. These benefits are most pronounced when the

training data is limited, or when the DNN size is disproportionally large
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with respect to the size of the training data. Dahl et al. [65] applied

dropout in conjunction with the ReLU units and to only the top few

layers of a fully-connected DNN. Seltzer and Yu [325] applied it to noise

robust speech recognition. Deng et al. [81], on the other hand, applied

dropout to all layers of a deep convolutional neural network, including

both the top fully connected DNN layers and the bottom locally con-

nected CNN layer and the pooling layer. It is found that the dropout

rate need to be substantially smaller for the convolutional layer.

Subsequent work on applying dropout includes the study by Miao

and Metze [243], where DNN-based speech recognition is constrained

by low resources with sparse training data. Most recently, Sainath et al.

[306] combined dropout with a number of novel techniques described

in this section (including the use of deep CNNs, Hessian-free sequence

learning, the use of ReLU units, and the use of joint fMLLR and filter-

bank features, etc.) to obtain state of the art results on several large

vocabulary speech recognition tasks.

As a summary, the initial success of deep learning methods for

speech analysis and recognition reported around 2010 has come a long

way over the past three years. An explosive growth in the work and

publications on this topic has been observed, and huge excitement has

been ignited within the speech recognition community. We expect that

the growth in the research on deep learning based speech recognition

will continue, at least in the near future. It is also fair to say that the

continuing large-scale success of deep learning in speech recognition as

surveyed in this chapter (up to the ASRU-2013 time frame) is a key

stimulant to the large-scale exploration and applications of the deep

learning methods to other areas, which we will survey in Sections 8–11.

7.2 Speech synthesis

In addition to speech recognition, the impact of deep learning has

recently spread to speech synthesis, aimed to overcome the limitations

of the conventional approach in statistical parametric synthesis based

on Gaussian-HMM and decision-tree-based model clustering. The goal

of speech synthesis is to generate speech sounds directly from text and
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possibly with additional information. The first set of papers appeared at

ICASSP, May 2013, where four different deep learning approaches are

reported to improve the traditional HMM-based statistical paramet-

ric speech synthesis systems built based on “shallow” speech models,

which we briefly review here after providing appropriate background

information.

Statistical parametric speech synthesis emerged in the mid-1990s,

and is currently the dominant technology in speech synthesis. See a

recent overview in [364]. In this approach, the relationship between

texts and their acoustic realizations are modeled using a set of

stochastic generative acoustic models. Decision tree-clustered context-

dependent HMMs with a Gaussian distribution as the output of an

HMM state are the most popular generative acoustic model used. In

such HMM-based speech synthesis systems, acoustic features including

the spectra, excitation and segment durations of speech are modeled

simultaneously within a unified context-dependent HMM framework.

At the synthesis time, a text analysis module extracts a sequence of

contextual factors including phonetic, prosodic, linguistic, and gram-

matical descriptions from an input text to be synthesized. Given

the sequence of contextual factors, a sentence-level context-dependent

HMM corresponding to the input text is composed, where its model

parameters are determined by traversing the decision trees. The acous-

tic features are predicted so as to maximize their output probabili-

ties from the sentence HMM under the constraints between static and

dynamic features. Finally, the predicted acoustic features are sent to a

waveform synthesis module to reconstruct the speech waveforms. It

has been known for many years that the speech sounds generated

by this standard approach are often muffled compared with natural

speech. The inadequacy of acoustic modeling based on the shallow-

structured HMM is conjectured to be one of the reasons. Several very

recent studies have adopted deep learning approaches to overcome such

deficiency. One significant advantage of deep learning techniques is

their strong ability to represent the intrinsic correlation or mapping

relationship among the units of a high-dimensional stochastic vector

using a generative (e.g., the RBM and DBN discussed in Section 3.2)

or discriminative (e.g., the DNN discussed in Section 3.3) modeling
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framework. The deep learning techniques are thus expected to help the

acoustic modeling aspect of speech synthesis in overcoming the limita-

tions of the conventional shallow modeling approach.

A series of studies are carried out recently on ways of overcoming

the above limitations using deep learning methods, inspired partly by

the intrinsically hierarchical processes in human speech production

and the successful applications of a number of deep learning methods

in speech recognition as reviewed earlier in this chapter. In Ling

et al. [227, 229], the RBM and DBN as generative models are used

to replace the traditional Gaussian models, achieving significant

quality improvement, in both subjective and objective measures,

of the synthesized voice. In the approach developed in [190], the

DBN as a generative model is used to represent joint distribution of

linguistic and acoustic features. Both the decision trees and Gaussian

models are replaced by the DBN. The method is very similar to that

used for generating digit images by the DBN, where the issue of

temporal sequence modeling specific to speech (non-issue for image)

is by-passed via the use of the relatively large, syllable-sized units in

speech synthesis. On the other hand, in contrast to the generative

deep models (RBMs and DBNs) exploited above, the study reported

in [435] makes use of the discriminative model of the DNN to represent

the conditional distribution of the acoustic features given the linguistic

features. Finally, in [115], the discriminative model of the DNN is used

as a feature extractor that summarizes high-level structure from the

raw acoustic features. Such DNN features are then used as the input

for the second stage for the prediction of prosodic contour targets

from contextual features in the full speech synthesis system.

The application of deep learning to speech synthesis is in its infancy,

and much more work is expected from that community in the near

future.

7.3 Audio and music processing

Similar to speech recognition but to a less extent, in the area of audio

and music processing, deep learning has also become of intense interest
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but only quite recently. As an example, the first major event of deep

learning for speech recognition took place in 2009, followed by a series of

events including a comprehensive tutorial on the topic at ICASSP-2012

and with the special issue at IEEE Transactions on Audio, Speech, and

Language Processing, the premier publication for speech recognition,

in the same year. The first major event of deep learning for audio and

music processing appears to be the special session at ICASSP-2014,

titled Deep Learning for Music [14].

In the general field of audio and music processing, the impacted

areas by deep learning include mainly music signal processing and music

information retrieval [15, 22, 141, 177, 178, 179, 319]. Deep learning

presents a unique set of challenges in these areas. Music audio signals

are time series where events are organized in musical time, rather than

in real time, which changes as a function of rhythm and expression. The

measured signals typically combine multiple voices that are synchro-

nized in time and overlapping in frequency, mixing both short-term and

long-term temporal dependencies. The influencing factors include musi-

cal tradition, style, composer and interpretation. The high complexity

and variety give rise to the signal representation problems well-suited

to the high levels of abstraction afforded by the perceptually and bio-

logically motivated processing techniques of deep learning.

In the early work on audio signals as reported by Lee et al. [215]

and their follow-up work, the convolutional structure is imposed on

the RBM while building up a DBN. Convolution is made in time by

sharing weights between hidden units in an attempt to detect the same

“invariant” feature over different times. Then a max-pooling operation

is performed where the maximal activations over small temporal neigh-

borhoods of hidden units are obtained, inducing some local temporal

invariance. The resulting convolutional DBN is applied to audio as well

as speech data for a number of tasks including music artist and genre

classification, speaker identification, speaker gender classification, and

phone classification, with promising results presented.

The RNN has also been recently applied to music processing appli-

cations [22, 40, 41], where the use of ReLU hidden units instead of

logistic or tanh nonlinearities are explored in the RNN. As reviewed in
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Section 7.2, ReLU units compute y = max(x, 0), and lead to sparser

gradients, less diffusion of credit and blame in the RNN, and faster

training. The RNN is applied to the task of automatic recognition of

chords from audio music, an active area of research in music information

retrieval. The motivation of using the RNN architecture is its power

in modeling dynamical systems. The RNN incorporates an internal

memory, or hidden state, represented by a self-connected hidden layer

of neurons. This property makes them well suited to model temporal

sequences, such as frames in a magnitude spectrogram or chord labels

in a harmonic progression. When well trained, the RNN is endowed

with the power to predict the output at the next time step given the

previous ones. Experimental results show that the RNN-based auto-

matic chord recognition system is competitive with existing state-of-

the-art approaches [275]. The RNN is capable of learning basic musical

properties such as temporal continuity, harmony and temporal dynam-

ics. It can also efficiently search for the most musically plausible chord

sequences when the audio signal is ambiguous, noisy or weakly discrim-

inative.

A recent review article by Humphrey et al. [179] provides a detailed

analysis on content-based music informatics, and in particular on why

the progress is decelerating throughout the field. The analysis con-

cludes that hand-crafted feature design is sub-optimal and unsustain-

able, that the power of shallow architectures is fundamentally limited,

and that short-time analysis cannot encode musically meaningful struc-

ture. These conclusions motivate the use of deep learning methods

aimed at automatic feature learning. By embracing feature learning, it

becomes possible to optimize a music retrieval system’s internal feature

representation or discovering it directly, since deep architectures are

especially well-suited to characterize the hierarchical nature of music.

Finally, we review the very recent work by van den Oord, et al. [371]

on content-based music recommendation using deep learning methods.

Automatic music recommendation has become an increasingly signifi-

cant and useful technique in practice. Most recommender systems rely

on collaborative filtering, suffering from the cold start problem where

it fails when no usage data is available. Thus, collaborative filtering is
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not effective for recommending new and unpopular songs. Deep learning

methods power the latent factor model for recommendation, which pre-

dicts the latent factors from music audio when they cannot be obtained

from usage data. A traditional approach using a bag-of-words represen-

tation of the audio signals is compared with deep CNNs with rigorous

evaluation made. The results show highly sensible recommendations

produced by the predicted latent factors using deep CNNs. The study

demonstrates that a combination of convolutional neural networks and

richer audio features lead to such promising results for content-based

music recommendation.

Like speech recognition and speech synthesis, much more work is

expected from the music and audio signal processing community in the

near future.



8

Selected Applications in Language

Modeling and Natural Language Processing

Research in language, document, and text processing has seen

increasing popularity recently in the signal processing community,

and has been designated as one of the main focus areas by the IEEE

Signal Processing Society’s Speech and Language Processing Technical

Committee. Applications of deep learning to this area started with

language modeling (LM), where the goal is to provide a probability

to any arbitrary sequence of words or other linguistic symbols (e.g.,

letters, characters, phones, etc.). Natural language processing (NLP)

or computational linguistics also deals with sequences of words or

other linguistic symbols, but the tasks are much more diverse (e.g.,

translation, parsing, text classification, etc.), not focusing on providing

probabilities for linguistic symbols. The connection is that LM is

often an important and very useful component of NLP systems.

Applications to NLP is currently one of the most active areas in

deep learning research, and deep learning is also considered as one

promising direction by the NLP research community. However, the

intersection between the deep learning and NLP researchers is so far

not nearly as large as that for the application areas of speech or vision.

This is partly because the hard evidence for the superiority of deep

292
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learning over the current state of the art NLP methods has not been

as strong as speech or visual object recognition.

8.1 Language modeling

Language models (LMs) are crucial part of many successful applica-

tions, such as speech recognition, text information retrieval, statistical

machine translation and other tasks of NLP. Traditional techniques for

estimating the parameters in LMs are based on N-gram counts. Despite

known weaknesses of N -grams and huge efforts of research communities

across many fields, N -grams remained the state-of-the-art until neural

network and deep learning based methods were shown to significantly

lower the perplexity of LMs, one common (but not ultimate) measure of

the LM quality, over several standard benchmark tasks [245, 247, 248].

Before we discuss neural network based LMs, we note the use of

hierarchical Bayesian priors in building up deep and recursive struc-

ture for LMs [174]. Specifically, Pitman-Yor process is exploited as the

Bayesian prior, from which a deep (four layers) probabilistic genera-

tive model is built. It offers a principled approach to LM smoothing

by incorporating the power-law distribution for natural language. As

discussed in Section 3, this type of prior knowledge embedding is more

readily achievable in the generative probabilistic modeling setup than

in the discriminative neural network based setup. The reported results

on LM perplexity reduction are not nearly as strong as that achieved

by the neural network based LMs, which we discuss next.

There has been a long history [19, 26, 27, 433] of using (shallow)

feed-forward neural networks in LMs, called the NNLM. The use of

DNNs in the same way for LMs appeared more recently in [8]. An LM

is a function that captures the salient statistical characteristics of the

distribution of sequences of words in natural language. It allows one to

make probabilistic predictions of the next word given preceding ones.

An NNLM is one that exploits the neural network’s ability to learn

distributed representations in order to reduce the impact of the curse

of dimensionality. The original NNLM, with a feed-forward neural net-

work structure works as follows: the input of the N-gram NNLM is
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formed by using a fixed length history of N − 1 words. Each of the

previous N − 1 words is encoded using the very sparse 1-of-V coding,

where V is the size of the vocabulary. Then, this 1-of-V orthogonal rep-

resentation of words is projected linearly to a lower dimensional space,

using the projection matrix shared among words at different positions

in the history. This type of continuous-space, distributed representation

of words is called “word embedding,” very different from the common

symbolic or localist presentation [26, 27]. After the projection layer,

a hidden layer with nonlinear activation function, which is either a

hyperbolic tangent or a logistic sigmoid, is used. An output layer of

the neural network then follows the hidden layer, with the number of

output units equal to the size of the full vocabulary. After the network

is trained, the output layer activations represent the “N -gram” LM’s

probability distribution.

The main advantage of NNLMs over the traditional counting-based

N -gram LMs is that history is no longer seen as exact sequence of N −1

words, but rather as a projection of the entire history into some lower

dimensional space. This leads to a reduction of the total number of

parameters in the model that have to be trained, resulting in automatic

clustering of similar histories. Compared with the class-based N -gram

LMs, the NNLMs are different in that they project all words into the

same low dimensional space, in which there can be many degrees of

similarity between words. On the other hand, NNLMs have much larger

computational complexity than N -gram LMs.

Let’s look at the strengths of the NNLMs again from the view-

point of distributed representations. A distributed representation of a

symbol is a vector of features which characterize the meaning of the

symbol. Each element in the vector participates in representing the

meaning. With an NNLM, one relies on the learning algorithm to dis-

cover meaningful, continuous-valued features. The basic idea is to learn

to associate each word in the dictionary with a continuous-valued vec-

tor representation, which in the literature is called a word embedding,

where each word corresponds to a point in a feature space. One can

imagine that each dimension of that space corresponds to a semantic

or grammatical characteristic of words. The hope is that functionally
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similar words get to be closer to each other in that space, at least along

some directions. A sequence of words can thus be transformed into a

sequence of these learned feature vectors. The neural network learns to

map that sequence of feature vectors to the probability distribution over

the next word in the sequence. The distributed representation approach

to LMs has the advantage that it allows the model to generalize well to

sequences that are not in the set of training word sequences, but that

are similar in terms of their features, i.e., their distributed represen-

tation. Because neural networks tend to map nearby inputs to nearby

outputs, the predictions corresponding to word sequences with similar

features are mapped to similar predictions.

The above ideas of NNLMs have been implemented in various

studies, some involving deep architectures. The idea of structuring

hierarchically the output of an NNLM in order to handle large

vocabularies was introduced in [18, 262]. In [252], the temporally

factored RBM was used for language modeling. Unlike the traditional

N -gram model, the factored RBM uses distributed representations

not only for context words but also for the words being predicted.

This approach is generalized to deeper structures as reported in [253].

Subsequent work on NNLM with “deep” architectures can be found in

[205, 207, 208, 245, 247, 248]. As an example, Le et al. [207] describes

an NNLM with structured output layer (SOUL–NNLM) where the pro-

cessing depth in the LM is focused in the neural network’s output rep-

resentation. Figure 8.1 illustrates the SOUL-NNLM architecture with

hierarchical structure in the output layers of the neural network, which

shares the same architecture with the conventional NNLM up to the

hidden layer. The hierarchical structure for the network’s output vocab-

ulary is in the form of a clustering tree, shown to the right of Figure 8.1,

where each word belongs to only one class and ends in a single leaf node

of the tree. As a result of the hierarchical structure, the SOUL–NNLM

enables the training of the NNLM with a full, very large vocabulary.

This gives advantages over the traditional NNLM which requires short-

lists of words in order to carry out the efficient computation in training.

As another example neural-network-based LMs, the work described

in [247, 248] and [245] makes use of RNNs to build large scale language
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Figure 8.1: The SOUL–NNLM architecture with hierarchical structure in the out-
put layers of the neural network [after [207], @IEEE].

models, called RNNLMs. The main difference between the feed-forward

and the recurrent architecture for LMs is different ways of representing

the word history. For feed-forward NNLM, the history is still just pre-

vious several words. But for the RNNLM, an effective representation

of history is learned from the data during training. The hidden layer of

RNN represents all previous history and not just N −1 previous words,

thus the model can theoretically represent long context patterns. A fur-

ther important advantage of the RNNLM over the feed-forward coun-

terpart is the possibility to represent more advanced patterns in the

word sequence. For example, patterns that rely on words that could

have occurred at variable positions in the history can be encoded much

more efficiently with the recurrent architecture. That is, the RNNLM

can simply remember some specific word in the state of the hidden

layer, while the feed-forward NNLM would need to use parameters for

each specific position of the word in the history.

The RNNLM is trained using the algorithm of back-propagation

through time; see details in [245], which provided Figure 8.2 to show

during training how the RNN unfolds as a deep feed-forward network

(with three time steps back in time).
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Figure 8.2: During the training of RNNLMs, the RNN unfolds into a deep feed-
forward network; based on Figure 3.2 of [245].

The training of the RNNLM achieves stability and fast convergence,

helped by capping the growing gradient in training RNNs. Adaptation

schemes for the RNNLM are also developed by sorting the training

data with respect to their relevance and by training the model during

processing of the test data. Empirical comparisons with other state-of-

the-art counting-based N -gram LMs show much better performance of

RNNLM in the perplexity measure, as reported in [247, 248] and [245].
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A separate work on applying RNN to an LM with the unit

of characters instead of words can be found in [153, 357]. Many

interesting properties such as predicting long-term dependencies (e.g.,

making open and closing quotes in a paragraph) are demonstrated.

However, the usefulness of characters instead of words as units in

practical applications is not clear because the word is such a powerful

representation for natural language. Changing words to characters in

LMs may limit most practical application scenarios and the training

become more difficult. Word-level models currently remain superior.

In the most recent work, Mnih and Teh [255] and Mnih and

Kavukcuoglu [254] have developed a fast and simple training algorithm

for NNLMs. Despite their superior performance, NNLMs have been

used less widely than standard N -gram LMs due to the much longer

training time. The reported algorithm makes use of a method called

noise-contrastive estimation or NCE [139] to achieve much faster train-

ing for NNLMs, with time complexity independent of the vocabulary

size; hence a flat instead of tree-structured output layer in the NNLM

is used. The idea behind NCE is to perform nonlinear logistic regres-

sion to discriminate between the observed data and some artificially

generated noise. That is, to estimate parameters in a density model of

observed data, we can learn to discriminate between samples from the

data distribution and samples from a known noise distribution. As an

important special case, NCE is particularly attractive for unnormalized

distributions (i.e., free from partition functions in the denominator). In

order to apply NCE to train NNLMs efficiently, Mnih and Teh [255]

and Mnih and Kavukcuoglu [254] first formulate the learning problem

as one which takes the objective function as the distribution of the word

in terms of a scoring function. The NNLM then can be viewed as a way

to quantify the compatibility between the word history and a candidate

next word using the scoring function. The objective function for train-

ing the NNLM thus becomes exponentiation of the scoring function,

normalized by the same constant over all possible words. Removing

the costly normalization factor, NCE is shown to speed up the NNLM

training over an order of magnitude.

A similar concept to NCE is used in the recent work of [250], which

is called negative sampling. This is applied to a simplified version of
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an NNLM, for the purpose of constructing word embedding instead

of computing probabilities of word sequences. Word embedding is an

important concept for NLP applications, which we discuss next.

8.2 Natural language processing

Machine learning has been a dominant tool in NLP for many years.

However, the use of machine learning in NLP has been mostly limited to

numerical optimization of weights for human designed representations

and features from the text data. The goal of deep or representation

learning is to automatically develop features or representations from

the raw text material appropriate for a wide range of NLP tasks.

Recently, neural network based deep learning methods have

been shown to perform well on various NLP tasks such as language

modeling, machine translation, part-of-speech tagging, named entity

recognition, sentiment analysis, and paraphrase detection. The most

attractive aspect of deep learning methods is their ability to perform

these tasks without external hand-designed resources or time-intensive

feature engineering. To this end, deep learning develops and makes use

an important concept called “embedding,” which refers to the represen-

tation of symbolic information in natural language text at word-level,

phrase-level, and even sentence-level in terms of continuous-valued

vectors.

The early work highlighting the importance of word embedding

came from [62], [367], and [63], although the original form came from

[26] as a side product of language modeling. Raw symbolic word rep-

resentations are transformed from the sparse vectors via 1-of-V coding

with a very high dimension (i.e., the vocabulary size V or its square or

even its cubic) into low-dimensional, real-valued vectors via a neural

network and then used for processing by subsequent neural network lay-

ers. The key advantage of using the continuous space to represent words

(or phrases) is its distributed nature, which enables sharing or grouping

the representations of words with a similar meaning. Such sharing is

not possible in the original symbolic space, constructed by 1-of-V cod-

ing with a very high dimension, for representing words. Unsupervised
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learning is used where “context” of the word is used as the learning

signal in neural networks. Excellent tutorials were recently given by

Socher et al. [338, 340] to explain how the neural network is trained

to perform word embedding. More recent work proposes new ways of

learning word embeddings that better capture the semantics of words

by incorporating both local and global document contexts and better

account for homonymy and polysemy by learning multiple embeddings

per word [169]. Also, there is strong evidence that the use of RNNs can

also provide empirically good performance in learning word embeddings

[245]. While the use of NNLMs, whose aim is to predict the future words

in context, also induces word embeddings as its by-product, much sim-

pler ways of achieving the embeddings are possible without the need to

do word prediction. As shown by Collobert and Weston [62], the neural

networks used for creating word embeddings need much smaller output

units than the huge size typically required for NNLMs.

In the same early paper on word embedding, Collobert and Weston

[62] developed and employed a convolutional network as the common

model to simultaneously solve a number of classic problems includ-

ing part-of-speech tagging, chunking, named entity tagging, semantic

role identification, and similar word identification. More recent work

reported in [61] further developed a fast, purely discriminative approach

for parsing based on the deep recurrent convolutional architecture. Col-

lobert et al. [63] provide a comprehensive review on ways of applying

unified neural network architectures and related deep learning algo-

rithms to solve NLP problems from “scratch,” meaning that no tradi-

tional NLP methods are used to extract features. The theme of this

line of work is to avoid task-specific, “man-made” feature engineering

while providing versatility and unified features constructed automati-

cally from deep learning applicable to all natural language processing

tasks. The systems described in [63] automatically learn internal repre-

sentations or word embedding from vast amounts of mostly unlabeled

training data while performing a wide range of NLP tasks.

The recent work by Mikolov et al. [246] derives word embeddings

by simplifying the NNLM described in Section 8.1. It is found that

the NNLM can be successfully trained in two steps. First, continuous

word vectors are learned using a simple model which eliminates the
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Figure 8.3: The CBOW architecture (a) on the left, and the Skip-gram architecture
(b) on the right. [after [246], @ICLR].

nonlinearity in the upper neural network layer and share the projec-

tion layer for all words. And second, the N -gram NNLM is trained

on top of the word vectors. So, after removing the second step in the

NNLM, the simple model is used to learn word embeddings, where the

simplicity allows the use of very large amount of data. This gives rise

to a word embedding model called Continuous Bag-of-Words Model

(CBOW), as shown in Figure 8.3a. Further, since the goal is no longer

computing probabilities of word sequences as in LMs, the word embed-

ding system here is made more effective by not only to predict the

current word based on the context but also to perform inverse pre-

diction known as “Skip-gram” model, as shown in Figure 8.3b. In

the follow-up work [250] by the same authors, this word embedding

system including the Skip-gram model is extended by a much faster

learning method called negative sampling, similar to NCE discussed in

Section 8.1.

In parallel with the above development, Mnih and Kavukcuoglu

[254] demonstrate that NCE training of lightweight word embedding
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models is a highly efficient way of learning high-quality word represen-

tations, much like the somewhat earlier lightweight LMs developed by

Mnih and Teh [255] described in Section 8.1. Consequently, results that

used to require very considerable hardware and software infrastructure

can now be obtained on a single desktop with minimal programming

effort and using less time and data. This most recent work also shows

that for representation learning, only five noise samples in NCE can be

sufficient for obtaining strong results for word embedding, much fewer

than that required for LMs. The authors also used an “inversed lan-

guage model” for computing word embeddings, similar to the way in

which the Skip-gram model is used in [250].

Huang et al. [169] recognized the limitation of the earlier work on

word embeddings in that these models were built with only local con-

text and one representation per word. They extended the local context

models to one that can incorporate global context from full sentences

or the entire document. This extended models accounts for homonymy

and polysemy by learning multiple embeddings for each word. An illus-

tration of this model is shown in Figure 8.4. In the earlier work by the

same research group [344], a recursive neural network with local con-

text was developed to build a deep architecture. The network, despite

missing global context, was already shown to be capable of successful

Figure 8.4: The extended word-embedding model using a recursive neural network
that takes into account not only local context but also global context. The global
context is extracted from the document and put in the form of a global semantic
vector, as part of the input into the original word-embedding model with local
context. Taken from Figure 1 of [169]. [after [169], @ACL].
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merging of natural language words based on the learned semantic trans-

formations of their original features. This deep learning approach pro-

vided an excellent performance on natural language parsing. The same

approach was also demonstrated to be reasonably successful in pars-

ing natural scene images. In related studies, a similar recursive deep

architecture is used for paraphrase detection [346], and for predicting

sentiment distributions from text [345].

We now turn to selected applications of deep learning methods

including the use of neural network architectures and word embed-

dings to practically useful NLP tasks. Machine translation is one of

such tasks, pursued by NLP researchers for many years based typically

on shallow statistical models. The work described in [320] are perhaps

the first comprehensive report on the successful application of neural-

network-based language models with word embeddings, trained on a

GPU, for large machine translation tasks. They address the problem of

high computation complexity, and provide a solution that allows train-

ing 500 million words with 20 hours. Strong results are reported, with

perplexity down from 71 to 60 in LMs and the corresponding BLEU

score gained by 1.8 points using the neural-network-based language

models with word embeddings compared with the best back-off LM.

A more recent study on applying deep learning methods to machine

translation appears in [121, 123], where the phrase-translation compo-

nent, rather than the LM component in the machine translation system

is replaced by the neural network models with semantic word embed-

dings. As shown in Figure 8.5 for the architecture of this approach,

a pair of source (denoted by f) and target (denoted by e) phrases

are projected into continuous-valued vector representations in a low-

dimensional latent semantic space (denoted by the two y vectors).Then

their translation score is computed by the distance between the pair in

this new space. The projection is performed by two deep neural net-

works (not shown here) whose weights are learned on parallel training

data. The learning is aimed to directly optimize the quality of end-

to-end machine translation results. Experimental evaluation has been

performed on two standard Europarl translation tasks used by the NLP

community, English–French and German–English. The results show

that the new semantic-based phrase translation model significantly
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Figure 8.5: Illustration of the basic approach reported in [122] for machine trans-
lation. Parallel pairs of source (denoted by f) and target (denoted by e) phrases
are projected into continuous-valued vector representations (denoted by the two y

vectors), and their translation score is computed by the distance between the pair in
this continuous space. The projection is performed by deep neural networks (denoted
by the two arrows) whose weights are learned on parallel training data. [after [121],
@NIPS].

improves the performance of a state-of-the-art phrase-based statisti-

cal machine translation system, leading to a gain close to 1.0 BLEU

point.

A related approach to machine translation was developed by

Schwenk [320]. The estimation of the translation model probabilities of

a phrase-based machine translation system is carried out using neural

networks. The translation probability of phrase pairs is learned using

continuous-space representations induced by neural networks. A sim-

plification is made that decomposes the translation probability of a

phrase or a sentence to a product of n-gram probabilities as in a stan-

dard n-gram language model. No joint representations of a phrase in

the source language and the translated version in the target language

are exploited as in the approach reported by Gao et al. [122, 123].

Yet another deep learning approach to machine translation

appeared in [249]. As in other approaches, a corpus of words in one

language are compared with the same corpus of words translated into

another, and words and phrases in such bilingual data that share similar

statistical properties are considered equivalent. A new technique is
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proposed that automatically generates dictionaries and phrase tables

that convert one language into another. It does not rely on versions of

the same document in different languages. Instead, it uses data mining

techniques to model the structure of a source language and then com-

pares it to the structure of the target language. The technique is shown

to translate missing word and phrase entries by learning language struc-

tures based on large monolingual data and mapping between languages

from small bilingual data. It is based on vector-valued word embed-

dings as discussed earlier in this chapter and it learns a linear mapping

between vector spaces of source and target languages.

An earlier study on applying deep learning techniques with DBNs

was provided in [111] to attack a machine transliteration problem,

a much easier task than machine translation. This type of deep

architectures and learning may be generalized to the more difficult

machine translation problem but no follow-up work has been reported.

As another early NLP application, Sarikaya et al. [318] applied DNNs

(called DBNs in the paper) to perform a natural language call–routing

task. The DNNs use unsupervised learning to discover multiple layers

of features that are then used to optimize discrimination. Unsupervised

feature discovery is found to make DBNs far less prone to overfitting

than the neural networks initialized with random weights. Unsuper-

vised learning also makes it easier to train neural networks with many

hidden layers. DBNs are found to produce better classification results

than several other widely used learning techniques, e.g., maximum

entropy and boosting based classifiers.

One most interesting NLP task recently tackled by deep learn-

ing methods is that of knowledge base (ontology) completion, which

is instrumental in question-answering and many other NLP applica-

tions. An early work in this space came from [37], where a process is

introduced to automatically learn structured distributed embeddings

of knowledge bases. The proposed representations in the continuous-

valued vector space are compact and can be efficiently learned from

large-scale data of entities and relations. A specialized neural network

architecture, a generalization of “Siamese” network, is used. In the

follow-up work that focuses on multi-relational data [36], the semantic

matching energy model is proposed to learn vector representations for
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both entities and relations. More recent work [340] adopts an alterna-

tive approach, based on the use of neural tensor networks, to attack

the problem of reasoning over a large joint knowledge graph for rela-

tion classification. The knowledge graph is represented as triples of a

relation between two entities, and the authors aim to develop a neu-

ral network model suitable for inference over such relationships. The

model they presented is a neural tensor network, with one layer only.

The network is used to represent entities in a fixed-dimensional vectors,

which are created separately by averaging pre-trained word embedding

vectors. It then learn the tensor with the newly added relationship ele-

ment that describes the interactions among all the latent components

in each of the relationships. The neural tensor network can be visu-

alized in Figure 8.6, where each dashed box denotes one of the two

slices of the tensor. Experimentally, the paper [340] shows that this

tensor model can effectively classify unseen relationships in WordNet

and FreeBase.

As the final example of deep learning applied successfully to NLP,

we discuss here sentiment analysis applications based on recursive deep

Figure 8.6: Illustration of the neural tensor network described in [340], with two
relationships shown as two slices in the tensor. The tensor is denoted by W [1:2]. The
network contains a bilinear tensor layer that directly relates the two entity vectors
(shown as e1 and e2) across three dimensions. Each dashed box denotes one of the
two slices of the tensor. [after [340], @NIPS].



8.2. Natural language processing 307

models published recently by Socher et al. [347]. Sentiment analysis is

a task that is aimed to estimate the positive or negative opinion by an

algorithm based on input text information. As we discussed earlier in

this chapter, word embeddings in the semantic space achieved by neural

network models have been very useful but it is difficult for them to

express the meaning of longer phrases in a principled way. For sentiment

analysis with the input data from typically many words and phrases,

the embedding model requires the compositionality properties. To this

end, Socher et al. [347] developed the recursive neural tensor network,

where each layer is constructed similarly to that of the neural tensor

network described in [340] with an illustration shown in Figure 8.6.

The recursive construction of the full network exhibiting properties

of compositionality follows that of [344] for the regular, non-tensor

network. When trained on a carefully constructed sentiment analysis

database, the recursive neural tensor network is shown to outperform all

previous methods on several metrics. The new model pushes the state of

the art in single sentence positive/negative classification accuracy from

80% up to 85.4%. The accuracy of predicting fine-grained sentiment

labels for all phrases reaches 80.7%, an improvement of 9.7% over bag-

of-features baselines.
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Selected Applications in Information Retrieval

9.1 A brief introduction to information retrieval

Information retrieval (IR) is a process whereby a user enters a query

into the automated computer system that contains a collection of many

documents with the goal of obtaining a set of most relevant documents.

Queries are formal statements of information needs, such as search

strings in web search engines. In IR, a query does not uniquely identify

a single document in the collection. Instead, several documents may

match the query with different degrees of relevancy.

A document, sometimes called an object as a more general term

which may include not only a text document but also an image, audio

(music or speech), or video, is an entity that contains information

and represented as an entry in a database. In this section, we limit

the “object” to only text documents. User queries in IR are matched

against the documents’ representation stored in the database. Docu-

ments themselves often are not kept or stored directly in the IR sys-

tem. Rather, they are represented in the system by metadata. Typical

IR systems compute a numeric score on how well each document in

the database matches the query, and rank the objects according to this

value. The top-ranking documents from the system are then shown to

308
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the user. The process may then be iterated if the user wishes to refine

the query.

Based partly on [236], common IR methods consist of several

categories:

• Boolean retrieval, where a document either matches a query or

does not.

• Algebraic approaches to retrieval, where models are used to rep-

resent documents and queries as vectors, matrices, or tuples. The

similarity of the query vector and document vector is represented

as a scalar value. This value can be used to produce a list of doc-

uments that are rank-ordered for a query. Common models and

methods include vector space model, topic-based vector space

model, extended Boolean model, and latent semantic analysis.

• Probabilistic approaches to retrieval, where the process of IR

is treated as a probabilistic inference. Similarities are computed

as probabilities that a document is relevant for a given query,

and the probability value is then used as the score in ranking

documents. Common models and methods include binary

independence model, probabilistic relevance model with the

BM25 relevance function, methods of inference with uncertainty,

probabilistic, language modeling, http://en.wikipedia.org/wiki/

Uncertain_inference and the technique of latent Dirichlet

allocation.

• Feature-based approaches to retrieval, where documents are

viewed as vectors of values of feature functions. Principled meth-

ods of “learning to rank” are devised to combine these features

into a single relevance score. Feature functions are arbitrary

functions of document and query, and as such Feature-based

approaches can easily incorporate almost any other retrieval

model as just yet another feature.

Deep learning applications to IR are rather recent. The approaches

in the literature so far belong mostly to the category of feature-based

approaches. The use of deep networks is mainly for extracting seman-

tically meaningful features for subsequent document ranking stages.
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We will review selected studies in the recent literature in the remain-

der of this section below.

9.2 Semantic hashing with deep autoencoders for document
indexing and retrieval

Here we discuss the “semantic hashing” approach for the application

of deep autoencoders to document indexing and retrieval as published

in [159, 314]. It is shown that the hidden variables in the final layer of

a DBN not only are easy to infer after using an approximation based

on feed-forward propagation, but they also give a better representation

of each document, based on the word-count features, than the widely

used latent semantic analysis and the traditional TF-IDF approach

for information retrieval. Using the compact code produced by deep

autoencoders, documents are mapped to memory addresses in such a

way that semantically similar text documents are located at nearby

addresses to facilitate rapid document retrieval. The mapping from a

word-count vector to its compact code is highly efficient, requiring only

a matrix multiplication and a subsequent sigmoid function evaluation

for each hidden layer in the encoder part of the network.

A deep generative model of DBN is exploited for the above purpose

as discussed in [165]. Briefly, the lowest layer of the DBN represents

the word-count vector of a document and the top layer represents a

learned binary code for that document. The top two layers of the DBN

form an undirected associative memory and the remaining layers form

a Bayesian (also called belief) network with directed, top-down connec-

tions. This DBN, composed of a set of stacked RBMs as we reviewed

in Section 5, produces a feed-forward “encoder” network that converts

word-count vectors to compact codes. By composing the RBMs in the

opposite order, a “decoder” network is constructed that maps com-

pact code vectors into reconstructed word-count vectors. Combining

the encoder and decoder, one obtains a deep autoencoder (subject to

further fine-tuning as discussed in Section 4) for document coding and

subsequent retrieval.

After the deep model is trained, the retrieval process starts with

mapping each query into a 128-bit binary code by performing a forward
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pass through the model with thresholding. Then the Hamming dis-

tance between the query binary code and all the documents’ 128-bit

binary codes, especially those of the “neighboring” documents defined

in the semantic space, are computed extremely efficiently. The effi-

ciency is accomplished by looking up the neighboring bit vectors in

the hash table. The same idea as discussed here for coding text docu-

ments for information retrieval has been explored for audio document

retrieval and speech feature coding problems with some initial explo-

ration reported in [100], discussed in Section 4 in detail.

9.3 Deep-structured semantic modeling (DSSM)
for document retrieval

Here we discuss the more advanced and recent approach to large-scale

document retrieval (Web search) based on a specialized deep architec-

ture, called deep-structured semantic model or deep semantic similarity

model (DSSM), as published in [172], and its convolutional version (C-

DSSM), as published in [328].

Modern search engines retrieve Web documents mainly by match-

ing keywords in documents with those in a search query. However, lex-

ical matching can be inaccurate due to the fact that a concept is often

expressed using different vocabularies and language styles in documents

and queries. Latent semantic models are able to map a query to its rel-

evant documents at the semantic level where lexical-matching often

fails [236]. These models address the language discrepancy between

Web documents and search queries by grouping different terms that

occur in a similar context into the same semantic cluster. Thus, a query

and a document, represented as two vectors in the lower-dimensional

semantic space, can still have a high similarity even if they do not share

any term. Probabilistic topic models such as probabilistic latent seman-

tic models and latent Dirichlet allocation models have been proposed

for semantic matching to partially overcome such difficulties. However,

the improvement on IR tasks has not been as significant as originally

expected because of two main factors: (1) most state-of-the-art latent

semantic models are based on linear projection, and thus are inadequate

in capturing effectively the complex semantic properties of documents;
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and (2) these models are often trained in an unsupervised manner using

an objective function that is only loosely coupled with the evaluation

metric for the retrieval task. In order to improve semantic matching for

IR, two lines of research have been conducted to extend the above latent

semantic models. The first is the semantic hashing approach reviewed

in Section 9.1 above in this section based on the use of deep autoen-

coders [165, 314]. While the hierarchical semantic structure embedded

in the query and the document can be extracted via deep learning,

the deep learning approach used for their models still adopts an unsu-

pervised learning method where the model parameters are optimized

for the re-construction of the documents rather than for differentiating

the relevant documents from the irrelevant ones for a given query. As

a result, the deep neural network models do not significantly outper-

form strong baseline IR models that are based on lexical matching. In

the second line of research, click-through data, which consists of a list

of queries and the corresponding clicked documents, is exploited for

semantic modeling so as to bridge the language discrepancy between

search queries and Web documents in recent studies [120, 124]. These

models are trained on click-through data using objectives that tailor to

the document ranking task. However, these click-through-based models

are still linear, suffering from the issue of expressiveness. As a result,

these models need to be combined with the keyword matching models

(such as BM25) in order to obtain a significantly better performance

than baselines.

The DSSM approach reported in [172] aims to combine the

strengths of the above two lines of work while overcoming their weak-

nesses. It uses the DNN architecture to capture complex semantic prop-

erties of the query and the document, and to rank a set of documents

for a given query. Briefly, a nonlinear projection is performed first to

map the query and the documents to a common semantic space. Then,

the relevance of each document given the query is calculated as the

cosine similarity between their vectors in that semantic space. The

DNNs are trained using the click-through data such that the condi-

tional likelihood of the clicked document given the query is maximized.

Different from the previous latent semantic models that are learned

in an unsupervised fashion, the DSSM is optimized directly for Web
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Figure 9.1: The DNN component of the DSSM architecture for computing semantic
features. The DNN uses multiple layers to map high-dimensional sparse text features,
for both Queries and Documents into low-dimensional dense features in a semantic
space. [after [172], @CIKM].

document ranking, and thus gives superior performance. Furthermore,

to deal with large vocabularies in Web search applications, a new word

hashing method is developed, through which the high-dimensional term

vectors of queries or documents are projected to low-dimensional letter

based n-gram vectors with little information loss.

Figure 9.1 illustrates the DNN part in the DSSM architecture. The

DNN is used to map high-dimensional sparse text features into low-

dimensional dense features in a semantic space. The first hidden layer,

with 30k units, accomplishes word hashing. The word-hashed features

are then projected through multiple layers of non-linear projections.

The final layer’s neural activities in this DNN form the feature in the

semantic space.

To show the computational steps in the various layers of the DNN

in Figure 9.1, we denote x as the input term vector, y as the output

vector, li, i = 1, . . . , N − 1, as the intermediate hidden layers, Wi as

the ith projection matrix, and bi as the ith bias vector, we have

l1 = W1x,

li = f(Wili−1 + bi), i > 1

y = f(WN lN−1 + bN ),
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where tanh function is used at the output layer and the hidden layers

li, i = 2, . . . , N − 1:

f(x) =
1 − e−2x

1 + e−2x
.

The semantic relevance score between a query Q and a document D

can then be computed as the consine distance

R(Q, D) = cosine(yQ, yD) =
yT

QyD

‖yQ‖‖yD‖
,

where yQ and yD are the concept vectors of the query and the docu-

ment, respectively. In Web search, given the query, the documents can

be sorted by their semantic relevance scores.

Learning of the DNN weights Wi and bi shown in Figure 9.1 is an

important contribution of the study of [172]. Compared with the DNNs

used in speech recognition where the targets or labels of the training

data are readily available, the DNN in the DSSM does not have such

label information well defined. That is, rather than using the common

cross entropy or mean square errors as the training objective function,

IR-centric loss functions need to be developed in order to train the DNN

weights in the DSSM using the available data such as click-through logs.

The click-through logs consist of a list of queries and their clicked

documents. A query is typically more relevant to the documents that

are clicked on than those that are not. This weak supervision informa-

tion can be exploited to train the DSSM. More specifically, the weight

matrices in the DSSM, Wi, is learned to maximize the posterior prob-

ability of the clicked documents given the queries

P (D | Q) =
exp(γR(Q, D))

∑

D′∈D exp(γR(Q, D′))

defined on the semantic relevance score R(Q, D) between the Query (Q)

and the Document (D), where γ is a smoothing factor set empirically

on a held-out data set, and D denotes the set of candidate documents

to be ranked. Ideally, D should contain all possible documents, as in

the maximum mutual information training for speech recognition where

all possible negative candidates may be considered [147]. However in
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this case D is of Web scale and thus is intractable in practice. In the

implementation of DSSM learning described in [172], a subset of the

negative candidates are used, following the common practice adopted

in MCE (Minimum Classification Error) training in speech recognition

[52, 118, 417, 418]. In other words, for each query and clicked-document

pair, denoted by (QD+) where Q is a query and D+ is the clicked doc-

ument, the set of D is approximated by including D+ and only four

randomly selected unclicked documents, denoted by D−
j ; j = 1, . . . , 4}.

In the study reported in [172], no significant difference was found when

different sampling strategies were used to select the unclicked docu-

ments.

With the above simplification the DSSM parameters are estimated

to maximize the approximate likelihood of the clicked documents given

the queries across the training set

L(Λ) = log
∏

(Q,D+,D−
j

)

P (D+ | Q),

where Λ denotes the parameter set of the DNN weights {Wi} in the

DSSM. In Figure 9.2, we show the overall DSSM architecture that

contains several DNNs. All these DNNs share the same weights but take

different documents (one positive and several negatives) as inputs when

training the DSSM parameters. Details of the gradient computation

of this approximate loss function with respect to the DNN weights

tied across documents and queries can be found in [172] and are not

elaborated here.

Most recently, the DSSM described above has been extended to its

convolutional version, or C-DSSM [328]. In the C-DSSM, semantically

similar words within context are projected to vectors that are close

to each other in the contextual feature space through a convolutional

structure. The overall semantic meaning of a sentence is found to be

determined by a few key words in the sentence, and thus the C-DSSM

uses an additional max pooling layer to extract the most salient local

features to form a fixed-length global feature vector. The global feature

vector is then fed to the remaining nonlinear DNN layer(s) to map it

to a point in the shared semantic space.
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Figure 9.2: Architectural illustration of the DSSM for document retrieval (from
[170, 171]). All DNNs shown have shared weights. A set of n documents are shown
here to illustrate the random negative sampling discussed in the text for simplifying
the training procedure for the DSSM. [after [172], @CIKM].

The convolutional neural network component of the C-DSSM is

shown in Figure 9.3, where a window size of three is illustrated for

the convolutional layer. The overall C-DSSM architecture is similar

to the DSSM architecture shown in Figure 9.2 except that the fully-

connected DNNs are replaced by the convolutional neural networks

with locally-connected tied weights and additional max-pooling layers.

The model component shown in Figure 9.3 contains (1) a word hashing

layer to transform words into letter-tri-gram count vectors in the same

way as the DSSM; (2) a convolutional layer to extract local contextual

features for each context window; (3) a max-pooling layer to extract

and combine salient local contextual features to form a global feature

vector; and (4) a semantic layer to represent the high-level semantic

information of the input word sequence.

The main motivation for using the convolutional structure in the

C-DSSM is its ability to map a variable-length word sequence to a low-

dimensional vector in a latent semantic space. Unlike most previous

models that treat a query or a document as a bag of words, a query

or a document in the C-DSSM is viewed as a sequence of words with

contextual structures. By using the convolutional structure, local con-

textual information at the word n-gram level is modeled first. Then,
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Figure 9.3: The convolutional neural network component of the C-DSSM, with the
window size of three is illustrated for the convolutional layer. [after [328], @WWW].

salient local features in a word sequence are combined to form a global

feature vector. Finally, the high-level semantic information of the word

sequence is extracted to form a global vector representation. Like the

DSSM just described, the C-DSSM is also trained on click-through data

by maximizing the conditional likelihood of the clicked documents given

a query using the back-propagation algorithm.

9.4 Use of deep stacking networks for information retrieval

In parallel with the IR studies reviewed above, the deep stacking net-

work (DSN) discussed in Section 6 has also been explored recently

for IR with insightful results [88]. The experimental results suggest

that the classification error rate using the binary decision of “relevant”

versus “non-relevant” from the DSN, which is closely correlated with

the DSN training objective, is also generally correlated well with the

NDCG (normalized discounted cumulative gain) as the most common
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IR quality measure. The exception is found in the region of high IR

quality.

As described in Section 6, the simplicity of the DSN’s training objec-

tive, the mean square error (MSE), drastically facilitates its success-

ful applications to image recognition, speech recognition, and speech

understanding. The MSE objective and classification error rate have

been shown to be well correlated in these speech or image applications.

For information retrieval (IR) applications, however, the inconsistency

between the MSE objective and the desired objective (e.g., NDCG)

is much greater than that for the above classification-focused applica-

tions. For example, the NDCG as a desirable IR objective function is

a highly non-smooth function of the parameters to be learned, with a

very different nature from the nonlinear relationship between MSE and

classification error rate. Thus, it is of interest to understand to what

extent the NDCG is reasonably well correlated with classification rate

or MSE where the relevance level in IR is used as the DSN prediction

target. Further, can the advantage of learning simplicity in the DSN

be applied to improve IR quality measures such as the NDCG? Our

experimental results presented in [88] provide largely positive answers

to both of the above questions. In addition, special care that need to

be taken in implementing DSN learning algorithms when moving from

classification to IR applications are addressed.

The IR task in the experiments of [88] is the sponsored search

related to ad placement. In addition to the organic web search

results, commercial search engines also provide supplementary spon-

sored results in response to the user’s query. The sponsored search

results are selected from a database pooled by advertisers who bid to

have their ads displayed on the search result pages. Given an input

query, the search engine will retrieve relevant ads from the database,

rank them, and display them at the proper place on the search result

page; e.g., at the top or right hand side of the web search results. Find-

ing relevant ads to a query is quite similar to common web search. For

instance, although the documents come from a constrained database,

the task resembles typical search ranking that targets on predicting

document relevance to the input query. The experiments conducted for
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this task are the first with the use of deep learning techniques (based

on the DSN architecture) on the ad-related IR problem. The prelimi-

nary results from the experiments are the close correlation between the

MSE as the DSN training objective with the NDCG as the IR quality

measure over a wide NDCG range.
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Selected Applications in Object Recognition

and Computer Vision

Over the past two years or so, tremendous progress has been made in

applying deep learning techniques to computer vision, especially in the

field of object recognition. The success of deep learning in this area

is now commonly accepted by the computer vision community. It is

the second area in which the application of deep learning techniques

is successful, following the speech recognition area as we reviewed and

analyzed in Sections 2 and 7.

Excellent surveys on the recent progress of deep learning for

computer vision are available in the NIPS-2013 tutorial (https://

nips.cc/Conferences/2013/Program/event.php?ID=4170 with video

recording at http://research.microsoft.com/apps/video/default.aspx?

id=206976&l=i) and slides at http://cs.nyu.edu/∼fergus/presentations/

nips2013_final.pdf, and also in the CVPR-2012 tutorial (http://cs.nyu.

edu/∼fergus/tutorials/deep_learning_cvpr12). The reviews provided

in this section below are based partly on these tutorials, in connection

with the earlier deep learning material in this monograph. Another

excellent source which this section draws from is the most recent Ph.D.

thesis on the topic of deep learning for computer vision [434].

320
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Over many years, object recognition in computer vision has been

relying on hand-designed features such as SIFT (scale invariant fea-

ture transform) and HOG (histogram of oriented gradients), akin to

the reliance of speech recognition on hand-designed features such as

MFCC and PLP. However, features like SIFT and HOG only capture

low-level edge information. The design of features to effectively capture

mid-level information such as edge intersections or high-level represen-

tation such as object parts becomes much more difficult. Deep learning

aims to overcome such challenges by automatically learning hierarchies

of visual features in both unsupervised and supervised manners directly

from data. The review below categorizes the many deep learning meth-

ods applied to computer vision into two classes: (1) unsupervised fea-

ture learning where the deep learning is used to extract features only,

which may be subsequently fed to relatively simple machine learning

algorithm for classification or other tasks; and (2) supervised learning

methods where end-to-end learning is adopted to jointly optimize fea-

ture extractor and classifier components of the full system when large

amounts of labeled training data are available.

10.1 Unsupervised or generative feature learning

When labeled data are relatively scarce, unsupervised learning algo-

rithms have been shown to learn useful visual feature hierarchies. In

fact, prior to the demonstration of remarkable successes of CNN archi-

tectures with supervised learning in the 2012 ImageNet competition,

much of the work in applying deep learning methods to computer

vision had been on unsupervised feature learning. The original unsuper-

vised deep autoencoder that exploits DBN pre-training was developed

and demonstrated by Hinton and Salakhutdinov [164] with success on

the image recognition and dimensionality reduction (coding) tasks of

MNIST with only 60,000 samples in the training set; see details of this

task in http://yann.lecun.com/exdb/mnist/ and an analysis in [78].

It is interesting to note that the gain of coding efficiency using the DBN-

based autoencoder on the image data over the conventional method of

principal component analysis as demonstrated in [164] is very similar to
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the gain reported in [100] and described in Section 4 of this monograph

on the speech data over the traditional technique of vector quantiza-

tion. Also, Nair and Hinton [265] developed a modified DBN where the

top-layer model uses a third-order Boltzmann machine. This type of

DBN is applied to the NORB database — a three-dimensional object

recognition task. An error rate close to the best published result on this

task is reported. In particular, it is shown that the DBN substantially

outperforms shallow models such as SVMs. In [358], two strategies to

improve the robustness of the DBN are developed. First, sparse connec-

tions in the first layer of the DBN are used as a way to regularize the

model. Second, a probabilistic de-noising algorithm is developed. Both

techniques are shown to be effective in improving robustness against

occlusion and random noise in a noisy image recognition task. DBNs

have also been successfully applied to create compact but meaning-

ful representations of images [360] for retrieval purposes. On this large

collection image retrieval task, deep learning approaches also produced

strong results. Further, the use of a temporally conditional DBN for

video sequence and human motion synthesis were reported in [361]. The

conditional RBM and DBN make the RBM and DBN weights associ-

ated with a fixed time window conditioned on the data from previous

time steps. The computational tool offered in this type of temporal

DBN and the related recurrent networks may provide the opportunity

to improve the DBN–HMMs towards efficient integration of temporal-

centric human speech production mechanisms into DBN-based speech

production model.

Deep learning methods have a rich family, including hierarchical

probabilistic and generative models (neural networks or otherwise).

One most recent example of this type developed and applied to facial

expression datasets is the stochastic feed-forward neural networks that

can be learned efficiently and that can induce a rich multiple-mode

distribution in the output space not possible with the standard, deter-

ministic neural networks [359]. In Figure 10.1, we show the architecture

of a typical stochastic feed-forward neural network with four hidden

layers with mixed deterministic and stochastic neurons (left) used to

model multi-mode distributions illustrated on the right. The stochastic

network here is a deep, directed graphical model, where the generation
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Figure 10.1: Left: A typical architecture of the stochastic feed-forward neural
network with four hidden layers. Right: Illustration of how the network can produce
a distribution with two distinct modes and use them to represent two or more
different facial expressions y given a neutral face x. [after [359], @NIPS].

process starts from input x, a neural face, and generates the output

y, the facial expression. In face expression classification experiments,

the learned unsupervised hidden features generated from this stochas-

tic network are appended to the image pixels and helped to obtain

superior accuracy to the baseline classifier based on the conditional

RBM/DBN [361].

Perhaps the most notable work in the category of unsupervised deep

feature learning for computer vision (prior to the recent surge of the

work on CNNs) is that of [209], a nine-layer locally connected sparse

autoencoder with pooling and local contrast normalization. The model

has one billion connections, trained on the dataset with 10 million

images downloaded from the Internet. The unsupervised feature learn-

ing methods allow the system to train a face detector without having to

label images as containing a face or not. And the control experiments

show that this feature detector is robust not only to translation but

also to scaling and out-of-plane rotation.

Another set of popular studies on unsupervised deep feature learn-

ing for computer vision are based on deep sparse coding models [226].

This type of deep models produced state-of-the-art accuracy results on

the ImageNet object recognition tasks prior to the rise of the CNN

architectures armed with supervised learning to perform joint feature

learning and classification, which we turn to now.
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10.2 Supervised feature learning and classification

The origin of the applications of deep learning to object recognition

tasks can be traced to the convolutional neural networks (CNNs)

in the early 90s; see a comprehensive overview in [212]. The CNN-

based architectures in the supervised learning mode have captured

intense interest in computer vision since October 2012 shortly after

the ImageNet competition results were released (http://www.image-

net.org/challenges/LSVRC/2012/). This is mainly due to the huge

recognition accuracy gain over competing approaches when large

amounts of labeled data are available to efficiently train large CNNs

using GPU-like high-performance computing platforms. Just like DNN-

based deep learning methods have outperformed previous state-of-

the-art approaches in speech recognition in a series of benchmark

tasks including phone recognition, large-vocabulary speech recognition,

noise-robust speech recognition, and multi-lingual speech recognition,

CNN-based deep learning methods have demonstrated the same in a

set of computer vision benchmark tasks including category-level object

recognition, object detection, and semantic segmentation.

The basic architecture of the CNN described in [212] is shown in

Figure 10.1. To incorporate the relative invariance of the spatial rela-

tionship in typical image pixels with respect to the location, the CNN

uses a convolutional layer with local receptive fields and with tied fil-

ter weights, much like 2-dimensional FIR filters in image processing.

The output of the FIR filters is then passed through a nonlinear acti-

vation function to create activation maps, followed by another non-

linear pooling (labeled as “subsampling” in Figure 10.2) layer that

reduces the data rate while providing invariance to slightly differ-

ent input images. The output of the pooling layer is fed to a few

fully connected layers as in the DNN discussed in earlier chapters.

The whole architecture above is also called the deep CNN in the

literature.

Deep models with convolution structure such as CNNs have been

found effective and have been in use in computer vision and image

recognition since 90s [57, 185, 192, 198, 212]. The most notable advance

was achieved in the 2012 ImageNet LSVRC competition, in which
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Figure 10.2: The original convolutional neural network that is composed of mul-
tiple alternating convolution and pooling layers followed by fully connected layers.
[after [212], @IEEE].

the task is to train a model with 1.2 million high-resolution images

to classify unseen images to one of the 1000 different image classes.

On the test set consisting of 150k images, the deep CNN approach

described in [198] achieved the error rates considerably lower than the

previous state-of-the-art. Very large deep-CNNs are used, consisting of

60 million weights, and 650,000 neurons, and five convolutional layers

together with max-pooling layers. Additional two fully-connected layers

as in the DNN described previously are used on top of the CNN layers.

Although all the above structures were developed separately in earlier

work, their best combination accounted for major part of the success.

See the overall architecture of the deep CNN system in Figure 10.3. Two

additional factors contribute to the final success. The first is a powerful

regularization technique called “dropout”; see details in [166] and a

series of further analysis and improvement in [10, 13, 240, 381, 385]. In

particular, Warde-Farley et al. [385] analyzed the disentangling effects

of dropout and showed that it helps because different members of the

bag share parameters. Applications of the same “dropout” techniques

are also successful for some speech recognition tasks [65, 81]. The

second factor is the use of non-saturating neurons or rectified linear

units (ReLU) that compute f(x) = max(x, 0), which significantly

speeds up the overall training process especially with efficient GPU

implementation. This deep-CNN system achieved a winning top-5 test

error rate of 15.3% using extra training data from ImageNet Fall 2011

release, or 16.4% using only supplied training data in ImageNet-2012,
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Figure 10.3: The architecture of the deep-CNN system which won the 2012 Ima-
geNet competition by a large margin over the second-best system and the state of
the art by 2012. [after [198], @NIPS].

significantly lower than 26.2% achieved by the second-best system

which combines scores from many classifiers using a set of hand-

crafted features such as SIFT and Fisher vectors. See details in http://

www.image-net.org/challenges/LSVRC/2012/oxford_vgg.pdf about

the best competing method. It is noted, however, that the Fisher-

vector-encoding approach has recently been extended by Simonyan

et al. [329] via stacking in multiple layers to form deep Fisher net-

works, which achieve competitive results with deep CNNs at a smaller

computational learning cost.

The state of the art performance demonstrated in [198] using the

deep-CNN approach is further improved by another significant mar-

gin during 2013, using a similar approach but with bigger models

and larger amounts of training data. A summary of top-5 test error

rates from 11 top-performing teams participating in the 2013 Ima-

geNet ILSVRC competition is shown in Figure 10.4, with the best

result of the 2012 competition shown to the right most as the baseline.

Here we see rapid error reduction on the same task from the lowest

pre-2012 error rate of 26.2% (non-neural networks) to 15.3% in 2012

and further to 11.2% in 2013, both achieved with deep-CNN technol-

ogy. It is also interesting to observe that all major entries in the 2013

ImageNet ILSVRC competition is based on deep learning approaches.

For example, the Adobe system shown in Figure 10.4 is based on the

deep-CNN reported in [198] including the use of dropout. The network
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Figure 10.4: Summary results of ImageNet Large Scale Visual Recognition
Challenge 2013 (ILSVRC2013), representing the state-of-the-are performance of
object recognition systems. Data source: http://www.image-net.org/challenges/
LSVRC/2013/results.php.

architecture is modified to include more filters and connections. At test

time, image saliency is used to obtain 9 crops from original images,

which are combined with the standard five multiview crops. The NUS

system uses a non-parametric, adaptive method to combine the out-

puts from multiple shallow and deep experts, including deep-CNN,

kernel, and GMM methods. The VGG system is described in [329]

and uses a combination of the deep Fisher vector network and the

deep-CNN. The ZF system is based on a combination of a large CNN

with a range of different architectures. The choice of architectures was

assisted by visualization of model features using a deconvolutional net-

work as described by Zeiler et al. [437], Zeiler and Fergus [435, 436],

and Zeiler ([434]). The CognitiveVision system uses an image classifi-

cation scheme based on a DNN architecture. The method is inspired

by cognitive psychophysics about how the human vision system first

learns to classify the basic-level categories and then learns to clas-

sify categories at the subordinate level for fine-grained object recogni-

tion. Finally, the best-performing system called Clarifai in Figure 10.4

is based on a large and deep CNN with dropout regularization. It
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augments the amount of training data by down-sampling images to

256 pixels. The system contains a total of 65M parameters. Multiple

such models were averaged together to further boost performance. The

main novelty is to use the visualization technique based on the deconvo-

lutional networks as described in [434, 437] to identify what makes the

deep model perform well, based on which a powerful deep architecture

was chosen. See more details of these systems in http://www.image-

net.org/challenges/LSVRC/2013/results.php.

While the deep CNN has demonstrated remarkable classification

performance on object recognition tasks, there has been no clear under-

standing of why they perform so well until recently. Zeiler and Fergus

[435, 436] conducted research to address just this issue, and then used

the gained understanding to further improve the CNN systems, which

yielded excellent performance as shown in Figure 10.4 with labels “ZF”

and “Clarifai.” A novel visualization technique is developed that gives

insight into the function of intermediate feature layers of the deep CNN.

The technique also sheds light onto the operation of the full network

acting as a classifier. The visualization technique is based on a decon-

volutional network, which maps the neural activities in intermediate

layers of the original convolutional network back to the input pixel

space. This allows the researchers to examine what input pattern orig-

inally caused a given activation in the feature maps. Figure 10.5 (the

top portion) illustrates how a deconvolutional network is attached to

each of its layers, thereby providing a closed loop back to image pixels

as the input to the original CNN. The information flow in this closed

loop is as follows. First, an input image is presented to the deep CNN in

a feed-forward manner so that the features at all layers are computed.

To examine a given CNN activation, all other activations in the layer

are set to zero and the feature maps are passed as input to the attached

deconvolutional network’s layer. Then, successive operations, opposite

to the feed-forward computation in the CNN, are carried out including

unpooling, rectifying, and filtering. This allows the reconstruction of

the activity in the layer beneath that gave rise to the chosen activa-

tion. These operations are repeated until input layer is reached. During

unpooling, non-invertibility of the max pooling operation in the CNN is
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Figure 10.5: The top portion shows how a deconvolutional network’s layer (left)
is attached to a corresponding CNN’s layer (right). The d econvolutional network
reconstructs an approximate version of the CNN features from the layer below. The
bottom portion is an illustration of the unpooling operation in the deconvolutional
network, where “Switches” are used to record the location of the local max in each
pooling region during pooling in the CNN. [after [436], @arXiv].

resolved by an approximate inverse, where the locations of the maxima

within each pooling region are recorded in a set of “switch” variables.

These switches are used to place the reconstructions from the layer

above into appropriate locations, preserving the structure of the stim-

ulus. This procedure is shown at the bottom portion of Figure 10.5.
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In addition to the deep-CNN architecture described above, the DNN

architecture has also been shown to be highly successful in a number

of computer vision tasks [54, 55, 56, 57]. We have not found in the

literature on direct comparisons among the CNN, DNN, and other

related architectures on the identical tasks.

Finally, the most recent study on supervised learning for computer

vision shows that the deep CNN architecture is not only successful for

object/image classification discussed earlier in this section but also suc-

cessful for objection detection in the whole images [128]. The detection

task is substantially more complex than the classification task.

As a brief summary of this chapter, deep learning has made huge

inroads into computer vision, soon after its success in speech recogni-

tion discussed in Section 7. So far, it is the supervised learning paradigm

based on the deep CNN architecture and the related classification tech-

niques that are making the greatest impact, showcased by the ImageNet

competition results from 2012 and 2013. These methods can be used

for not only object recognition but also many other computer vision

tasks. There has been some debate as to the reasons for the success of

these CNN-based deep learning methods, and about their limitations.

Many questions are still open as to how these methods can be tai-

lored to certain computer vision applications and how to scale up the

models and training data. Finally, we discussed a number of studies on

unsupervised and generative approaches of deep learning to computer

vision and image modeling problems in the earlier part of this chapter.

Their performance has not been competitive with the supervised learn-

ing approach on object recognition tasks with ample training data. To

achieve long term and ultimate success in computer vision, it is likely

that unsupervised learning will be needed. To this end, many open

problems in unsupervised feature learning and deep learning need to

be addressed and much more research need to be carried out.
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Selected Applications in Multimodal

and Multi-task Learning

Multi-task learning is a machine learning approach that learns to solve

several related problems at the same time, using a shared represen-

tation. It can be regarded as one of the two major classes of transfer

learning or learning with knowledge transfer, which focuses on general-

izations across distributions, domains, or tasks. The other major class

of transfer learning is adaptive learning, where knowledge transfer is

carried out in a sequential manner, typically from a source task to a

target task [95]. Multi-modal learning is a closely related concept to

multi-task learning, where the learning domains or “tasks” cut across

several modalities for human–computer interactions or other applica-

tions embracing a mixture of textual, audio/speech, touch, and visual

information sources.

The essence of deep learning is to automate the process of dis-

covering effective features or representations for any machine learn-

ing task, including automatically transferring knowledge from one task

to another concurrently. Multi-task learning is often applied to con-

ditions where no or very little training data are available for the tar-

get task domain, and hence is sometimes called zero-shot or one-shot

learning. It is evident that difficult multi-task leaning naturally fits the

paradigm of deep learning or representation learning where the shared

331
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representations and statistical strengths across tasks (e.g., those involv-

ing separate modalities of audio, image, touch, and text) is expected

to greatly facilitate many machine learning scenarios under low- or

zero-resource conditions. Before deep learning methods were adopted,

there had been numerous efforts in multi-modal and multi-task learn-

ing. For example, a prototype called MiPad for multi-modal interac-

tions involving capturing, leaning, coordinating, and rendering a mix

of speech, touch, and visual information was developed and reported

in [175, 103]. And in [354, 443], mixed sources of information from

multiple-sensory microphones with separate bone-conductive and air-

born paths were exploited to de-noise speech. These early studies all

used shallow models and learning methods and achieved worse than

desired performance. With the advent of deep learning, it is hopeful

that the difficult multi-modal learning problems can be solved with

eventual success to enable a wide range of practical applications. In

this chapter, we will review selected applications in this area, orga-

nized according to different combinations of more than one modalities

or learning tasks. Much of the work reviewed here is on-going research,

and readers should expect follow-up publications in the future.

11.1 Multi-modalities: Text and image

The underlying mechanism for potential effectiveness of multi-modal

learning involving text and image is the common semantics associated

with the text and image. The relationship between the text and image

may come, for example, from the text annotations of an image (as the

training data for a multi-modal learning system). If the related text

and image share the same representation in a common semantic space,

the system can generalize to the unseen situation where either text

or image is unavailable. It can thus be naturally used for zero-shot

learning for image or text. In other words, multi-modality learning can

use text information to help image/visual recognition, and vice versa.

Exploiting text information for image/visual recognition constitutes

most of the work done in this space, which we review in this section

below.
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The deep architecture, called DeViSE (deep visual-semantic embed-

ding) and developed by Frome et al. [117], is a typical example of the

multi-modal learning where text information is used to improve the

image recognition system, especially for performing zero-shot learning.

Image recognition systems are often limited in their ability to scale

to large number of object categories, due in part to the increasing

difficulty of acquiring sufficient training data with text labels as the

number of image categories grows. The multi-modal DeViSE system

is aimed to leverage text data to train the image models. The joint

model is trained to identify image classes using both labeled image

data and the semantic information learned from unannotated text. An

illustration of the DeViSE architecture is shown in the center portion

of Figure 10.1. It is initialized with the parameters pre-trained at the

lower layers of two models: the deep-CNN for image classification in

the left portion of the figure and the text embedding model in the

right portion of the figure. The part of the deep CNN, labeled “core

visual model” in Figure 10.1, is further learned to predict the target

word-embedding vector using a projection layer labeled “transforma-

tion” and using a similarity metric. The loss function used in training

adopts a combination of dot-product similarity and max-margin, hinge

rank loss. The former is the un-normalized version of the cosine loss

function used for training the DSSM model in [170] as described in

Section 9.3. The latter is similar to the earlier joint image-text model

called WSABIE (web scale annotation by image embedding developed

by Weston et al. [388, 389]. The results show that the information pro-

vided by text improves zero-shot image predictions, achieving good hit

rates (close to 15%) across thousands of the labels never seen by the

image model.

The earlier WSABIE system as described in [388, 389] adopted

a shallow architecture and trained a joint embedding model of both

images and labels. Rather than using deep architectures to derive the

highly nonlinear image (as well as text-embedding) feature vectors as in

DeViSE, the WSABIE uses simple image features and a linear mapping

to arrive at the joint embedding space. Further, it uses an embedding

vector for each possible label. Thus, unlike DeViSE, WSABIE could

not generalize to new classes.
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Figure 11.1: Illustration of the multi-modal DeViSE architecture. The left portion
is an image recognition neural network with a softmax output layer. The right por-
tion is a skip-gram text model providing word embedding vectors; see Section 8.2
and Figure 8.3 for details. The center is the joint deep image-text model of DeViSE,
with the two Siamese branches initialized by the image and word embedding mod-
els below the softmax layers. The layer labeled “transformation” is responsible for
mapping the outputs of the image (left) and text (right) branches into the same
semantic space. [after [117], @NIPS].

It is also interesting to compare the DeViSE architecture of

Figure 11.1 with the DSSM architecture of Figure 9.2 in Section 9.

The branches of “Query” and “Documents” in DSSM are analogous to

the branches of “image” and “text-label” in DeViSE. Both DeViSE and

DSSM use the objective function related to cosine distance between

two vectors for training the network weights in an end-to-end fash-

ion. One key difference, however, is that the two sets of inputs to the

DSSM are both text (i.e., “Query” and “Documents” designed for IR),

and thus mapping “Query” and “Documents” to the same semantic

space is conceptually more straightforward compared with the need

in DeViSE for mapping from one modality (image) to another (text).

Another key difference is that the generalization ability of DeViSE to

unseen image classes comes from computing text embedding vectors

for many unsupervised text sources (i.e., with no image counterparts)

that would cover the text labels corresponding to the unseen classes.

The generalization ability of the DSSM over unseen words, however,

is derived from a special coding scheme for words in terms of their

constituent letters.

The DeViSE architecture has inspired a more recent method,

which maps images into the semantic embedding space via convex
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combination of embedding vectors for the text label and the image

classes [270]. Here is the main difference. DeViSE replaces the last,

softmax layer of a CNN image classifier with a linear transformation

layer. The new transformation layer is then trained together with the

lower layers of the CNN. The method in [270] is much simpler — keep-

ing the softmax layer of the CNN while not training the CNN. For a

test image, the CNN first produces top N-best candidates. Then, the

convex combination of the corresponding N embedding vectors in the

semantic space is computed. This gives a deterministic transformation

from the outputs of the softmax classifier into the embedding space.

This simple multi-modal learning method is shown to work very well

on the ImageNet zero-shot learning task.

Another thread of studies separate from but related to the above

work on multi-modal learning involving text and image have cen-

tered on the use of multi-modal embeddings, where data from multiple

sources with separate modalities of text and image are projected into

the same vector space. For example, Socher and Fei-Fei [341] project

words and images into the same space using kernelized canonical cor-

relation analysis. Socher et al. [342] map images to single-word vectors

so that the constructed multi-modal system can classify images with-

out seeing any examples of the class, i.e., zero-shot learning similar

to the capability of DeViSE. The most recent work by Socher et al.

[343] extends their earlier work from single-word embeddings to those

of phrases and full-length sentences. The mechanism for mapping sen-

tences instead of the earlier single words into the multi-modal embed-

ding space is derived from the power of the recursive neural network

described in Socher et al. [347] as summarized in Section 8.2, and its

extension with dependency tree.

In addition to mapping text to image (or vice versa) into the same

vector space or to creating the joint image/text embedding space,

multi-modal learning for text and image can also be cast in the frame-

work of language models. In [196], a model of natural language is made

conditioned on other modalities such as image as the focus of the

study. This type of multi-modal language model is used to (1) retrieve

images given complex description queries, (2) retrieve phrase descrip-

tions given image queries, and (3) generate text conditioned on images.
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Figure 11.2: Illustration of the multi-modal DeViSE architecture. The left portion
is an image recognition neural network with a softmax output layer. The right por-
tion is a skip-gram text model providing word embedding vectors; see Section 8.2
and Figure 8.3 for details. The center is the joint deep image-text model of DeViSE,
with the two Siamese branches initialized by the image and word embedding mod-
els below the softmax layers. The layer labeled “transformation” is responsible for
mapping the outputs of the image (left) and text (right) branches into the same
semantic space. [after [196], @NIPS].

Word representations and image features are jointly learned by train-

ing the multi-modal language model together with a convolutional net-

work. An illustration of the multi-modal language model is shown in

Figure 11.2.

11.2 Multi-modalities: Speech and image

Ngiam et al. [268, 269] propose and evaluate an application of

deep networks to learn features over audio/speech and image/video

modalities. They demonstrate cross-modality feature learning, where

better features for one modality (e.g., image) is learned when multiple

modalities (e.g., speech and image) are present at feature learning time.

A bi-modal deep autoencoder architecture for separate audio/speech

and video/image input channels are shown in Figure 11.3. The essence

of this architecture is to use a shared, middle layer to represent both

types of modalities. This is a straightforward generalization from

the single-modal deep autoencoder for speech shown in Figure 4.1 of

Section 4 to bi-modal counterpart. The authors further show how to
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Figure 11.3: The architecture of a deep denoising autoencoder for multi-modal
audio/speech and visual features. [after [269], @ICML].

learn a shared audio and video representation, and evaluate it on a

fixed task, where the classifier is trained with audio-only data but

tested with video-only data and vice versa. The work concludes that

deep learning architectures are generally effective in learning multi-

modal features from unlabeled data and in improving single modality

features through cross modality information transfer. One exception

is the cross-modality setting using the CUAVE dataset. The results

presented in [269, 268] show that learning video features with both

video and audio outperforms that with only video data. However, the

same paper also shows that a model of [278] in which a sophisticated

signal processing technique for extracting visual features, together

with the uncertainty-compensation method developed originally from

robust speech recognition [104], gives the best classification accuracy

in the cross-modal learning task, beating the features derived from the

generative deep architecture designed for this task.

While the deep generative architecture for multimodal learning

described in [268, 269] is based on non-probabilistic autoencoder neural
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nets, a probabilistic version based on deep Boltzmann machine (DBM)

has appeared more recently for the same multimodal application. In

[348], a DBM is used to extract a unified representation integrat-

ing separate modalities, useful for both classification and information

retrieval tasks. Rather than using the “bottleneck” layers in the deep

autoencoder to represent multimodal inputs, here a probability den-

sity is defined on the joint space of multimodal inputs, and states of

suitably defined latent variables are used for the representation. The

advantage of this probabilistic formulation, possibly lacking in the tra-

ditional deep autoencoder, is that the missing modality’s information

can be filled in naturally by sampling from its conditional distribution.

More recent work on autoencoders [22, 30] shows the capability of gen-

eralized denoising autoencoders in carrying out sampling, thus they

may overcome the earlier problem of filling-in the missing modality’s

information. For the bi-modal data consisting of image and text, the

multimodal DBM was shown to slightly outperform the traditional ver-

sion of the deep multimodal autoencoder as well as multimodal DBN

in classification and information retrieval tasks. No results on the com-

parisons with the generalized version of deep autoencoders has been

reported but may appear soon.

The several architectures discussed so far in this chapter for multi-

modal processing and learning can be regarded as special cases of

more general multi-task learning and transfer learning [22, 47]. Trans-

fer learning, encompassing both adaptive and multi-task learning, refers

to the ability of a learning architecture and technique to exploit com-

mon hidden explanatory factors among different learning tasks. Such

exploitation permits sharing of aspects of diverse types of input data

sets, thus allowing the possibility of transferring knowledge across seem-

ingly different learning tasks. As argued in [22], the learning archi-

tecture shown in Figure 11.4 and the associated learning algorithms

have an advantage for such tasks because they learn representations

that capture underlying factors, a subset of which may be relevant

for each particular task. We will discuss a number of such multi-task

learning applications in the remainder of this chapter that are confined

with a single modality of speech, natural language processing, or image

domain.
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Figure 11.4: A DNN architecture for multitask learning that is aimed to dis-
cover hidden explanatory factors shared among three tasks A, B, and C. [after [22],
@IEEE].

11.3 Multi-task learning within the speech, NLP or image
domain

Within the speech domain, one most interesting application of multi-

task learning is multi-lingual or cross-lingual speech recognition, where

speech recognition for different languages is considered as different

tasks. Various approaches have been taken to attack this rather chal-

lenging acoustic modeling problem for speech recognition, where the

difficulty lies in the lack of transcribed speech data due to economic

considerations in developing speech recognition systems for all lan-

guages in the world. Cross-language data sharing and data weighing

are common and useful approaches for the GMM–HMM system [225].

Another successful approach for the GMM–HMM is to map pronunci-

ation units across languages either via knowledge-based or data-driven

methods [420]. But they are much inferior to the DNN–HMM approach

which we now summarize.

In recent papers of [94, 170] and [150], two research groups inde-

pendently developed closely related DNN architectures with multi-task

learning capabilities for multilingual speech recognition. See Figure 11.5

for an illustration of this type of architecture. The idea behind these

architectures is that the hidden layers in the DNN, when learned
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Figure 11.5: A DNN architecture for multilingual speech recognition. [after [170],
@IEEE].

appropriately, serve as increasingly complex feature transformations

sharing common hidden factors across the acoustic data in different

languages. The final softmax layer representing a log-linear classifier

makes use of the most abstract feature vectors represented in the top-

most hidden layer. While the log-linear classifier is necessarily sepa-

rate for different languages, the feature transformations can be shared

across languages. Excellent multilingual speech recognition results are

reported, far exceeding the earlier results using the GMM–HMM based

approaches [225, 420]. The implication of this set of work is signif-

icant and far reaching. It points to the possibility of quickly build-

ing a high-performance DNN-based system for a new language from

an existing multilingual DNN. This huge benefit would require only a

small amount of training data from the target language, although hav-

ing more data would further improve the performance. This multitask

learning approach can reduce the need for the unsupervised pre-training

stage, and can train the DNN with much fewer epochs. Extension

of this set of work would be to efficiently build a language-universal

speech recognition system. Such a system cannot only recognize many

languages and improve the accuracy for each individual language, but
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Figure 11.6: A DNN architecture for speech recognition trained with mixed-
bandwidth acoustic data with 16-kHz and 8-kHz sampling rates; [after [221],
@IEEE].

also expand the languages supported by simply stacking softmax layers

on the DNN for new languages.

A closely related DNN architecture, as shown in Figure 11.6, with

multitask learning capabilities was also recently applied to another

acoustic modeling problem — learning joint representations for two

separate sets of acoustic data [94, 221]. The set that consists of the

speech data with 16 kHz sampling rate is of wideband and high qual-

ity, which is often collected from increasingly popular smart phones

under the voice search scenario. Another, narrowband data set has a

lower sampling rate of 8kHz, often collected using the telephony speech

recognition systems.

As a final example of multi-task learning within the speech domain,

let us consider phone recognition and word recognition as separate

“tasks.” That is, phone recognition results are used not for producing

text outputs but for language-type identification or for spoken doc-

ument retrieval. Then, the use of pronunciation dictionary in almost

all speech systems can be considered as multi-task learning that share

the tasks of phone recognition and word recognition. More advanced

frameworks in speech recognition have pushed this direction further
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by advocating the use of even finer units of speech than phones to

bridge the raw acoustic information of speech to semantic content of

speech via a hierarchy of linguistic structure. These atomic speech units

include “speech attributes” in the detection-based and knowledge-rich

modeling framework for speech recognition, whose accuracy has been

significantly boosted recently by the use of deep learning methods

[332, 330, 427].

Within the natural language processing domain, the best known

example of multi-task learning is the comprehensive studies reported

in [62, 63], where a range of separate “tasks” of part-of-speech tag-

ging, chunking, named entity tagging, semantic role identification, and

similar-word identification in natural language processing are attacked

using a common representation of words and a unified deep learning

approach. A summary of these studies can be found in Section 8.2.

Finally, within the domain of image/vision as a single modality,

deep learning has also been found effective in multi-task learning. Sri-

vastava and Salakhutdinov [349] present a multi-task learning approach

based on hierarchical Bayesian priors in a DNN system applied to var-

ious image classification data sets. The priors are combined with a

DNN, which improves discriminative learning by encouraging infor-

mation sharing among tasks and by discovering similar classes among

which knowledge is transferred. More specifically, methods are devel-

oped to jointly learn to classify images and a hierarchy of classes, such

that “poor classes,” for which there are relatively few training examples,

can benefit from similar “rich classes,” for which more training exam-

ples are available. This work can be considered as an excellent instance

of learning output representations, in addition to learning input rep-

resentation of the DNN as the focus of nearly all deep learning work

reported in the literature.

As another example of multi-task learning within the single-

modality domain of image, Ciresan et al. [58] applied the architec-

ture of deep CNNs to character recognition tasks for Latin and for

Chinese. The deep CNNs trained on Chinese characters are shown to

be easily capable of recognizing uppercase Latin letters. Further, learn-

ing Chinese characters is accelerated by first pre-training a CNN on a

small subset of all classes and then continuing to train on all classes.
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Conclusion

This monograph first presented a brief history of deep learning (focus-

ing on speech recognition) and developed a categorization scheme to

analyze the existing deep networks in the literature into unsupervised

(many of which are generative), supervised, and hybrid classes. The

deep autoencoder, the DSN (as well as many of its variants), and

the DBN–DNN or pre-trained DNN architectures, one in each of the

three classes, are discussed and analyzed in detail, as they appear to

be popular and promising approaches based on the authors’ personal

research experiences. Applications of deep learning in five broad

areas of information processing are also reviewed, including speech

and audio (Section 7), natural language modeling and processing

(Section 8), information retrieval (Section 9), object recognition and

computer vision (Section 10), and multi-modal and multi-task learning

(Section 11). There are other interesting yet non-mainstream applica-

tions of deep learning, which are not covered in this monograph. For

interested readers, please consult recent papers on the applications of

deep learning to optimal control in [219], to reinforcement learning in

[256], to malware classification in [66], to compressed sensing in [277],

to recognition confidence prediction in [173], to acoustic-articulatory

inversion mapping in [369], to emotion recognition from video in [189],

343
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to emotion recognition from speech in [207, 222], to spoken language

understanding in [242, 366, 403], to speaker recognition in [351, 372],

to language-type recognition in [112], to dialogue state tracking for

spoken dialogue systems in [94, 152], to automatic voice activity

detection in [442], to speech enhancement in [396], to voice conversion

in [266], and to single-channel source separation in [132, 387].

The literature on deep learning is vast, mostly coming from

the machine learning community. The signal processing community

embraced deep learning only within the past four years or so (start-

ing around end of 2009) and the momentum is growing fast ever since.

This monograph is written mainly from the signal and information pro-

cessing perspective. Beyond surveying the existing deep learning work,

a classificatory scheme based on the architectures and on the nature

of the learning algorithms is developed, and an analysis and discus-

sions with concrete examples are presented. It is our hope that the

survey conducted in this monograph will provide insight for readers to

better understand the capability of the various deep learning systems

discussed in the monograph, the connection among different but sim-

ilar deep learning methods, and how to design proper deep learning

algorithms under different circumstances.

Throughout this review, the important message is conveyed that

building and learning deep hierarchies of features are highly desirable.

We have discussed the difficulty of learning parameters in all layers of

deep networks in one shot due to optimization difficulties that need

to be better understood. The unsupervised pre-training method in the

hybrid architecture of the DBN–DNN, which we reviewed in detail in

Section 5, appears to have offered a useful, albeit empirical, solution

to poor local optima in optimization and to regularization for the deep

model containing massive parameters even though a solid theoretical

foundation is still lacking. The effectiveness of the pre-training method,

which was one factor that stimulated the interest in deep learning by

the signal processing community in 2009 via collaborations between

academic and industrial researchers, is most prominent when the super-

vised training data are limited.

Deep learning is an emerging technology. Despite the empirical

promising results reported so far, much more work needs to be carried
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out. Importantly, it has not been the experience of deep learning

researchers that a single deep learning technique can be successful for

all classification tasks. For example, while the popular learning strat-

egy of generative pre-training followed by discriminative fine-tuning

seems to work well empirically for many tasks, it failed to work for

some other tasks that have been explored (e.g., language identifica-

tion or speaker recognition; unpublished). For these tasks, the features

extracted at the generative pre-training phase seem to describe the

underlying speech variations well but do not contain sufficient infor-

mation to distinguish between different languages. A learning strategy

that can extract discriminative yet also invariant features is expected to

provide better solutions. This idea has also been called “disentangling”

and is developed further in [24]. Further, extracting discriminative fea-

tures may greatly reduce the model size needed in many of the current

deep learning systems. Domain knowledge such as what kind of invari-

ance is useful for a specific task in hand (e.g., vision, speech, or natural

language) and what kind of regularization in terms of parameter con-

straints is key to the success of applying deep learning methods. More-

over, new types of DNN architectures and learning beyond the several

popular ones discussed in this monograph are currently under active

development by the deep learning research community (e.g., [24, 89]),

holding the promise to improve the performance of deep learning mod-

els in more challenging applications in signal processing and in artificial

intelligence.

Recent published work showed that there is vast room to improve

the current optimization techniques for learning deep architectures

[69, 208, 238, 239, 311, 356, 393]. To what extent pre-training is essen-

tial to learning the full set of parameters in deep architectures is

currently under investigation, especially when very large amounts of

labeled training data are available, reducing or even obliterating the

need for model regularization. Some preliminary results have been dis-

cussed in this monograph and in [55, 161, 323, 429].

In recent years, machine learning is becoming increasingly depen-

dent on large-scale data sets. For instance, many of the recent successes

of deep learning as discussed in this monograph have relied on the access
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to massive data sets and massive computing power. It would become

increasingly difficult to explore the new algorithmic space without the

access to large, real-world data sets and without the related engineer-

ing expertise. How well deep learning algorithms behave would depend

heavily on the amount of data and computing power available. As we

showed with speech recognition examples, a deep learning algorithm

that appears to be performing not so remarkably on small data sets

can begin to perform considerably better when these limitations are

removed, one of main reasons for the recent resurgence in neural net-

work research. As an example, the DBN pre-training that ignited a new

era of (deep) machine learning research appears unnecessary if enough

data and computing power are used.

As a consequence, effective and scalable parallel algorithms are

critical for training deep models with large data sets, as in many com-

mon information processing applications such as speech recognition

and machine translation. The popular mini-batch stochastic gradient

technique is known to be difficult to parallelize over computers.

The common practice nowadays is to use GPGPUs to speed up the

learning process, although recent advance in developing asynchronous

stochastic gradient descent learning has shown promises by using

large-scale CPU clusters [69, 209] and GPU clusters [59]. In this

interesting computing architecture, many different replicas of the DNN

compute gradients on different subsets of the training data in parallel.

These gradients are communicated to a central parameter server

that updates the shared weights. Even though each replica typically

computes gradients using parameter values not immediately updated,

stochastic gradient descent is robust to the slight errors this has

introduced. To make deep learning techniques scalable to very large

training data, theoretically sound parallel learning and optimization

algorithms together with novel architectures need to be further devel-

oped [31, 39, 49, 69, 181, 322, 356]. Optimization methods specific to

speech recognition problems may need to be taken into account in order

to push speech recognition advances to the next level [46, 149, 393].

One major barrier to the application of DNNs and related deep

models is that it currently requires considerable skill and experience to
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choose sensible values for hyper-parameters such as the learning rate

schedule, the strength of the regularizer, the number of layers and the

number of units per layer, etc. Sensible values for one hyper-parameter

may depend on the values chosen for other hyper-parameters and

hyper-parameter tuning in DNNs is especially expensive. Some inter-

esting methods for solving the problem have been developed recently,

including random sampling [32] and Bayesian optimization procedure

[337]. Further research is needed in this important area.

This monograph, mainly in Sections 8 and 11 on natural language

and multi-modal applications, has touched on some recent work on

using deep learning methods to do reasoning, moving beyond the topic

of more straightforward pattern recognition using supervised, unsuper-

vised or hybrid learning methods to which much of this monograph

has been devoted to. In principle, since deep networks are naturally

equipped with distributed representations (rf. Table 3.1) using their

layer-wise collections of units for coding relations and coding entities,

concepts, events, topics, etc., they can potentially perform powerful

reasoning over structures, as argued in various historical publications

as well as recent essays [38, 156, 286, 288, 292, 336, 335]. While initial

explorations on this capability of deep networks have recently appeared

in the literature, as reviewed in Sections 8 and 11, much research is

needed. If successful, this new type of deep learning “machine” will

open up many novel and exciting applications in applied artificial intel-

ligence as a “thinking brain.” We expect growing work of deep learning

in this area, full of new challenges, in the future.

Further, solid theoretical foundations of deep learning need to be

established in a myriad of aspects. As an example, the success of deep

learning in unsupervised learning has not been demonstrated as much

as for supervised learning; yet the essence and major motivation of deep

learning lie right in unsupervised learning for automatically discover-

ing data representation. The issues involve appropriate objectives for

learning effective feature representations and the right deep learning

architectures/algorithms for distributed representations to effectively

disentangle the hidden explanatory factors of variation in the data.

Unfortunately, a majority of the successful deep learning techniques
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have so far dealt with unstructured or “flat” classification problems.

For example, although speech recognition is a sequential classification

problem by nature, in the most successful and large-scale systems, a

separate HMM is used to handle the sequence structure and the DNN

is only used to produce the frame-level, unstructured posterior dis-

tributions. Recent proposals have called for and investigated moving

beyond the “flat” representations and incorporating structures in both

the deep learning architectures and input and output representations

[79, 136, 338, 349].

Finally, deep learning researchers have been advised by neuroscien-

tists to seriously consider a broader set of issues and learning architec-

tures so as to gain insight into biologically plausible representations in

the brain that may be useful for practical applications [272]. How can

computational neuroscience models about hierarchical brain structure

help improve engineering deep learning architectures? How may the

biologically feasible learning styles in the brain [158, 395] help design

more effective and more robust deep learning algorithms? All these

issues and those discussed earlier in this section will need intensive

research in order to further push the frontier of deep learning.
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