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ABSTRACT The broad application area and accompanying challenges make machine learning-based
recognition of handwritten scripts a demanding field. Individuals’ writing practices and inherent variations
in the size, shape, and tilt of characters may increase the difficulty level. Deep convolutional neural network
(DCNN)models have been successful in solving pattern recognition problems, but at the expense of a consid-
erable number of trainable parameters and heavy computational loads. The proposed work addresses these
problems by using the shifted window (SWIN) transformer method to recognize handwritten Devanagari
numerals for the first time. In the presentedmodel, the SWIN transformer is finely tuned to withstand popular
DCNNmodels, such as VGG-16Net, ResNet-50, and DenseNet-121, in terms of recognition accuracy, space
requirement, and computational complexity. The model successfully attained a recognition accuracy of
99.20% with only 0.218 million trainable parameters and 0.0912 giga floating-point operations per second
(FLOPs). This indicates the validity and soundness of the proposed model for recognizing handwritten
Devanagari numerals.

INDEX TERMS Computational complexity, DCNN, devanagari numerals, DenseNet-121, ResNet-50,
shifted window transformer, space complexity, VGG-16Net.

I. INTRODUCTION
In India, the Devanagari script has the ancient legacy of
being the most extensively used script. Scholars have been
researching machine learning-based recognition of hand-
written Devanagari characters for more than 45 years [1].
About 528 million Indians consider Hindi (Devanagari) their
primary language. They prefer it for reading and writing,
as per the most recent language census [2] conducted in
2011 and released in 2018. Additionally, the number of
Hindi users is increasing at a rate of 25% per decade. These
statistics have motivated researchers to develop further auto-
mated language-processing tools related to the Devanagari
script. The inherent variation in writing styles, character
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scaling, character skew, distorted forms of the characters,
and uneven patterns due to pen, page, and paper bases are
known issues related to machine-based recognition. Further-
more, similar strokes and the richness of the curves presented
in the Devanagari script leverage the recognition complex-
ity. The broad application area includes machine-based pro-
cessing of bank checks, identification of pin codes from
postal envelopes, conversion of handwritten documents into
machine-readable forms, and the development of assistive
technology for the disabled. Figure 1 illustrates a set of
Devanagari numerals.

The three primary stages of machine-based recognition
models related to the proposed problem are pre-processing
character images, extracting salient features, and classify-
ing patterns using the appropriate machine-learning algo-
rithm. The feature extraction stage involves capturing salient
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FIGURE 1. Set of handwritten devanagari-numerals.

features from character images. Structural and statistical
features have been used to recognize Devanagari char-
acters. The former are vertical-horizontal-slanted lines,
curves, loops, intersections, endpoints, dots, strokes, con-
tours, and directional details, whereas the latter are distance-
based, zoning-based, moment-based, pixel-density-based,
transformation-based, and histogram-based features. Vari-
ous classification algorithms used in related studies can be
broadly classified as ANN [3], kernel-based [4], statistical-
based [5], template-matching-based [6], and fuzzy-logic-
based [7].

Recent studies have used deep convolutional neural
networks for recognition, which do not require much
pre-processing or manual feature extraction. By achieving
excellent recognition accuracy, these models become game
changers, leaving no space for any significant leap in this
regard. The main concerns related to deep convolutional neu-
ral network (DCNN) models are the need for large datasets,
millions of trainable parameters, and demanding computa-
tional complexities.

Implementing deep neural networks in embedded systems
is challenging because they require large memory and enor-
mous computations [8]. Complex networks have placed sig-
nificant demand on energy-constrained hardware platforms
intended for model execution [9]. Several factors make it
crucial to develop and deploy models with low computational
complexity and space requirements [10], [11]. This can result
in:
Efficient Deployment:Deep learningmodels are frequently

implemented in embedded systems, field-programmable
gate arrays (FPGA), application-specific integrated circuits
(ASICs), mobile devices, and computers, which have lim-
ited power budgets and computational resources. Low-
complexity models can be deployed more effectively on such
devices.
Cost-Saving:Deep learningmodels require several compu-

tational resources and accelerators, such as hyperthreading,
computer unified device architecture (CUDA) cores, higher
bandwidth synchronous dynamic random-access memory
(SDRAM), central processing units (CPUs), and graphical
processing units (GPUs), which may be expensive. Devising

lower-complexity models can result in cost savings for both
researchers and businesses.
Improved Performance: Deep learning models are prone

to overfitting because of the millions of trainable parameters,
resulting in poor generalization to newer datasets. Limiting
the number of parameters is a better solution. Furthermore,
models with a lower computational complexity can result in
faster responses.

These facts have inspired us to present a solution with
lower complexity for the proposed problem.

The Vision-Transformer (VIT) model [12] has been intro-
duced in natural language processing to address the concern
of model complexity. Instead of considering the entire image
at once, VIT uses the self-attention approach to assess the
relationship across pixel pairs within short portions of an
image. This results in a computational cost reduction of up
to the extreme levels. The cost-effectiveness of VIT makes it
popular in the computer vision domain for various applica-
tions such as the processing of high-definition images [13],
pattern recognition [14], and pattern segmentation [15].
According to current developments in the computer vision
field, convolutional neural networks (CNN) may be replaced
by vision transformers in relevant application areas. VIT is
appropriate for mobile platforms such as field-programmable
gate arrays (FPGA) and Raspberry Pi owing to their minimal
space and computational complexity requirements [16].

The main objective of the proposed work is to address
the problem of machine-based recognition of the Devanagari
script through the vision transformer concept and investigate
the performance of the model against popular pre-trained
DCNN models in terms of recognition accuracy, space com-
plexity, and computational complexity.

A. RELATED WORK
Significant work has been recorded on the machine-learning-
based recognition of the English script owing to its global
presence, whereas the language-based automation related
to the Hindi (Devanagari) script is still in its early stages.
This section covers the benchmarking models based on
the proposed problem. Bajaj et al. [17] created features
based on the pixel density, moments (left, right, top,
and bottom), and descriptive components (various strokes).
They employed a hybrid classifier consisting of a multi-
layer perceptron (MLP), Kohonen-Net, Kohonen-self orga-
nizing maps (SOM), and meta-pi networks for numeral
classification. Bhattacharya et al. [18] retrieved horizontal
and vertical stroke-based features from numeral patterns
to construct shape vectors. They estimated Bayesian pos-
terior probabilities using the MLP and hidden Markov
model (HMM) networks separately, and combined the
results for the final classification through the MLP network.
Hanmandlu et al. [19] segmented individual numeral patterns
into small boxes to collect features in the form of normalized
vector distances. They prepared fuzzy sets from these features
and applied a modified exponential membership function for
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the classification. Lakshmi et al. [20] evaluated the features
of the segmented blocks of numerical images in terms of the
gradient direction. The feature size was constrained using
principal component analysis (PCA) method, followed by
the development of histograms. They applied distance-based
matching for classification. Several nearest-neighbor-based
classification algorithms, including nearest-neighbor (NN),
k-nearest-neighbor (KNN), Euclidian-distance-based KNN,
cosine-similarity-based KNN, condensed-NN, reduced-NN,
farthest-like-neighbor, and nearest-unlike-neighbor were the
subject of comparative research by Holambe et al. [21].
They obtained curvature and gradient-based features from
numeral images for classification. Das et al. [22] com-
bined the features based on quad-tree-longest-run and mod-
ular PCA to gather local and global details regarding
Devanagari numerals. They employed a one-versus-all sup-
port vector machine (SVM) classifier for the recognition
task. Iamsa et al. [23] examined the effectiveness of an
extreme learning machine (ELM) and a deep learning-based
feedforward-backpropagation neural network (DFBNN) over
features related to the histogram of gradient (HOG).
Jarunthai et al. [24] observed the performance of general-
ized radial basis function-based modified ELM for numeral
recognition. They selected the centers of radial basis
function (RBF) kernels using a semi-optimized method.
Khanduja et al. [25] created hybrid feature vectors by com-
bining the structural (endpoints, intersection points, and
loops) and statistical (pixel distribution) features. They
applied hybrid vectors to a feedforward neural network to rec-
ognize Devanagari numerals. Chaurasia et al. [26] modified
the architecture of a conventional CNN by replacing the clas-
sification module (dense layers) with an SVM to exploit its
structural risk minimization potential. The authors recorded
an improvement in the recognition of the Devanagari digits.
Rajpal et al. [27] obtained features from numeral patterns
using DCNN models (VGG-16Net and VGG-19Net). After
reducing the feature size, they combined two types of features
into a single vector. They employed an MLP network for the
classification. Garg et al. [28] optimized the features received
fromDenseNet-121 for Devanagari digits. They implemented
the PCA method to eliminate feature co-linearity and applied
the resultant along with statistical metrics (skewness, kurto-
sis, and variance) to train and test the MLP classifier.

Other significant works on the handwritten Devana-
gari script are as follows. Acharya et al. [29] applied
the layer-wise dropout function and data augmentation to
limit the overfitting of the proposed DCNN model. They
improved the performance of the model by increasing the
size of the dataset. Chakraborty et al. [30] observed an
improvement in the results of a proposed CNN model
with increasing depth. They also examined a hybrid model
consisting of a CNN and bidirectional long short-term mem-
ory (BLSTM) for the same classification problem; how-
ever, it could not surpass the base CNN model. Jangid
et al. [31] examined the performance of the proposed

DCNNmodel with six different optimizers: adaptive moment
(ADAM), stochastic gradient descent (SGD), adaptive gra-
dient (ADAGRAD), adaptive delta (ADADELTA), adaptive
maximum (ADAMAX), and root mean square propagation
(RMSPROP). The authors introduced the concept of layer-
wise training. Sonawane et al. [32] employed a pretrained
AlexNet model for the recognition task. They obtained com-
parable results, with fewer training samples and shorter pro-
cessing times. Aneja et al. [33] presented a comparative
study of pre-trained DCNNmodels: AlexNet, DenseNet-121,
DenseNet-201, VGG-11, VGG-16, VGG-19, and Inception-
v3 in the recognition of Devanagari scripts. They analyzed
the results in terms of time complexity and recognition
accuracy. Guha et al. [34] presented a CNN model with
optimized time and space complexities. They examined it
against popular DCNN models: LeNet 5, ResNet (18, 34,
and 50), AlexNet, Inception-v3, and DenseNet-121. They
observed that a smaller network might perform well with
proper optimization of the hyperparameters. Bhati et al. [35]
examined the performance of VGG-16Net andDenseNet-121
with deep fine-tuning and shallow tuning in the recognition
of the Devanagari script. Individual models were trained by
unfreezing a varying number of trainable layers. DenseNet-
121, with deep fine-tuning, is the top performer. Rajpal
et al. [36] created fusion-based hybrid feature vectors that
included the features received from VGG-19Net, Resnet-
50, Inception-v3, and discrete-wavelet-transform. They used
hybrid features to train and test the SVM for classifying
Devanagari scripts.

Some excellent work related to other important scripts
is as follows: Alrobah et al. [37] developed a hybrid deep
model consisting of CNN, SVM, and gradient-boosting clas-
sifiers for the recognition of Arabic script. Rasheed et al. [38]
fine-tuned the hyperparameters of a pre-trained DCNN
model, AlexNet, for the recognition of a handwritten
Urdu script. Li et al. [39] developed a customized CNN
model for recognizing handwritten Chinese scripts. This
model can expand the dataset to improve the recogni-
tion rate. Aly et al. [40] introduced a deep convolutional
self-organizing maps model for recognizing handwritten
English digits. Gupta et al. [41] developed a multilingual
digit recognition model that includes English, Hindi, Bangla,
Telugu, Arabic, Odia, Gujarati, and Punjabi scripts. In their
model, the features received from the CNN outperformed the
handcrafted features.

Researchers have applied several strategies to different
benchmarking models, which has left no stone unturned in
achieving a high recognition rate. This has raised the need
to introduce some unique concepts to address the concern of
model correctness by considering model complexity.

The majority of related models are based on conventional
machine learning methods that have a limited ability to pro-
cess raw natural data. These methods often require domain
expertise and manual feature engineering to achieve rea-
sonable results. The performance of these methods strongly

49532 VOLUME 11, 2023



D. Rajpal, A. R. Garg: Deep Learning Model for Recognition of Handwritten Devanagari Numerals

depends on the design of the feature extractor. In contrast,
deep learning models can automatically learn high-level fea-
tures from raw data, eliminating the need for manual feature
engineering. It is particularly useful in applications related
to image, text, audio, and video processing, where the input
data are high dimensional and complex [42]. This inspired us
to examine deep learning methods for solving the proposed
problem.

B. MOTIVATION
The richness of the curves and the resembling strokes in
the Devanagari script make it typical for a language-based
automation system. The related models achieved good accu-
racy levels using deep convolutional neural networks. The
main concerns with these models are the requirement of
a large number of trainable parameters that demand more
space; the higher depth of the networks invites computational
complexity in many folds; and the need for larger datasets
(one of the probable examples is the ImageNet dataset) for
their fruitful training, which may not be available for appli-
cations related to natural language processing and medical
imaging. The main driving force behind the proposed method
is to address these concerns by developing a low-complexity
(space and computational) model with a comparable success
rate.

1) CONTRIBUTION
A novel concept of vision-transformer-based learning has
been adopted for the first time to solve the problem
of machine-based recognition of handwritten Devanagari
numerals. Efforts have been made to achieve a comparable
recognition rate by addressing concerns about the space and
computational complexities related to deep learning-based
models. The proposed model incorporates a vision trans-
former with a shifted window to extract salient features and
classify corresponding numeral patterns. The same recogni-
tion problem was solved using popular pre-trained DCNN
models: VGG-16Net, ResNet-50, and DenseNet-121. For
validation purposes, the results of the proposed model were
compared with those of the DCNN models. Various per-
formance metrics were computed and visualized to provide
further insight into the proposed model.

The remainder of this paper is organized as follows:
Section II covers the theoretical foundation of the model,
Section III describes the experimental approach, Section IV
presents the result analysis and critical discussions, and
Section V concludes the paper.

II. PRELIMINARY
This section provides an overview of the methods used in
this study. The methods used were the SWIN transformer and
DCNN models VGG-16Net, ResNet-50, and DenseNet-121.

A. VISION TRANSFORMER
Convolutional or recurrent neural networks with an encoder
and decoder are the foundation of frequently used sequence

translation models. The top-performing models additionally
use an attention mechanism to link the encoder and the
decoder. Vaswani et al. [12] proposed a revolutionary archi-
tecture known as a transformer to simplify network design.
It is entirely dependent on attention processes and has the
potential to replace recurrences and convolutions. The enor-
mous success of transformers in natural language processing
has inspired researchers to solve pattern recognition problems
by using them. It has been observed in some studies [15], [43]
that, despite its potential, the vision transformer model strug-
gles with high-definition images because of the limited res-
olution of the feature maps and the increased computational
complexity of the order of quadratic to the input pattern size.
Additionally, fixed-scale tokens of vision transformers are
highly inadequate owing to the variable-scale visual features
associated with vision applications. Liu et al. [44] addressed
these issues by including the shifted window concept in the
vision transformer, which can handle high-definition images
while maintaining a check on the computational complexity.
Using this concept, the model complexity becomes linearly
related to the input image size. These facts motivated us to
examine the performance of SWIN transformers in recogniz-
ing handwritten Devanagari numerals. Figure 2 illustrates the
architecture of the SWIN transformer.

FIGURE 2. The architecture of shifted window transformer.

A SWIN transformer can act as a basic building block for
computer vision applications. It is a hierarchical transformer
that relies on a shifted window mechanism. In this scheme,
self-attention estimation is bound to nonoverlapping win-
dows with cross-window connections. This model is capable
of handling information at different scales linear computa-
tional complexity concerning the size of the input image.

The Patch-Merging module and SWIN-transformer mod-
ule are the two main components of the SWIN transformer
architecture. The input image was divided into patches of size
(n, n), and the patch-merging module arranged these patches
depth-wise. This process results in the down-sampling of the
input image by a factor of n. Consequently, the image size is
rescaled from (H, W, C) to (H/n, W/n, n2∗C), where H, W,
and C represent the height, width, and channels associated
with the image, respectively. Figure 3 illustrates the complete
patch-merging process.

The normalization layer, multi-head self-attention section
with standard and shiftedwindows, andmultilayer perceptron
are the core components of the SWIN transformer module.
Figure 4 depicts the arrangement of the components.

VOLUME 11, 2023 49533



D. Rajpal, A. R. Garg: Deep Learning Model for Recognition of Handwritten Devanagari Numerals

FIGURE 3. The sequence of operations related to patch-merging.

FIGURE 4. Two successive modules of swin transformer.

In the SWIN transformer module, a shifted window-based
multi head self-attention block is followed by a 2-layer MLP
with Gaussian error linear unit (GELU) nonlinearity. Layer
normalization was applied before the individual units of
the multi-head self-attention module and the MLP network.
A residual connection is added to each module. In a window-
based multi head self-attention scheme, the window size is
kept constant throughout the network, which results in a
linear complexity concerning the patch count.

Self-attention is limited to individual windows in a
window-based scheme, which can severely limit the net-
work’s modelling capabilities. To address this concern,
developers introduced a shifted-window self-attention mech-
anism. Figure 5 presents an overview of the shifted-window
implementation.

The figure above shows that the window is moved diag-
onally towards the bottom right corner of an image by a
value of M/2 for window size M. Shifting of the win-
dow results in non-overlapping patches that do not belong
to any window and windows with incomplete patches,
as depicted in Figure 5(b). The cyclic shift technique relo-
cates non-overlapping patches into windows with incomplete
patches, as shown in Figures 5 (c) and (d).

FIGURE 5. Shifting of window in shifting window multi-head
self-attention scheme. (a) window of size (M, M); (b) window shifting by
(M/2); (c) cyclic-shift of the non-overlapped patches; (d) completion of
one shift.

During the calculation, a mask was applied to refocus the
self-attention on the adjacent patches because, following this
shift, a windowmay include patches that were not adjacent in
the original feature map. This method establishes significant
cross-connections between windows and has been proven to
enhance system performance. Better computational complex-
ity was recorded for shifted window self-attention than for
conventional self-attention. The following expressions list the
corresponding complexities.

� (MSA) = 4hwC2
+ 2(hw)2C (1)

� (W − MSA) = 4hwC2
+ 2M2hwC (2)

where h, w, C, and M represent the height, width, channel
count, and window size associated with the image, respec-
tively. Based on Equations (1) and (2), it is clear that the com-
plexity of window-based multihead self-attention (W-MSA)
is linear for a fixed value of M, against the quadratic com-
plexity of the conventional multihead self-attention (MSA).

B. VGG-16Net
Simonyan and Zisserman [45] of the Visual Geometric
Group (VGG) at Oxford University created a network. The
model comprised 16 trainable layers, of which 13 were
convolutional and three were fully connected. The network
participated in the ImageNet large-scale visual recognition
challenge (ILSVRC) in 2014. The network was trained using
the ImageNet dataset, which contains approximately 14 mil-
lion photos connected to 1000 different item classes. The top-
5 test-accuracy score of the model in the competition was
92.7%. VGG-16Net consists of five convolutional blocks,
each carrying convolutional layers and a max-pooling layer,
with the final blocks serving as classification blocks.

C. ResNet-50
ResNet, also known as the Residual Network [46], was intro-
duced in the 2015 Image-Net competition. In the past, it was
assumed that stacking additional convolutional layers would
help extract more complicated features from given patterns,
which would then increase the accuracy and robustness of the
network. ResNet developers have noted that adding too many
layers to the network begins to saturate and occasionally
degrades its accuracy. Network initialization, exploding or
vanishing gradients, and parameter optimization are the pos-
sible causes of this degradation. ResNet effectively addresses
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the issues of deep convolutional networks by introducing the
crucial concept of residual learning. The ResNet-50 network
has 50 trainable layers, 49 of which are convolutional layers,
and one of which is a dense layer.

D. DenseNet-121
A densely connected network known as DenseNet [47] pio-
neered the idea of feature map reuse through dense con-
nections. Deeper networks stack many layers between the
network’s input and output, which may cause the loss of
information during the forward transit and the loss of gradient
during backpropagation. The possible consequences include
improper training and increased error rates. Another issue
is the large number of trainable parameters associated with
deeper networks, which may result in a heavy computa-
tional load. DenseNet can effectively handle these problems
through its dense connections, where each layer is connected
directly to every other layer in the network. DensNet is a
faster, deeper, and more computationally efficient network.
The network contains 121 trainable layers.

III. MATERIAL AND METHOD
The dataset of handwritten Devanagari numerals was com-
piled from a well-known repository made available to the
researcher by Acharya et al. [29]. Developers have collected
handwritten documents from different individuals belonging
to various age groups, professions, and places. The authors
scanned and cropped the images of individual characters
manually and placed them in their respective folders. For the
suggested study, 20,000 images of handwritten Devanagari
numerals were collected from the indicated source.

The Python environment was used to construct the exper-
imental framework. Several open-source libraries, includ-
ing OpenCV, Python’s imaging library, TensorFlow, Keras,
NumPy, Pandas, Scikit-Learn, Seaborn, and Python’s time
module were used for the proposed setup. The simulations
were performed on the robust Google Co-laboratory plat-
form. The Tesla K-80 2496 CUDA cores, 12 GB of GDDR5-
VRAM GPU, a hyper-threaded Xeon processor, 12.6 GB
of RAM, and 33 GB of storage are all supported by the
Co-laboratory.

The architecture of the SWIN transformer implemented in
this study is shown in Figure 6.

The images of the dataset were resized as (32, 32, 1); that
is, the width (W) and height (H) were both maintained at
32. In the first step, the ‘Patch-segmentation’ section of the
vision transformer divides the input image into isolated, non-
overlapping patches, as displayed in Figure 7.

The individual patch was considered a token and the
associated feature was configured as a concatenation of the
grey-level values related to each pixel. Because we utilized
a patch size of (2, 2), the individual patch had a feature
dimension of (2 × 2 × 1 = 4) in our implementation. The
grey-level-valued feature was projected onto a certain dimen-
sion (represented as C) with the help of a linear-embedding
module. The value of C was observed to be in the range of

FIGURE 6. Layout of shifted window transformer implemented in the
proposed work.

FIGURE 7. Patch segmentation of input image.

32 to 128 with a step size of 16 in the proposed implemen-
tation. The optimum result was obtained with C equal to 64.
The patch tokens are processed according to the number of
transformer modules with shifted window mechanisms. The
token counts (H/2 × W/2) are conserved by the transformer
modules. The transformer module with linear embedding is
termed as stage I.

With increasing depth of the network, the token counts
were reduced via patch-merging layers to maintain the hierar-
chical representation of the feature maps. The features associ-
ated with individual groups of (2 × 2) adjacent patches were
concatenated by the first patch-merging layer. The features
that were composed into 4C- dimensions were processed with
a linear layer as well.

This resulted in a reduction of token counts by (2 × 2 = 4)
folds, and the dimension of the output was set to 2C. Later,
shifted window transformer modules were employed for the
transformation of the features by maintaining the feature map
resolution as (H/4, W/4). Stage II refers to the initial phase of
the patch merging and feature transformation. The process
was then carried out two more times as stage III and stage IV,
with the resultant output sizes being (H/8, W/8) and (H/16,
W/16).

The dataset was split into training, testing, and validation
sets in a ratio of 70:20:10. The validation set was used
to adjust the reasonable values of various hyperparameters,
which are listed in Table 1. The ranges of various hyperpa-
rameters that were adopted in the validation stage were as
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TABLE 1. List of hyper-parameters used in the proposed experiment.

follows: dropout rate (0.01 to 0.05), embedded-dimension (32
to 128 in steps of 16), learning rate (0.0008 to 0.005), weight
decay (0.0001 to 0.0005), and label smoothing (0.05 to 0.3).

Various regularization techniques, such as weight dropout,
weight decay, and label smoothing, were used in the proposed
experiment to check for overfitting and enhance the accuracy
of the model. The results were recorded in terms of the
recognition accuracy, precision, recall, and F1-measure; these
metrics are listed in Table 2.

The number of trainable parameters and floating-point
operations per second (FLOPs) as estimated during the train-
ing phase to obtain a sense of the space requirements and
computational complexity of the proposed model.

To validate the proposed model, the same dataset was
applied to popular pre-trained deep learning models for clas-
sification, namely, VGG-16Net, ResNet-50, and DenseNet-
121. Unlike the proposed SWIN transformer model, these
DCNNmodels do not provide flexibility in accepting an input
image with a given resolution (size). Rather, the input size
was fixed at (224, 224, 3) in each of these DCNN models.
The classification results were obtained from the individual
models in terms of the accuracy, number of trainable parame-
ters, and FLOPs. Next section contains a detailed analysis of
the results.

IV. RESULT ANALYSIS AND DISCUSSION
Table 3 lists the numerical class-wise classification results for
the proposed model.

The proposed model achieved an overall top-1 recogni-
tion accuracy of 99.20% and top-5 recognition accuracy
of 99.92%. The mean values of precision, recall, and F1-
measure were 99.31%.

A confusion matrix was developed and is presented in
Figure 8 to provide more insight into the results.

It can be observed that false predictions were minimal for
most of the numeral classes. A little bit of struggle on the part
of the model can be observed in the recognition of numeral

TABLE 2. List of performance metrics used to represent the
numeral-class-wise classification results.

FIGURE 8. Confusion matrix related to the classification result of the
proposed model.

classes 3 and 6. This might be due to their resemblance in
shape to a horizontal flip (Fig. 1).
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TABLE 3. Numeral class-wise classification results of the proposed
model.

TABLE 4. Results of pre-trained DCNN models (VGG-16Net, ResNet-50,
and DenseNet-121).

The model has a total of 0.218 M (actual value:217978)
parameters, demonstrating the model’s space demand. The
computational complexity of the model is indicated by its
ability to perform 0.0912 G floating-point operations per
second. Table 4 summarizes the results obtained from the
pretrained DCNN models (VGG-16Net, ResNet-50, and
DensNet-121) for the same classification problem.

As shown in Table 4, the recognition accuracy of the
proposed model is comparable to those of the DCNN models
VGG-16Net and ResNet-50. The proposed model outper-
formed the other models in terms of parameter counts and
FLOPs. The parameter counts have shown a clear difference;
the corresponding values for VGG-16Net, ResNet-50, and
DenseNet-121 were 134.30 M, 23.60 M, and 7.04 M, respec-
tively, compared to the suggested model’s 0.218 M. This
demonstrates the ability of the proposed model to solve the
given classification problem with a significantly lower space
requirement. Further, the proposed model involved the least

FLOPs as 0.0912 G against the 31.00 G, 7.75 G, and 5.70 G
of the other models: VGG-16Net, ResNet-50, and DenseNet-
121. This suggests the potential of the proposed model to
solve the given problem with nominal computational com-
plexity. These results validated the proposed model.

V. CONCLUSION
Machine-based recognition of handwritten Devanagari char-
acters has always been tedious because of the richness of
curves and degree of resemblance presented in the script.
Several benchmarking models based on the DCNN handled
the problem well and produced excellent results. The main
concerns of these models are their large number of param-
eters (space requirements) and computational complexity.
To address these concerns, the proposed model uses a cus-
tomized shifted window transformer for the first time to
solve the classification problem of handwritten Devanagari
numerals. The proposed model exploits the capability of the
SWIN transformer to handle information at given scales,
which also has linear computational complexity concerning
the input image. The model attained a comparable classi-
fication rate of 99.20 percent with the requirement of only
0.218M parameters and 0.0912 G FLOPs. Popular pretrained
DCNNmodels, VGG-16Net, ResNet-50, and DenseNet-121,
were used to validate the results. The results of the proposed
model suggest that the SWIN-transformer has the potential
to replace convolutional neural networks in machine-based
recognition of Devanagari numerals because of its capability
to generate a comparable recognition rate with limited space
and computational complexity requirements. The proposed
model can have a significant impact in the fields of computer
vision and natural language processing given the limitations
of its computational resources.
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