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Abstract

Background

Dengue fever (DF) represents a significant health burden in Vietnam, which is forecast to

worsen under climate change. The development of an early-warning system for DF has

been selected as a prioritised health adaptation measure to climate change in Vietnam.

Objective

This study aimed to develop an accurate DF prediction model in Vietnam using a wide range

of meteorological factors as inputs to inform public health responses for outbreak prevention

in the context of future climate change.

Methods

Convolutional neural network (CNN), Transformer, long short-term memory (LSTM), and

attention-enhanced LSTM (LSTM-ATT) models were compared with traditional machine

learning models on weather-based DF forecasting. Models were developed using lagged

DF incidence and meteorological variables (measures of temperature, humidity, rainfall,

evaporation, and sunshine hours) as inputs for 20 provinces throughout Vietnam. Data from

1997–2013 were used to train models, which were then evaluated using data from 2014–

2016 by Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).

Results and discussion

LSTM-ATT displayed the highest performance, scoring average places of 1.60 for RMSE-

based ranking and 1.95 for MAE-based ranking. Notably, it was able to forecast DF inci-

dence better than LSTM in 13 or 14 out of 20 provinces for MAE or RMSE, respectively.
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Moreover, LSTM-ATT was able to accurately predict DF incidence and outbreak months up

to 3 months ahead, though performance dropped slightly compared to short-term forecasts.

To the best of our knowledge, this is the first time deep learning methods have been

employed for the prediction of both long- and short-term DF incidence and outbreaks in Viet-

nam using unique, rich meteorological features.

Conclusion

This study demonstrates the usefulness of deep learning models for meteorological factor-

based DF forecasting. LSTM-ATT should be further explored for mitigation strategies

against DF and other climate-sensitive diseases in the coming years.

Author summary

Dengue fever (DF) represents a significant health burden worldwide and in Vietnam,

which is forecast to worsen under climate change. The development of an early-warning

system for DF has been selected as a prioritised health adaptation measure to climate

change in Vietnam. This study aimed to use deep learning models to develop a prediction

model of DF rates in Vietnam using a wide range of climate factors as input variables to

inform public health responses for outbreak prevention in the context of future climate

change. The study found that LSTM-ATT outperformed competing models, scoring aver-

age places of 1.60 for RMSE-based ranking and 1.90 for MAE-based ranking. Notably, it

was able to forecast DF incidence better than LSTM in 12 or 14 out of 20 provinces for

MAE or RMSE, respectively. Moreover, LSTM-ATT was able to accurately predict DF

incidence and outbreaks up to 3 months ahead, though performance dropped slightly

compared to short-term forecasts. This is the first time deep learning methods have been

employed for the prediction of both long- and short-term DF incidence and outbreaks in

Vietnam using unique, rich climate features, and it demonstrates the usefulness of deep

learning models for climate-based DF forecasting.

1. Introduction

Dengue fever (DF) is a climate-sensitive, vector-borne disease caused by the dengue virus,

transmitted primarily by Aedes aegypti and Aedes albopictus mosquitoes [1]. Ae. aegypti are

particularly suited to urban environments, where there is an abundance of human hosts, few

predators, and a wide range of potential breeding sites such as drains, tires, and water contain-

ers [2]. Symptoms of DF include flu-like symptoms such as fever, headache, joint pain, nausea,

and vomiting. Severe DF (dengue haemorrhagic fever) can be fatal and may present with

plasma leakage, respiratory distress, organ damage, and internal bleeding [3]. Vietnam experi-

enced an average of 80,938 reported confirmed DF cases annually during the period from

1997–2016, representing a significant impact on public health. The burden of DF is forecast to

worsen throughout the country, and temperatures in the whole country (especially southern

and central regions) are predicted to become significantly more suited to DF transmission due

to climate change [4]. Therefore, an effective early-warning system for DF will help to inform

public health responses for outbreak prevention and has been identified as one of the priori-

tized health adaptation measures to climate change in Vietnam [4].
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Previous studies have attempted to elucidate the relationships between meteorological fac-

tors (i.e., weather factors) and DF incidence in Vietnam and other affected countries [5–13].

Such research is useful in designing effective DF forecasting models. Multiple studies have

found a positive correlation between precipitation and DF, with a lag-time of 0–3 months

between high rainfall and rise in case numbers [5–9]. However, others found no significant

correlation [10,11] or a negative association for a 2-month lag-time [12]. In the studies exam-

ined, minimum temperature was consistently reported as positively correlated with DF inci-

dence for 1–2 month lags [8,10,12,13]. Average monthly or weekly temperature was reported

as positively correlated at 0–2.5 month lags [5–7,9] or not significantly associated [11]. Tem-

perature and rainfall analyses received the most coverage, however other analyses involved

humidity, evaporation, sunshine hours, wind speed, and El Niño events. Relative humidity was

reported as positively associated with DF in the same month by some studies [7,9,12] and neg-

atively correlated by others [11]. When relative or minimum humidity was lagged by 1–3

months, it was only reported as positively correlated [8,12]. Sunshine hours were reported as

both correlated [11] and inversely correlated [7] with DF incidence. Wind speed was found to

be inversely correlated with DF cases for the same month [12]. Positive associations with DF

were also found for same-month average evaporation [11] and El Niño events [10]. The regular

findings of significant associations between meteorological factors and DF suggests that they

may be useful predictors in forecasting DF incidence. However, the differences in findings also

indicate that these relations may be location-specific.

A diverse range of forecast techniques has been applied to the prediction of DF from

weather data both in Vietnam and internationally, such as those used in Kuala Lumpur,

Malaysia [14]; Guangzhou, China [12]; Guadeloupe, France [15]; and Thailand [16]. These

techniques include, but are not limited to, Poisson regression models [17,18], hierarchical

Bayesian models [19], autoregressive integrated moving average (ARIMA) and seasonal

ARIMA models [15,20,21], support vector regression (SVR) [22,23], least absolute shrinkage

and selection operator (LASSO) regression [22,24], artificial neural networks (ANNs) [24],

back-propagation neural networks (BPNNs), gradient boosting machine (GBM) [23], general-

ized additive models (GAMs) [16,23], and long short-term memory (LSTM) models [14,23].

The models listed all included temperature and rainfall as variables; other variables included

humidity [8,14], air pressure and water pressure [23], wind speed [14], altitude, urban land

cover [19], enhanced vegetation index [14], and data from nearby regions in the form of popu-

lation flow [23] or spatial autoregression of DF risk [19].

In this study, we focused on deep learning models due, in part, to their advantages over tra-

ditional approaches. There are several limitations which traditional machine learning (ensem-

ble and statistical) models face. Firstly, missing data can considerably decrease the

performance of the models. Secondly, traditional models are not always able to discern com-

plex patterns in the data. Thirdly, they are not able to work well in long-term forecasting appli-

cations. Finally, feature engineering in traditional models is carried out manually. In contrast,

deep learning models can overcome the obstacles of traditional models through learning fea-

tures directly from the data and learning much more complex data patterns in a more specific

way [25,26].

Similar to the situation in various countries worldwide, there are no early-warning systems

in place for the prediction of DF in Vietnam. This was identified as one of the prioritized adap-

tation measures of Vietnam in the “Climate change response action plan of the health sector in

the 2019–2030, vision to 2050” [4]. Thus, the development of a DF early-warning system has

the potential to be significantly impactful in reducing national morbidity and mortality. There

are some existing studies which built DF prediction models in various provinces in Vietnam in

the past [8,21,27]. However, these have mainly focused on the Mekong delta area in the
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southern region of Vietnam. These prediction models have either been single-variate based on

DF data or multi-variate based on common meteorological factors: temperature, humidity,

and rainfall. More recently, Colón-González et al. [28] developed a superensemble of Bayesian

generalised linear mixed models for DF forecasting up to six months in advance. The model

was evaluated on all 63 provinces in Vietnam, using weather and land cover variables as pre-

dictors. To the best of our knowledge, there have been no DF forecasting models developed in

Vietnam using advanced deep learning techniques such as LSTM. LSTM shows promising pre-

dictive accuracy when compared to other machine learning techniques in DF forecasting else-

where [14,23] as well as in many other real-world problems [25,29–31]. This study aimed to

develop an accurate prediction model for DF in Vietnam, using a wide range of weather factors

as input variables.

Contributions. In this paper, advanced deep learning methods—CNN, Transformer,

LSTM, and attention mechanism-enhanced LSTM (LSTM-ATT) models—were trained and

evaluated on DF rates and 12 different meteorological variables (measures of temperature,

humidity, rainfall, evaporation, and sunshine hours) from 1997 to 2016 in 20 of Vietnam’s 63

provinces. Given the varying response of dengue incidence to meteorological factors observed

in the literature across different locations and for different time lags, we trained the models for

each province separately. To the best of our knowledge, this paper is the first to employ deep

learning techniques to predict both long-term (three months ahead) and short-term (one

month ahead) DF incidence and epidemic months in Vietnam. We evaluated our methods on

a large number of provinces in Vietnam—20 different provinces spanning across three differ-

ent regions with different geographical and climate conditions. From this evaluation,

LSTM-ATT was found to outperform competing models and accurately forecast DF incidence

throughout Vietnam.

2. Materials and methods

2.1 Study design and study site

This was a retrospective ecological study conducted in Vietnam. Vietnam is located in South-

east Asia, with a high level of exposure to climate-related hazards and extreme weather events.

The Global Climate Risk Index 2020 ranked Vietnam as the sixth country in the world most

affected by climate variability and extreme weather events over the period of 1999–2018 [32].

Vietnam has three main regions, Northern, Central and Southern Vietnam, which have dis-

tinctive geographical, meteorological, historical, and cultural qualities. Each region consists of

subregions with further cultural and climate differences. Northern Vietnam has a humid sub-

tropical climate with a full four seasons and much cooler temperatures than the South, which

has a tropical savanna climate. Winters in the North can get quite cold, sometimes with frost

and even snowfall. Snow can even be found to an extent up in the mountains of the extreme

Northern regions, such as in Sapa and Lang Son province in recent years. Southern Vietnam is

usually much hotter and has only two main seasons: a dry season and a rainy season. Climate

change is projected to increase temperatures throughout the country as well as the severity and

frequency of extreme weather events, which in turn would increase the number of people at

risk of climate-sensitive diseases such as DF [4]. Under Representative Concentration Pathway

4.5, more frequent severe typhoons and droughts, longer monsoon seasons, and a sea-level rise

of 55 cm are projected by the end of the 21st century. Temperatures are forecast to rise by

approximately 2.2˚C in northern regions and 1.8˚C in southern regions, and annual rainfall by

5–15 mm. These changes in climate conditions are projected to significantly worsen the

impact of DF and other communicable diseases in Vietnam [4], thus leading to the develop-

ment of early-warning systems for them.
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2.2 Data

DF is one of the prioritized climate-sensitive diseases in Vietnam. Monthly incident confirmed

cases and deaths for DF in 20 provinces/cities (belonging to three main regions in Vietnam:

North, Central, and South) from 1997 to 2016 were provided by the National Institute of

Hygiene and Epidemiology (NIHE), which was responsible for the accuracy of the information

in the database. There were 1,618,767 notified cases of DF from 1997 to 2016, with on average,

about 80,938 cases per year (or 110 cases per 100,000 population). There were 1389 deaths

from DF in this period with most of the deaths occurring before 2000. In 1998, the death rate

of DF was especially high at 0.5 per 100,000. The incidence of DF and mortality rates increased

as temperature increased and the rates in June to October were higher than in other months.

Average yearly DF incidence rates were lower in northern Vietnam from 1997 to 2016, and

peaked in central and southern provinces where the climate is hotter, rainier, and more humid

(Fig 1). These conditions are advantageous to the spread of DF. Hence, including these meteo-

rological factors into prediction models has the potential to improve prediction accuracy as

demonstrated in previous works [8,14,23,24].

For weather data, 12 meteorological factors in the same period were collected, including

measures of temperature, rainfall, humidity, evaporation, and sunshine hours (Table 1). Sun-

shine hours refers to the number of hours with the intensity of direct solar radiation reaching

the surface equal to or greater than 0.2 calories/cm2 minute. Surface is defined as 2 m above

the ground. Thus, if there are thin clouds, but the solar radiation measured at the surface is

greater than 0.2 calories/cm2 minute, it will still be counted as sunny time. The data were pro-

vided by the Vietnam Institute of Meteorology, Hydrology and Climate Change (IMHEN).

2.3 Forecasting models

Since the raw datasets were in various formats, they had to be pre-processed and prepared for

building prediction models (Fig 2).

Data pre-processing. The first step was to clean the data to ensure data integrity before

building prediction models. Our datasets contained a few missing datapoints for some provinces.

The missing data were imputed by using the minimum value from the same month of the last

Fig 1. Yearly DF incident cases per 100,000 population (log-scaled) for 20 different provinces in northern, central, and

southern Vietnam from 1997 to 2016. In the box and whisker plots, green dots indicate mean values.

https://doi.org/10.1371/journal.pntd.0010509.g001
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two years. We found out that this scheme brings better prediction performance with our data

than other common methods such as 0 and mean substitutions in preliminary experiments. Since

the data contained many different features (12 weather factors and DF incidence) with different

value ranges, it required normalisation. For example, total rainfall ranged from 0 mm to 3207

mm, while average temperature ranged from 3.8˚C to 31.8˚C. We normalized each data feature

into a range of (0, 1) using Min-max scaling to ensure all data features were treated equally in the

prediction models. Moreover, rather than predicting the numbers of DF cases each month, we

predicted the incidence rate per 100,000 population to avoid the effect of population changes over

time including past province expansions (e.g., the merge of Ha Noi and Ha Tay in 2008).

Feature selection. For each province, we used a Random Forest Regressor from the Sci-

kit-learn Python Library (version 0.24.2) [33] to rank the importance of all meteorological fac-

tors using Recursive Feature Elimination (RFE) and choose the top 2 features as input for

prediction models. In this method, the RFE function was first trained on all meteorological

factors as predictors of DF incidence by using random forest regression, then the least

Table 1. Meteorological factors from the Vietnam Institute of Meteorology, Hydrology and Environment.

Meteorological factor Unit Measurement methods/detailed description of climate factors

Average monthly temperature ˚C These factors were measured in a meteorological tent at an altitude of 2m,

with a frequency of four times per day. In the tent, 3 specialized

thermometers were placed to measure the average temperature, the

maximum temperature, and the minimum temperature. The average

daily temperature value was calculated as the average of four

measurements (1 am; 7 am; 1 pm; 7pm). Thus, each day had an average

temperature value, a maximum temperature value, and a minimum

temperature value, from which monthly data were calculated.

Maximum average monthly

temperature

˚C

Minimum average monthly

temperature

˚C

Monthly absolute maximum

temperature

˚C

Monthly absolute minimum

temperature

˚C

Monthly rainfall mm Rainfall was also measured by WMO’s specialized meter and placed in a

meteorological garden (close to the meteorological tent) with a frequency

of measurement of four times per day. Total rainfall per day was

calculated as the sum of four measurements. Thus, total monthly rainfall

was calculated from the daily rainfall values.

Highest daily rainfall per

month

mm Selected from a series of daily rainfall in a month.

Number of rainy days per

month

Days Calculated from the series of daily rainfall. Number of rainy days per

month is the total number of days with the rainfall greater than 0mm.

Monthly average relative

humidity

% Humidity was also measured in a weather tent according to WMO

standards with a measurement frequency of four times per day (1 am; 7

am; 1 pm; 7 pm). The average daily relative humidity value was calculated

as the average value of these four measurements. From the date data

series, monthly average relative humidity was calculated.

Monthly minimum relative

humidity

% Daily minimum relative humidity was selected from the four

measurements. From the daily data series, monthly minimum relative

humidity was calculated.

Monthly evaporation mm Evaporation was also measured in a meteorological tent according to

WMO standards with a measurement frequency of two times per day (7

am and 7 pm). Daily evaporation was calculated as the sum of these 2

measurements. From the daily data series, monthly evaporation was

calculated.

Total monthly sunshine hours Hours Similar to the other factors, sunshine hours were also measured from a

specialized meter according to WMO standards and placed in a

meteorological garden to measure the total number of sunshine hours per

day. From the series of daily data, the total monthly sunshine hours were

calculated.

Data for each factor was collected from 1997 to 2016. WMO = World Meteorological Organization.

https://doi.org/10.1371/journal.pntd.0010509.t001
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important meteorological factor was removed. This process was repeated recursively until

there were only the two most important features left. This helped to improve the model’s effi-

ciency and effectiveness by avoiding overfitting caused by too many input features. The full list

of features for each province can be found in S1 Table.

Performance evaluation. Models were evaluated for predictions made one to three

months (steps) in advance. Multi-step prediction refers to forecasts made more than one month

in advance. We split our data into a training set (from 1997 to 2013—a total of 17 years) and a

testing set (from 2014 to 2016–3 years in total) for each province. The training data were used

as input to fit the parameters of the prediction models. We used RMSE and MAE as two main

measures to evaluate how our forecasted incidence rates compared to the real ones in the test

set for each province. In this context, MAE can be interpreted as the average absolute difference

between predicted and actual DF rates over the three years test set. MAE computes the mean of

the absolute errors between predicted values and corresponding real values as follows:

MAE ¼ 1

n

Pn
i¼1
jyi � ŷij, where yi is an actual value and ŷi is a predicted value.

MAE weights errors in proportion to their magnitude. RMSE, in contrast, weights larger

errors more heavily than smaller errors. RMSE computes the square root of the mean of

squared errors between predicted values and corresponding real values.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Pn
i¼1

yi � ŷið Þ
2

q

, where yi is an actual value and ŷi is a predicted value.

Generally, lower scores in these RMSE and MAE metrics indicate a better forecasting

model. As RMSE weights larger errors more than MAE, a forecast with lower RMSE and

higher MAE than competing models would likely have more small-scale errors but fewer

large-scale errors.

Outbreak detection. The ability to correctly categorise months as either outbreak (i.e.,

epidemic) or non-outbreak (i.e., normal) months was assessed for the LSTM-ATT model. We

Fig 2. Data processing pipeline. NIHE = National Institute of Hygiene and Epidemiology. IMHEN = Vietnam Institute of Meteorology, Hydrology and Climate Change.

DF = dengue fever.

https://doi.org/10.1371/journal.pntd.0010509.g002
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set an epidemic threshold for each province by using the monthly mean and standard devia-

tion of incidence rates for that province as in previous works [34,35]. An outbreak month is

defined by an incidence rate exceeding the mean by n standard deviation(s). We set n = 1 in

our study to capture both medium and large outbreak months. Four metrics were used to

assess epidemic detection, as defined below. Firstly, accuracy is defined as the ability of a

model to correctly categorise future months as normal or outbreak months. Secondly, preci-

sion refers to the ratio of correctly detected outbreak months to the number of predicted out-

break months. Thirdly, sensitivity refers to proportion of outbreak months that were correctly

predicted. Finally, specificity is defined as the ratio of correctly detected normal months to the

total number of normal months.

Accuracy ¼
Correct Predictions ðOutbreak or Normal MonthÞ

Total Predictions

Precision ¼
Correct Predictions ðOutbreak MonthsÞ
Total Predicted Outbreak Months

Sensitivity ¼
Correct Predictions ðOutbreak MonthsÞ

Total Outbreak Months

Specificity ¼
Correct Predictions ðNormal MonthsÞ

Total Normal Months

Forecasting models. ANNs [36] are a type of computational model, which imitate the

information processing achieved by neurons in the human brain by making the right connec-

tions among nodes [29]. An ANN consists of three parts: a layer of input nodes, layers of hid-

den nodes, and a layer of output nodes. ANNs are able to successfully map nonlinear input to

output by automatically extracting subtle patterns and multiple features from a large dataset

through each layer. Modern ANNs have achieved state-of-the-art results in previous DF stud-

ies in different regions with different meteorological and geographic data, such as in China

[22,23] and Kuala Lumpur, Malaysia [14]. Thus, in this paper, we focus on adapting these

advanced prediction models to predict DF rates for Vietnam, through the use of CNNs [29],

LSTM models [37] with and without attention mechanisms [30,31], and a Transformer model

[30]. Additionally, a selection of traditional machine learning models—Poisson regression

[38], XGBoost [39], Support Vector Regression (SVR and SVR-L) [40], and Seasonal AutoRe-

gressive Integrated Moving Average (SARIMA) [41]—were included for comparison. Our pre-

diction methods take DF rate and some selected weather factors as inputs and output the

forecasted DF incidence rates for the next k consecutive months (Fig 2). In this paper, we fixed

k = 3 for forecasting future DF incidence up to 3 months ahead in 20 provinces. However, we

also tested with k = 6 in Hanoi to provide an extended example.

CNNs: The development of CNNs was a breakthrough in ANNs, as they approached

human performance in a wide range of domains including pattern recognition, natural lan-

guage processing, and video processing by processing data in grid-like topology [25,29]. Thus,

we adapted CNN models to cope with longitudinal data. Our CNN model consisted of 1D con-

volution layer, 1D max pooling layer, and one fully connected layer.

LSTM: Recurrent Neural Networks are another variant of ANNs specifically designed to

cope with time ordered data, where nodes are connected as a directed graph along a temporal

sequence [42]. In this paper, we focused on LSTM [37], one of the most successful variants of

RNNs specifically designed to deal with longer dependencies in sequences [43] and reduce

exploding gradients. Unlike RNNs, instead of adding regular neural units (i.e., hidden layers),
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LSTM adds memory blocks. A common LSTM memory block consists of a cell state and three

gates—an input gate, a forget gate, and an output gate.

LSTM-ATT: LSTMs can lose important information due to passing information across

multiple sequence steps. To deal with this limitation, attention mechanisms were originally

introduced in Machine Translation [31,33] to strengthen the power of exploiting information

by generating an output at each sequence step. They have proven to be an effective approach

for long input sequences. For this reason, we employed the attention technique from Luong

et al. [31] to further enhance the performance of LSTM in this paper by adding an attention

layer after the LSTM network, denoted as LSTM-ATT.

Transformer: We also considered the Transformer model [30], a recent advanced deep

learning model for natural language processing, for our task. Like RNNs, the Transformer is

designed to deal with sequential data. However, it does not process sequential data in order

like LSTMs. Instead, the Transformer handles the sequence data by using self-attention mech-

anisms to learn the complex dynamics of time series data.

Model Implementation: We implemented the deep learning prediction models (CNN,

LSTM, LSTM-ATT and Transformer) in Python 3.7.10 using PyTorch (version 1.8.1) [44] and

Scikit-learn (version 0.24.2) [33] libraries. During our experiments, we tried lookback window

lengths from 1 to 18 (months). We observed that the models performed best once the lookback

window length was set to 3 (months). After tuning different configurations for parameters and

hyperparameters, we applied the best fitting configurations as follows. For all models, the fol-

lowing parameters were used: batch size = 16, learning rate = 1e-3, dropout = 0.1, number of
training epoch = 300. For CNN, the following parameters were used: number of layers = 1,

number of each kernel = 100, size of each kernel is (1, 3), (2, 3) and (3, 3). The numbers of layers

and hidden sizes for LSTM, LSTM-ATT, and Transformer were optimized for different prov-

inces and models (S2 Table).

Poisson regression, SVR, and SVR-L models were implemented in Scikit-learn (version

0.24.2) (Pedregosa et al., 2011), while XGBoost models were implemented in the XGBoost

Python package (version 1.5.0) (Chen and Guestrin, 2016). For the Poisson regression models,

alpha was set to 1e-15, and max_iter to 1e6. For XGBoost models, default parameters were

used. For SVR, the following parameters were used: kernel = “rbf”, C = 100, gamma = “auto”,

epsilon = 0.1. For SVR-L, the following parameters were used: kernel = “linear”, C = 100,

gamma = “auto”.

SARIMA models were implemented using the SARIMAX model from the statsmodels

(v0.12.2) Python library [45]. Default function parameters were used with the exception of

enforce_stationarity and enforce_invertibility, which were set to false, and the models were

not retrained while iterating through the test set. The order, seasonal order, and trend

parameters were chosen using Bayesian model-based optimisation. This was implemented

with a Tree-structured Parzen Estimator (TPE) in Optuna (version 2.8.0) [46] which

aimed to find the optimum combination of parameters for each province to minimise

RMSE (S3 Table). There were many parameters to optimise for the SARIMA models,

which can be highly time-consuming and difficult for fine-tuning. Therefore, the decision

was made to automate this process, and a TPE was chosen over grid-searching as it is less

computationally expensive [46].

Ethical consideration: This study was approved and managed by the Hanoi University

of Public Health. The study only involved analysing secondary data on DF cases and cli-

mate factors including temperature, precipitation, humidity, evaporation, and sunshine

hours. No human participants were actually involved in this study. Thus, ethical approval

was not required.
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3. Results

One step forecasting accuracy: Overall, the deep learning models outperformed traditional mod-

els in forecasting DF incidence in all 20 provinces, as measured by RMSE (Table 2) and MAE

(Table 3). Colour-coded results were used to highlight this on a province-by-province basis,

instead of colour-coding across the entire range of values, as RMSE and MAE values are only

directly comparable where observed incidence rates are the same. Compared to the traditional

models, LSTM-ATT had lower RMSEs and MAEs in all provinces, LSTM had lower MAEs in all

provinces and lower RMSEs in all but one province, CNN had lower values for both error metrics

in all but three provinces, and Transformer had lower error metrics in all but four provinces.

To visualize the prediction performances of different models compared to the real incidence

rates, we plotted the predicted values of the best performing models—CNN, LSTM and

LSTM-ATT—as well as the actual incidence rates for all provinces during the last 36 months from

January 2014 to December 2016 (S1 Fig). Plots from six different provinces were provided for an

overview of the forecasting results (Fig 3), as well as complete epidemic curves for all provinces

across the full 20 years of the dataset (S2 Fig). As the transformer and traditional models per-

formed poorly, they were excluded to avoid overplotting. Overall, the prediction lines of LSTM

and LSTM-ATT fit very well with the actual incidence lines for most of the provinces indicating

very good prediction accuracies in these provinces. On the other hand, the performances of CNN

and especially Transformer were less stable than LSTM and LSTM-ATT in most provinces.

Table 2. Root mean square errors for all prediction models in 20 Vietnamese provinces.

Province Root Mean Square Error for Each Model

LSTM LSTM-ATT CNN TF Poisson XGB SVR SVR-L SARIMA

Ha Noi 7.999 6.630 9.180 11.301 17.162 13.382 16.689 16.878 18.144

Hai Phong 0.464 0.529 0.757 0.748 0.934 0.657 6.073 7.938 2.594

Quang Ninh 1.010 0.961 1.953 0.930 1.577 1.277 3.384 4.072 1.175

Nam Dinh 0.783 0.797 0.974 1.008 0.939 1.156 1.454 1.578 0.933

Thai Binh 0.627 0.597 0.598 0.661 0.688 0.738 0.781 0.878 0.676

Quang Nam 7.382 6.696 6.890 12.678 13.504 11.990 13.969 15.434 16.448

Quang Ngai 9.288 8.080 8.874 8.861 11.113 9.096 27.721 37.677 10.181

Phu Yen 9.187 9.544 9.766 12.544 19.278 16.209 19.329 20.562 20.628

Ninh Thuan 5.064 3.959 5.140 8.743 17.260 24.833 20.274 12.441 9.027

Binh Thuan 8.364 8.826 8.259 12.031 12.949 10.302 13.880 14.512 10.120

Tay Ninh 5.123 3.854 6.538 6.500 7.350 9.395 7.213 9.450 6.600

Binh Phuoc 6.577 7.466 9.063 9.649 14.796 12.574 17.746 17.507 21.731

An Giang 5.699 3.907 3.860 5.461 9.502 8.672 7.777 7.954 10.504

Tien Giang 4.415 4.098 7.912 5.620 18.336 17.611 14.648 16.247 13.550

Can Tho 3.119 2.228 3.997 4.866 8.689 6.595 18.503 27.518 9.349

Tra Vinh 4.462 3.891 4.820 4.482 12.442 13.630 14.752 14.289 10.129

Kien Giang 2.460 2.976 4.448 3.892 16.070 16.809 16.093 16.455 5.079

Soc Trang 6.192 5.887 3.725 4.389 12.671 13.908 12.227 11.946 42.093

Bac Lieu 3.429 2.652 2.379 2.891 12.324 11.841 10.035 9.584 23.812

Ca Mau 4.490 4.110 5.499 9.043 14.720 20.489 15.279 15.974 17.736

Values are colour-coded for each province separately from the lowest value (darker green) to the median value (yellow) to the highest value (darker red). LSTM = long

short-term memory. LSTM-ATT = attention mechanism-enhanced LSTM. TF = Transformer. CNN = convolutional neural network. Poisson = Poisson regression.

XGB = Extreme Gradient Boosting. SVR = Support Vector Regressor with Radial Basis Kernel. SVR-L = Support Vector Regressor with Linear Kernel.

SARIMA = Seasonal Autoregressive Integrated Moving Average.

https://doi.org/10.1371/journal.pntd.0010509.t002
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Table 3. Mean absolute errors for all prediction models in 20 Vietnamese provinces.

Province Mean Absolute Error for Each Model

LSTM LSTM-ATT CNN TF Poisson XGB SVR SVR-L SARIMA

Ha Noi 4.926 3.457 5.065 5.695 8.397 7.199 9.077 9.542 8.637

Hai Phong 0.276 0.366 0.538 0.702 0.817 0.434 5.196 7.838 2.541

Quang Ninh 0.652 0.614 1.223 0.560 1.325 0.876 2.945 3.973 0.786

Nam Dinh 0.556 0.492 0.654 0.748 0.796 0.806 1.229 1.428 0.728

Thai Binh 0.412 0.432 0.428 0.468 0.498 0.420 0.664 0.803 0.522

Quang Nam 3.766 4.116 4.039 8.353 8.730 8.216 9.567 11.802 10.505

Quang Ngai 6.699 6.579 6.183 5.913 9.442 6.739 24.494 36.921 7.112

Phu Yen 6.604 7.342 6.433 10.167 13.429 11.923 15.608 17.670 18.062

Ninh Thuan 3.733 2.813 3.875 5.351 15.816 17.633 17.566 9.028 5.589

Binh Thuan 6.606 6.495 6.300 9.692 9.929 7.755 11.225 11.898 7.280

Tay Ninh 4.405 2.837 5.218 5.305 5.517 6.622 5.460 8.220 5.585

Binh Phuoc 5.020 5.353 6.846 7.546 10.957 10.042 14.780 13.715 16.440

An Giang 4.462 3.006 2.769 3.747 8.476 7.057 6.762 7.021 9.423

Tien Giang 3.845 3.371 6.589 4.876 15.919 13.528 10.893 14.204 10.671

Can Tho 2.611 1.884 2.911 4.469 6.725 4.864 16.782 27.370 8.148

Tra Vinh 3.143 2.702 3.528 4.005 9.376 9.435 11.766 11.692 7.984

Kien Giang 1.848 2.093 3.537 3.110 13.859 12.334 14.397 14.652 3.765

Soc Trang 4.393 4.540 3.084 3.304 10.683 10.326 10.310 10.283 36.243

Bac Lieu 2.870 2.160 2.008 2.207 11.494 9.399 9.142 8.897 19.599

Ca Mau 3.553 2.935 4.582 5.710 12.015 11.213 13.103 14.381 16.263

Values are colour-coded for each province separately from the lowest value (darker green) to the median value (yellow) to the highest value (darker red). LSTM = long

short-term memory. LSTM-ATT = attention mechanism-enhanced LSTM. CNN = convolutional neural network. TF = Transformer. Poisson = Poisson regression.

XGB = Extreme Gradient Boosting. SVR = Support Vector Regressor with Radial Basis Kernel. SVR-L = Support Vector Regressor with Linear Kernel.

SARIMA = Seasonal Autoregressive Integrated Moving Average.

https://doi.org/10.1371/journal.pntd.0010509.t003

Fig 3. Prediction performances of CNN, LSTM, and LSTM-ATT during the last 36 months in six Vietnamese

provinces. Predicted incidence rates per 100,000 population from 2014 to 2016 are shown compared to the observed

incidence rates. The closer the predictions are to the observed values, the better the prediction accuracies.

CNN = convolutional neural network. LSTM = long short-term memory. LSTM-ATT = attention mechanism-

enhanced LSTM.

https://doi.org/10.1371/journal.pntd.0010509.g003
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The RMSE and MAE metrics for the full set of 20 provinces in Vietnam further quantify the

differences in deep learning model performance initially seen in the DF incidence plots (Fig

4). LSTM and LSTM-ATT clearly outperformed CNN and especially Transformer in most

cases, indicated by low RMSE and MAE values, such as in Ha Noi and Tay Ninh. LSTM-ATT

had the lowest RMSE in 10 provinces, followed by LSTM in five provinces, CNN in four prov-

inces, and Transformer in one. For RMSE, LSTM-ATT was better than LSTM in 14 out of 20

provinces. Similarly, for MAE, LSTM-ATT had the lowest score in eight provinces, followed

by LSTM in five provinces, CNN in five provinces, and Transformer in two provinces.

LSTM-ATT had a lower MAE than LSTM in 13 out of 20 provinces. This shows the improve-

ment the attention mechanism brings to the prediction accuracies of LSTM in our task.

To have a better overall view of the performance of these models on all provinces, we

ranked each model from one to nine based on the RMSEs and MAEs for each province where

one was the best method and nine was the worst. After that, we calculated the average ranks

for all methods across all 20 different provinces. LSTM-ATT outperformed all other tech-

niques with average rankings of 1.60 for RMSE and 1.95 for MAE (Fig 5). LSTM was the sec-

ond-best method with average rankings of 2.35 and 2.20 for RMSE and MAE, respectively.

The CNN model placed third, with average rankings of 3.10 and 2.70 for RMSE and MAE,

respectively. The other models had worse error scores overall, with transformer ranking

fourth, XGBoost fifth, Poisson regression sixth, SARIMA seventh, SVR eighth, and SVR-L

nineth. Therefore, the deep learning models outperformed traditional models, and the atten-

tion mechanism improved the performance of the baseline LSTM model.

One step outbreak prediction: LSTM-ATT was selected for outbreak prediction due to its

high performance relative to competing models. Overall, LSTM-ATT was able to predict epi-

demic months very well with a low incidence of false alarms (Fig 6A) and high levels of preci-

sion, accuracy, sensitivity, and specificity (Fig 6B). There was an average accuracy score (i.e.,

the ability to classify months as either outbreak or normal) of 0.99, and an average sensitivity

score (i.e., the ability to detect outbreak months) of 0.70. However, the average sensitivity cal-

culation is based on the five provinces where there were outbreaks, as sensitivity is undefined

Fig 4. RMSEs and MAEs for all models (LSTM, and LSTM-ATT, CNN, Transformer) for all 20 provinces. The smaller

the values, the better the prediction accuracies. RMSE = root mean square error. MAE = mean absolute error.

CNN = convolutional neural network. LSTM = long short-term memory. LSTM-ATT = attention mechanism-enhanced

LSTM.

https://doi.org/10.1371/journal.pntd.0010509.g004

PLOS NEGLECTED TROPICAL DISEASES Deep learning models for forecasting dengue fever based on climate data in Vietnam

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010509 June 13, 2022 12 / 22

https://doi.org/10.1371/journal.pntd.0010509.g004
https://doi.org/10.1371/journal.pntd.0010509


for all other months. Specifically, LSTM-ATT detected all true outbreak months in Ha Noi,

Quang Nam, and Binh Phuoc. It missed one true outbreak month in Thai Binh and Phu Yen,

and raised one false alarm in Ha Noi and Phu Yen. This meant there were precision and sensi-

tivity scores of 0 for Thai Binh and 0.50 in Phu Yen. For all other provinces which did not have

any outbreaks, LSTM-ATT was able to detect all normal months (i.e., those with no outbreaks)

correctly. This led to specificity and accuracy scores of 1.0 for most provinces.

Fig 5. DF forecasting models with RMSE- and MAE-based rankings. Rankings are based on the relative scores for lowest RMSE or MAE in the prediction

of dengue fever one month ahead. Grey-outlined circles indicate mean values. RMSE = root mean square error. MAE = mean absolute error. LSTM = long

short-term memory. LSTM-ATT = attention mechanism-enhanced LSTM. CNN = convolutional neural network. Poisson = Poisson regression.

XGB = XGBoost Extreme Gradient Boosting. SVR = Support Vector Regressor with Radial Basis Kernel. SVR-L = Support Vector Regressor with Linear

Kernel. SARIMA = Seasonal Autoregressive Integrated Moving Average.

https://doi.org/10.1371/journal.pntd.0010509.g005

Fig 6. Outbreak detection by LSTM-ATT. Numbers of actual outbreak months, correct outbreak month predictions

(true positive) and incorrect outbreak month predictions (false positive) for each province are shown (Fig 6A).

Additionally, prediction metrics (precision, accuracy, sensitivity, and specificity) for each province are displayed (Fig

6B). If a province did not have any actual epidemic months in the evaluation period, the precision and sensitivity are

not available. LSTM-ATT = attention mechanism-enhanced LSTM.

https://doi.org/10.1371/journal.pntd.0010509.g006
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Multi-step ahead prediction: The performance of LSTM-ATT was then assessed for pre-

dictions 2–3 months in advance (Fig 7A). Obviously, it is harder to predict in longer term.

Thus, it is unsurprising that RMSE and MAE increased for some provinces. However, for

most provinces, the changes were small (or even better in a few cases) indicating very good

prediction performance of LSTM-ATT. This is also observed in the plotted incidence rates.

For example, in Ha Noi, Ninh Thuan, and Binh Phuoc, there were high similarities between

the predicted and observed rates (Fig 7B). In most of the 20 provinces, however, there were vis-

ible reductions in performance while forecasting more months in advance (S3 Fig). Further

forecasts of up to six months in advance in Hanoi showed a continuing worsening of perfor-

mance (S4 Fig).

Multi-step outbreak prediction: As with 1-month ahead predictions, outbreak month

detection was assessed for forecasts 2–3 months ahead (Fig 8). As expected, the performance

dropped for some provinces when predicting further into the future (e.g., for Binh Phuoc,

Quang Nam and Ha Noi). However, the overall performance was still approximately the same

for almost all of the other provinces.

4. Discussion

This study found that LSTM-ATT frequently outperformed competing deep learning models

in DF prediction and displayed a marked improvement over the basic LSTM model. Further

Fig 7. Performance of multi-step ahead predictions of LSTM-ATT for all provinces. Error metrics are displayed for

all 20 provinces (Fig 7A for RMSE and middle for MAE) in addition to the predicted and observed incidence rates per

100,000 population in three provinces (Fig 7B). LSTM-ATT = attention mechanism-enhanced LSTM. RMSE = root

mean square error. MAE = mean absolute error.

https://doi.org/10.1371/journal.pntd.0010509.g007
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exploration revealed that LSTM-ATT could accurately forecast DF incidence and predict out-

break months up to 3 months ahead, though accuracy dropped slightly compared to short-

term forecasting. While other studies have applied a country-level threshold to identify epi-

demic months [17], the incidence of DF in Vietnam varies across regions, provinces, and cities.

Therefore, a single threshold method is not appropriate. By setting the outbreak threshold as

one standard deviation above the monthly mean for a province, both medium and large-scale

outbreaks were detected, which may be more useful for mitigating DF epidemics.

Meteorological factors are, in part, associated with changes in DF incidence because of their

impacts on mosquito development and behaviour. The implementation of an early-warning

system for DF requires it to be based on data that is widely accessible throughout Vietnam at

short notice with low costs involved, and weather data and case numbers satisfy these criteria

unlike other correlates of DF such as mosquito density [47]. The models in this study used a

subset of rich meteorological factors including temperature, precipitation, humidity, evapora-

tion, and sunshine hours for forecasting, as recursive feature selection identified these as the

most relevant predictors out of the 12 weather variables available. Development rates increase

for Ae. aegypti eggs, larvae, and pupae from 12˚C up to 30˚C, then drop sharply after 40˚C

[48]. Additionally, biting rate may increase with temperature [49] and estimated dengue epi-

demic potential increases with average temperature up to 29˚C for low diurnal temperature

ranges but is lower with high diurnal temperature ranges [50]. Increases in rainfall have been

shown to increase mosquito density and oviposition of Ae. aegypti, which can facilitate

endemicity [51]. The pooling of rainwater in containers and tires can create breeding grounds

for mosquitoes [4], though excessively heavy rainfall, conversely, has been proposed to flush

out breeding sites [12]. Furthermore, humidity is associated with increased survival of Ae.
aegypti [52], and evaporation could impact Aedes mosquitoes through its effects on humidity.

Previous works in Thailand [16] and Puerto Rico [53] have found models including weather

data to perform worse than those that did not. The complex mechanisms described here

between DF and weather could explain why deep learning models show considerable predic-

tive ability in forecasting DF incidence—simpler models may be unable to adequately process

the non-linear biological relationships. In our results, the SARIMA model only used previous

DF incidence as a predictor, and performed worse than the deep learning models which

Fig 8. Precision, accuracy, sensitivity, and specificity for multi-step ahead epidemic prediction using LSTM-ATT.

LSTM-ATT = attention mechanism-enhanced long short-term memory.

https://doi.org/10.1371/journal.pntd.0010509.g008
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included meteorological factors. However, an evaluation of equivalent deep learning models

with and without meteorological factors would be required for a true comparison.

Lookback windows from 1–18 months were tested on the deep learning models, with three

months resulting in optimal performance. This corresponds well with previous correlation

studies between DF and meteorological factors, which have reported time lags preceding

altered DF incidence of 0–3 months for rainfall [5–9,12], 0–2.5 months for temperature [5–

10,12,13], 0–3 months for humidity [7–9,11,12,27], and 0 months for evaporation [11]. There-

fore, the 3-month window appears to capture the relevant delays between altered weather con-

ditions and DF incidence, which could be due to effects on mosquito development and

activity, or human behaviours such as leaving screenless windows open or spending more time

outdoors.

In general, the LSTM-ATT model frequently outperformed the other deep learning models

being assessed. Moreover, LSTM-ATT outperformed LSTM in 13 and 14 provinces when mea-

sured by MAE and RMSE, respectively. In Quảng Nam, the MAE was lower for the standard

LSTM model, but the RMSE was lower for LSTM-ATT. As RMSE attributes greater weight to

larger errors unlike the linear weighting of MAE, this suggests the LSTM-ATT model had

more small-magnitude errors but fewer large-magnitude errors than the standard LSTM

model. This is likely to be preferable in DF forecasting, where the underestimation of an out-

break could be catastrophic.

To the best of our knowledge, this study is the second to forecast long term DF incidence

and outbreak months on a large scale in Vietnam. Disease incidence and epidemic detection

remained relatively accurate for forecasts up to three months in advance, which further illus-

trates the utility of LSTM-ATT in DF forecasting. There are very few works exhibiting true

long-term DF prediction. Colón-González et al. [28] recently developed a weather and land

cover-based probabilistic superensemble of generalised linear mixed models (GLMMs) to

forecast DF in all 63 provinces in Vietnam up to 6 months in advance. Average accuracy and

sensitivity scores of 73% and 68% were obtained for outbreaks more than two standard devia-

tions above the mean. As a different outbreak threshold was used and results were averaged

across 1–6 months lags, direct comparisons with our results are not possible. However, the

cost effectiveness analysis in the study suggests implementing the superensemble model could

improve relative value in reducing the impact of DF outbreaks compared to not using a predic-

tion model in most provinces. Therefore, future work to directly benchmark GLMM superen-

sembles and deep learning models may be useful.

Outside of Vietnam, a few long-term weather-based DF forecasting models have been

developed. Hii et al. [17] reported high prediction precision for a Poisson multivariate regres-

sion model forecasting DF outbreak months in Singapore 16 weeks in advance. The model had

a Receiver Operating Characteristics (ROC) area under the curve (AUC) of 0.98 for outbreak

forecasting. However, case numbers were much lower than they are in Vietnam. There was

only one outbreak to assess performance on in the one-year validation period, reducing the

robustness of the analysis. Shi et al. [54] employed LASSO regression to develop models for up

to 3-months ahead DF forecasting in Singapore, with a MAPE of 17% for a 1-month lag and

24% for a 3-month lag. Notably, they integrated mosquito breeding index with meteorological

data for predictions. Both of these studies were on a national level, while Chen et al. [55] used

LASSO regression for neighbourhood level forecasting in major residential areas in Singapore.

They reported AUC values of 0.88–0.76 for predictions of 1–12 weeks, respectively. Addition-

ally, non- meteorological data was integrated in the form of cell-phone derived travel metrics,

building age, and Normalised Difference Vegetation Index.

Previous studies comparing weather-based DF forecasting techniques are in agreement

with our findings regarding the high accuracy of LSTM models. Xu et al. [23] found LSTM to
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be superior to BPNN, GAM, SVR, and GBM techniques, with transfer learning improving pre-

dictions in lower-incidence areas. Similarly, Pham et al. [14] found a genetic algorithm

enhanced LSTM model to provide better accuracy than linear regression and decision tree

models. Here, we present a novel implementation of the attention-mechanism for LSTM mod-

els in the prediction of DF incidence from meteorological data, and demonstrate its improved

accuracy over CNN, standard LSTM, and Transformer models. Notably, LSTM-ATT outper-

formed the basic LSTM model in almost all provinces, suggesting LSTM-ATT could be a more

robust choice for future studies on the prediction of climate-sensitive diseases.

Surprisingly, the Transformer model performed poorly throughout the study, even though

it has previously been shown to outperform LSTM-based models in some other applications

[56]. In most of the cities, the Transformer performed worse, and under-fitting was observed

in many of the results. The advantage of Transformer is that the model is based on self-atten-

tion. This helps the Transformer by not processing the sequential data in order and can reduce

training time due to parallel computation. This advantage, however, does not appear to carry

over to the research presented in this study, which might be better handled strictly in order

due to the seasonality of the data. In other words, processing the input data in this paper as a

whole seems ineffective.

This study had several limitations regarding alternate correlates of DF incidence, case

reporting, and dengue virus serotypes. One was not accounting for various non-weather-based

factors of DF transmission, such as human behaviour, travel patterns, mosquito density, den-

gue virus serotypes, and public health programs for DF prevention and control. These were,

however, impractical to model on a national or provincial scale for an early-warning system in

Vietnam. On a similar note, missing case and meteorological data may be confounding factors.

Some of the differences observed between provinces may be attributable to different rates and

methods of data reporting between locations. Additionally, as this was a retrospective study, all

data was available in real time. Due to delays in case reporting, prospective forecasting some-

times requires predictions to be made with incomplete case data. Reich et al. [57] found this to

be the case for DF forecasting in Thailand, and reported reduced model accuracy for predic-

tions into the future as a result. Real-world implementation of the deep learning models pre-

sented in this study, therefore, may have higher errors than presented here. Lastly, multi-

annual spikes in DF incidence have previously been a barrier to accurate DF prediction and

have been attributed to antibody-dependent enhancement following a new serotype being

introduced to a region [19]. While the models presented here were only evaluated on 36

months of data, they appear to partially overcome this limitation and accurately predict large

multi-annual fluctuations in cases.

5. Conclusion

In this study, we developed and evaluated a selection of deep learning models for the predic-

tion of DF incidence and epidemics in Vietnam. In contrast to most existing works, which

have focused on smaller study areas in Vietnam with fewer weather variables [8,21,27], our

models were built upon a rich set of 12 different meteorological factors (including tempera-

ture, precipitation, humidity, evaporation and sunshine hours) and evaluated on 20 different

provinces in northern, central and southern regions of Vietnam. These regions display signifi-

cantly different geographical and climate conditions, allowing for a robust assessment of

model performance. LSTM techniques were found to display considerable accuracy in fore-

casting DF incidence, with LSTM-ATT demonstrating improved prediction performance over

other models in nearly all provinces. Vietnam is experiencing a digital transformation in

healthcare. Digital technologies, such as AI with deep learning models for forecasting climate-
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sensitive diseases, come as a promising measure to promote public health responses to climate

change and enhance their efficiency. The application of LSTM-ATT in forecasting other prior-

itized climate-sensitive diseases in Vietnam such as influenza, diarrhoea, and malaria should

be further explored.
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