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Deep learning models for histologic grading of breast cancer
and association with disease prognosis
Ronnachai Jaroensri1, Ellery Wulczyn1, Narayan Hegde1, Trissia Brown2, Isabelle Flament-Auvigne2, Fraser Tan1, Yuannan Cai1,
Kunal Nagpal3, Emad A. Rakha4, David J. Dabbs5,6, Niels Olson 7,8, James H. Wren9, Elaine E. Thompson 9, Erik Seetao9,
Carrie Robinson10, Melissa Miao11, Fabien Beckers11, Greg S. Corrado1, Lily H. Peng1, Craig H. Mermel1, Yun Liu 1,
David F. Steiner 1,12✉ and Po-Hsuan Cameron Chen1,12✉

Histologic grading of breast cancer involves review and scoring of three well-established morphologic features: mitotic count,
nuclear pleomorphism, and tubule formation. Taken together, these features form the basis of the Nottingham Grading System
which is used to inform breast cancer characterization and prognosis. In this study, we develop deep learning models to perform
histologic scoring of all three components using digitized hematoxylin and eosin-stained slides containing invasive breast
carcinoma. We first evaluate model performance using pathologist-based reference standards for each component. To complement
this typical approach to evaluation, we further evaluate the deep learning models via prognostic analyses. The individual
component models perform at or above published benchmarks for algorithm-based grading approaches, achieving high
concordance rates with pathologist grading. Further, prognostic performance using deep learning-based grading is on par with
that of pathologists performing review of matched slides. By providing scores for each component feature, the deep-learning based
approach also provides the potential to identify the grading components contributing most to prognostic value. This may enable
optimized prognostic models, opportunities to improve access to consistent grading, and approaches to better understand the
links between histologic features and clinical outcomes in breast cancer.
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INTRODUCTION
Breast cancer is the most common cancer in women and one of
the leading causes of cancer death worldwide1. The heteroge-
neous nature of breast cancer makes its initial characterization a
critical step in treatment planning and decision making. One
aspect of breast cancer characterization that remains central to its
prognostic classification is the Nottingham combined histologic
grade (Elston-Ellis modification of Scarff-Bloom-Richardson grad-
ing system)2,3. First described and validated over 30 years ago4,
the Nottingham Grading System (NGS) consists of three compo-
nents: mitotic count (MC), nuclear pleomorphism (NP), and tubule
formation (TF), and is an important component of existing
prognostic tools including the AJCC prognostic stage grouping5,
PREDICT online prognostic classification tool6, and the Notting-
ham Prognostic Index7. However, while the combined histologic
grade has been repeatedly shown to be associated with clinical
outcomes, the task’s inherent subjectivity can also result in inter-
pathologist variability that limits the generalizability of its
prognostic utility2,8. In addition, up to half of breast cancer cases
are classified in routine practice as “grade 2”, an intermediate risk
group with limited clinical value due to inclusion of some low and
high-grade tumors3.
The application of computer vision and artificial intelligence (AI)

to histopathology has seen tremendous growth in recent years
and offers the potential to augment pathologist expertise and
increase consistency and efficiency. Work relevant to breast cancer
includes AI systems for counting mitoses9–12, scoring nuclear

pleomorphism13,14, recognizing tumor subtypes15,16, detecting
metastases in lymph nodes17,18, identifying biomarker status19–23,
and predicting prognosis24–26. While such prior works address
automated breast cancer grading, they have not specifically
combined models for all three components of the Nottingham
grading system and only a small number of used prognostic
evaluation to complement the validation approach. Additional
differences to consider across works include the machine learning
approach and the image and specimen type, such as direct
microscope image capture15, tissue microarray14, or whole slide
images. Understanding the performance and application of such
tools in the context of actual pathological review and workflows
remains a critical next step for translation to clinical utility.
Uniquely, this work represents the development and combina-

tion of deep learning models for all three components of the NGS,
with evaluation against reference grades provided by expert
review of multiple pathologists. To further complement evaluation
against pathologist grading and to explore the use of these
automated tumor grading models, we analyze the prognostic
value of the AI-based tumor grades. Prognostic evaluation utilizes
an external test set consisting of cases from the The Cancer
Genome Atlas breast invasive carcinoma (TCGA BRCA) study. This
analysis demonstrates prognostic value on par with that of tumor
grading provided by pathologists, providing additional validation
of the AI-based Nottingham grading system (AI-NGS) and
providing a potential approach to improve breast cancer
classification and prognostication. By enabling grading that is
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both more objective (less inter-pathologist variability) and more
fine grained (via availability of continuous scores for each
component), the AI-NGS can combine strengths of AI with existing
knowledge about the prognostic value of well-established
morphological features14.

RESULTS
Cohort characteristics
All available whole-slide images (WSIs) from three data sources
were reviewed by qualified pathologists for slide-level inclusion
criteria and quality assurance (see Methods). This resulted in 657
cases (1502 slides) from a tertiary teaching hospital (TTH), 98 cases
(98 slides) from a medical laboratory (MLAB), and 829 cases
(878 slides) from TCGA. TTH and MLAB were used for model
development, while TCGA was used for evaluation only. The
datasets and corresponding clinical characteristics are summar-
ized in Table 1. For the test set, 829 TCGA cases (878 slides) were
used for prognostic evaluation and 662 TCGA cases (685 slides)
with available reference annotations were used for evaluation of
histologic grading (case inclusion and exclusion are summarized
in Supplementary Fig. 1).

Performance of deep learning systems for component
features
We developed individual deep learning systems (DLS) for each
component of the Nottingham grading system (MC, NP, TF). The
scores generated by the DLS for each feature are continuous,
and can then be discretized to produce integer scores (1,2,3) for
comparison to pathologist grading. We evaluated the perfor-
mance of each DLS on the held-out test set of WSIs from TCGA
using majority vote reference annotations provided by three
pathologists (approach summarized in the schematic in Fig. 1).
The individual component models were evaluated at both the
“patch-level” and the “slide-level” (see Methods). Patch-level
performance results are summarized in Table 2 with example
classifications from the individual models shown in Fig. 2. For
the mitosis detection model (evaluated as a detection task), the
mitotic figure F1 score was 0.60 (95% CI: 0.58, 0.62). For the
patch-level classification models, the quadratic Kappa was 0.45
(95% CI: 0.41, 0.50) for NP and 0.70 (95% CI: 0.63, 0.75) for TF.
Examples of patch-level predictions across entire WSIs are
provided in Supplementary Fig. 2. For evaluation at the slide-
level, using the majority score provided by pathologists as the
reference grade, quadratic-weighted kappa was 0.81 (95% CI:
0.78, 0.84) for MC, 0.48 (95% CI: 0.43, 0.53) for NP, and 0.75 (95%
CI: 0.67, 0.81) for TF (Table 2). Additional metrics to enable
comparison to other studies (including unweighted kappa and
precision and recall for MC) are available in Supplementary
Table 1 and benchmark comparisons for slide-level grading by
both pathologists and computational approaches are provided
in Supplementary Table 2.
One challenge in the performance evaluation of deep learning

models for histologic grading is that pathologist-provided grading
itself can be subject to high inter-rater variability27. Given the
availability of three pathologist reviews for each slide in our study
(see Annotations section of Methods), we grouped slides by the
combination of pathologist scores for each slide and evaluated
the DLS output for the resulting groups (Fig. 3). This analysis
demonstrates that the continuous nature of the DLS output can
reflect the distribution of pathologist agreement, whereby the
output of the deep learning models produces “intermediate
scores” for cases lacking unanimous pathologist agreement. For
example, a case with a majority vote score of “1” for nuclear
pleomorphism may have unanimous agreement across all three
pathologists, or may have one pathologist giving a higher score,
and the models were found to reflect these differences. As seen in

Fig. 3, as fewer pathologists indicated a score of “1” and more
pathologists indicated a score of “2” or “3”, the DLS-estimated
probability for a score of “1” (in green) decreased, and the
estimated probability for a score of “3” (in red) increased.

Table 1. Dataset characteristics for development and evaluation of
grading and outcome prediction models.

A

Data Usage Train Tune Test

DLS Stage 1 (patch-level)

Data source TTH TTH TCGA

No. of cases 405 142 662

No. of H&E slides 520 148 685

DLS Stage 2 (slide-level)

Data source TTH TTH MLAB TCGA

No. of cases 261 212 98 662

No. of H&E slides 551 431 98 685

Case-level ER*
(pos / neg)

144/33 92/38 89/7 468/147

Slide-level MC score
(1/2/3)

368/47/81 214/59/
106

78/10/7 193/120/
145

Slide-level NP score
(1/2/3)

58/294/
146

19/180/
189

21/57/16 31/235/
237

Slide-level TF score
(1/2/3)

55/87/357 37/47/
303

13/18/64 9/93/369

B

Data usage Tune Test

Prognostic Models (Cox Regression)

Data source TTH TCGA

No. of cases 354 829

No. of H&E slides 829 878

Age (min, max, median,
mean, std)

25/97/58/57.8/
13.2

26/90/58/58.4/
13.0

Follow-up min/max/median/
mean/std (days)

398/5830/2692/
2816/1412

0/8556/788/
1200/1115

No. of events (PFI) 60 93

No. of censored events at 5-year 246 166

Tumor size

T1 199 221

T2 112 476

T3 22 107

T4 5 23

Lymph node

N0 203 404

N1 65 261

N2+ 31 148

Metastasis

M0 (negative) 1 808

M1 (positive) NA 13

Hormone receptor status

ER* (pos / neg) 275/73 593/177

Nottingham Grading System

MC score (1/2/3) 213/42/94 247/147/172

NP score (1/2/3) 16/206/127 38/299/286

TF score (1/2/3) 34/61/354 14/127/444
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Fig. 1 Overview of annotation, deep learning system (DLS) development, and prognostic evaluation. A Annotation Overview: Pathologists
provided annotations at a region-level and slide-level for all components of the histologic grade, including identification of individual mitotic
figures. B DLS overview: convolutional neural network models were developed for invasive carcinoma (INVCAR) as well as all three
components of the histologic grading system. These patch-level models were used as input to stage 2 models to provide a component score
at the slide level for each feature. C Prognostic evaluation: Component grade scores provided by the DLS or pathologists were used to fit Cox
models for evaluation and comparison of prognostic value.
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Next, to further evaluate DLS performance in the context of
known inter-rater variability we calculated both inter-pathologist
and DLS-pathologist agreement. The average kappa (quadratic-
weighted) for inter-pathologist agreement was 0.56, 0.36, 0.55 for
MC, NP, and TF respectively, versus 0.64, 0.38, 0.68 for DLS-
Pathologist agreement (Fig. 4). The kappa for inter-pathologist
agreement for each individual pathologist (one vs. rest) as well for
DLS-pathologist agreement are summarized in Fig. 4, demonstrat-
ing that on average the DLS provides consistent, pathologist-level
agreement on grading of all three component features. The full
confusion matrices for inter-pathologist agreement and for DLS
agreement with the majority vote scores (patch-level and slide-
level) are available in Supplementary Figs. 3 and 4.

Prognostic value of AI-NGS
We further analyzed the association of both AI-NGS and
pathologist-provided grades with clinical outcomes, using the
external test dataset (TCGA-BRCA) and progression free interval
(PFI) as the prognostic endpoint28. We conducted non-inferiority
analysis comparing AI-NGS to histologic grading provided by
pathologists. Based on tune set results, the planned, primary
comparison for this analysis used the sum of the continuous
component scores generated by AI-NGS (AI-NGS continuous sum;
float value 3–9) compared to the summed discrete score provided
by pathologist review (pathologist discrete sum; integer value
3–9); see PFI Analysis section of the Methods for additional details
of continuous versus discrete scoring). The prognostic perfor-
mance of the two approaches were similar with a c-index of 0.58
(95% CI: 0.52, 0.64) using the AI-NGS continuous sum and 0.58
(95% CI: 0.51, 0.63) using the pathologist discrete sum (Table 3;
delta= 0.004, lower bound of one-sided 95% CI: −0.036). This is
consistent with non-inferiority of AI-NGS relative to pathologist
grading (see Statistical Analysis section of Methods for additional
details).
While the continuous scores of the AI-NGS were utilized for

primary analysis based on superior performance of this approach
on the tune set (Supplementary Table 3) as well as prior work in
prostate cancer29, additional approaches were also evaluated,
including use of discrete summed scores (values 3–9) and the
combined histologic grade (grade 1–3 based on the summed
score4). For pathologist grading, majority vote and originally
reported diagnostic grading were also evaluated. Performance for
these various scoring configurations summarized in Supplemen-
tary Table 4. The c-index for AI-NGS approaches were similar, 0.58
(95% CI: 0.52, 0.64) for the AI-NGS continuous sum, 0.59 (95% CI:
0.53, 0.64) for the AI-NGS discrete sum, and 0.60 (95% CI: 0.55,
0.65) for the combined histologic grade. The pathologist-based
approaches were also similar, ranging from 0.58 (95% CI: 0.51,
0.63) for pathologist combined histologic grades (1–3) to 0.61
(95% CI: 0.54, 0.66) for the majority vote summed score (3–9). The
association of each individual grading component with prognosis
was also evaluated independently (Supplementary Table 5). The
highest prognostic value for deep learning-based grading of a
single feature on the test set was achieved for mitotic count, with

a c-index of 0.58 (95% CI: 0.53, 0.64). The pathologist’s mitotic
count score gave a c-index of 0.54 (95% CI: 0.48, 0.59).
We also evaluated the prognostic value of AI-NGS in the context

of established baseline variables (ER status, tumor size, nodal
involvement, and age). Overall, adding AI-NGS provided improved
prognostic value over the baseline variables alone (p= 0.036;
likelihood ratio test of full model versus baseline model; Table 4).
To better understand the potential contribution of each compo-
nent feature, we performed a similar analysis using the score for
each feature independently. Analysis for each component feature
individually suggested improved prognostic value specifically for
the AI-based mitotic count score (p= 0.041; likelihood ratio test)
but not the other features (Supplementary Table 6). Additionally,
in univariable hazard ratio (HR) analysis, the MC score provided
the only AI-NGS feature with a p value less than 0.05 (HR= 1.30,
p= 0.015; univariable HR analysis) (Table 5). In multivariable
analysis adjusting for ER status, tumor size (T-category), nodal
involvement, and age this corresponded to a HR of 1.29
(p= 0.061; multivariable HR analysis) (Table 5).

Mitotic count and Ki-67 expression
Given the potential association between MC, Ki-67, and prognosis,
and the increasing interest of the clinical community in the use of
Ki-67 in breast cancer30,31, we also evaluated the correlation
between MC score and Ki-67 (MKI67) gene expression in our study
(Fig. 5). The MC score provided by the DLS demonstrated
correlation with MKI67 expression with a correlation coefficient
of 0.47 (95% CI: 0.41, 0.52) across the 827 TCGA cases with
available gene expression data. For pathologist-provided MC
scores over the same cases, the correlation coefficient was 0.37
(95% CI: 0.32, 0.43). This indicates an increased correlation with Ki-
67 for the DLS-provided MC score as compared to MC provided by
pathologist review (p= 0.002 in exploratory analysis; permutation
test).

DISCUSSION
In this study we developed deep learning models for all three
components of the Nottingham histologic grading system, to
perform both patch-level and slide-level prediction of these
histologic features. A key feature of this work is that we use
survival analyses to further evaluate our AI-NGS models using the
more objective endpoint represented by clinical outcome. The
performance for each component model exceeds most published
benchmarks, and the model’s prediction of clinical outcome is
shown to be on-par to that of pathologist-based grading.
Simultaneous development of all three models enables a
consistent, end-to-end DLS for Nottingham histologic grading
that can also provide transparency into the underlying component
features. While prior work has shown promising results for
individual features9,11–13 or direct prediction of final combined
histologic grade26, this work is unique in combining multiple
patch-level component models for the Nottingham grading

Table 2. Component model performance.

Nottingham Components Metric Result [95% CI]

Patch-level Mitotic Count F1-Score 0.60 [0.58, 0.62]

Nuclear Pleomorphism Quadratic-weighted Kappa 0.45 [0.41, 0.50]

Tubule Formation Quadratic-weighted Kappa 0.70 [0.63, 0.75]

Slide-level Mitotic Count Quadratic-weighted Kappa 0.81 [0.78, 0.84]

Nuclear Pleomorphism Quadratic-weighted Kappa 0.48 [0.43, 0.53]

Tubule Formation Quadratic-weighted Kappa 0.75 [0.67, 0.81]
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system. This also enables analysis of prognostic models that can
take advantage of the scores for individual features.
One important challenge to accurate and useful histologic

grading is the inherent subjectivity and associated inter-
pathologist variability. As such, an automated DLS for histologic
grading can provide internal consistency and reliability for grading
any given tumor. Such models thus have the potential to be
iteratively tuned and updated with expert pathologist oversight to
correct error modes and stay consistent with evolving guidelines.
Additionally, this study found that DLS-pathologist agreement
generally avoids the high discordance that is sometimes observed
between individual pathologists while overall trends for agree-
ment across the three features were consistent with prior reports
(Supplementary Table 2). Consistent, automated tools for histolo-
gic grading may help reduce discordant interpretations and
mitigate the resulting complications that impact clinical care and
research studies evaluating interventions, other diagnostics, and
the grading systems themselves.
The continuous, consistent, and precise component scores

provided by this approach also enable exploration of the
individual components contributing most to the prognostic value.
In our analysis, the AI-NGS provided significantly increased
prognostic value relative to the baseline variables alone. Of the

individual component features, MC demonstrated the strongest,
independent association with PFI in our analysis, a finding
consistent with prior studies32,33. Building on this, the finding
that mitotic count estimation by the DLS correlates with Ki-67
gene expression has implications for ongoing research regarding
integration of Ki-67 in prognostic models in breast cancer34,35.
Also, the stronger correlation of Ki-67 with DLS mitotic count than
with pathologist mitotic count suggests that for discordant mitotic
figure classifications between DLS and pathologist (such as those
in Fig. 2B) the DLS might in fact be providing more accurate
representation of the biological ground truth (i.e., cell prolifera-
tion) than the pathologist-provided reference annotations. Addi-
tional studies using immunohistochemistry-based ground truth
for training and evaluation36, as well as future comparisons
between automated mitotic count and automated Ki-67 immu-
nohistochemistry quantitation may provide useful insights into
these approaches. Overall, AI-NGS can be applied in future studies
to large, multi-institutional datasets, minimizing complications of
inter-pathologist variability and without requiring additional
pathologist case review. This may in turn help refine existing
regression models such as the Nottingham Prognostic Index37 or
Magee equations38, by enabling further optimization of weights
and providing consistent, precise, and automated scoring at scale.

Fig. 2 Visualization of patch-level DLS predictions. A Pathologist annotations for mitoses corresponding to a single high-power field of
500 μm× 500 μm (left) and the corresponding heatmap overlay provided by the MC model (right). Red regions of the overlay indicate high
likelihood of a mitotic figure according to the model. B Patches corresponding to regions for which pathologists and the model both
identified mitotic figures (concordant), regions classified as mitotic figures by the model but not identified by at least 2 of 3 reviewing
pathologists (false positive), or regions identified by at least 2 of 3 reviewing pathologists as containing a mitotic figure but not classified as
such by the model. Discordant identification of mitotic figures by the model did not appear to be due to image or staining quality, but rather,
appeared to largely reflect morphologic details for which pathologist identification of mitotic figures was also variable. Patches are 32 μm x
32 μm with scale bar of 10 μm shown in the top row. C Individual patches classified as grade 1, 2, 3 for nuclear pleomorphism. (40×
magnification; 256 μm× 256 μm; 100 μm scale bar for reference). D Individual patches classified as grade 1, 2, or 3 for tubule formation (10×
magnification; 1 mm× 1mm; 400 μm scale bar for reference). MC mitotic count, NP nuclear pleomorphism, TF tubule formation.

R. Jaroensri et al.

5

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2022)   113 



Interestingly, in our test set, the summed continuous DLS score
(floating point values in [3,9]) was not more prognostic than using
a discrete, less granular, combined histologic grade (grade 1, 2, or
3). This is despite the continuous score being slightly superior on
the smaller TTH “tune” data split, and is in contrast to our related
work in prostate cancer where continuous, DLS-based Gleason
scoring was superior to discrete grade group categories for
outcome prediction29. This may be due in part to the relatively
large confidence intervals associated with the small rate of events
as well as domain shifts between development and test sets due
to inter-institutional differences or variability in slide processing
and quality, especially given the diversity of tissue source sites in
TCGA. Additionally, most TCGA cases only contributed a single
slide, which may not always be most representative of the tumor
and associated histologic features.
Limitations of this study include the following: While the training

slides used in this study represent two institutions and the test set
comprises multiple sites contributing to TCGA, further evaluation of
generalizability to diverse cohorts and across individual tumor
subtypes is warranted. Additionally, although TCGA has useful
attributes as a test set for this study (eg, diversity of pre-analytical
variables and tissue sites), the follow-up time is limited with a
median of ~2 years. As much of the evidence for the prognostic
significance of histological grading is in the setting of longer follow-
up time to provide more complete recurrence event information2,
the relatively shorter follow-up time available for TCGA data may
result in less precise estimates of prognostic value both for
pathologists and AI-based grading). This is likely to have a
predominant impact on analysis of ER+HER2− cases, for which
progression events often happen later yet for which grading is
expected to provide the best risk stratification. As such, the limited
follow-up time may partially explain the relatively modest C-indices
observed when considering the grading in isolation for this cohort.
An additional limitation is that we were not able to control for
possible confounding due to treatment differences, as this
information was not available for most cases. Future work utilizing
datasets with longer clinical follow-up, treatment data, and larger
cohorts that enable analysis of individual tumor subtypes may allow

improved prognostic evaluation and further demonstrate the
method’s clinical significance. Larger, diverse datasets may also
enable model development that directly predicts the progression-
free survival from the tissue images, without using histologic grade
as an intermediate prediction to estimate clinical outcomes. Such
“weakly supervised” approaches could allow identification of new
associations between survival and morphological features, poten-
tially leading to iterative refinement of existing grading systems.
Lastly, given the subjective nature of the pathologist grading used
as the reference standard for model evaluation, adjudication
sessions to achieve consensus scoring and mitotic figure identifica-
tion may improve the quality of labels for training and evaluation,
and this hypothesis could be tested in future work.
This study demonstrates the potential for deep learning

approaches to provide comprehensive grading in breast cancer that
is on par with pathologist review. The consistent and precise nature
of these models allows for potentially improved integration into
prognostic models as well as enabling opportunities to efficiently
evaluate correlations between morphological and molecular features.
Future work that combines AI-based grading of established histologic
features with additional machine-learned features to generate
improved prognostic models remains a compelling next step.

METHODS
Data
This retrospective study utilized de-identified data from three
sources: a TTH, a MLAB, and TCGA. Histopathology, clinical data,
and Ki-67 expression data for TCGA were accessed via https://
portal.gdc.cancer.gov. WSIs from TTH include original, archived
hematoxylin and eosin (H&E)-stained slides and freshly cut and
stained sections from archival blocks. WSIs from MLAB represent
freshly cut and H&E stained sections from archival blocks. All WSIs
used in this study were scanned at 0.25 μm/pixel (40×). The small
number of TCGA images in the BRCA study scanned at 0.50 μm/
pixel (20×) were excluded in order to ensure availability of 40x for
DLS-based MC and NP grading.

Fig. 3 Assessing slide-level classification of nuclear pleomorphism and tubule formation. The three pathologist scores provided for nuclear
pleomorphism (A) and Tubule Formation (B) for each slide are represented by the pie charts. Bar plots represent the model output for each
possible component score with the mean output plotted for the cases matched to those represented by the corresponding pie chart. Green
corresponds to component score of 1, yellow to component score of 2, and red to component score of 3. Error bars are 95% CI. DLS Deep
Learning System.
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All primary invasive breast carcinoma cases with available slides
or blocks were reviewed for inclusion. For TTH this includes all
available cases from 2005 to 2016, for MLAB this includes cases
from 2002 to 2011, and for TCGA data comprises the TCGA-BRCA
study with cases from 1988 to 2013. The study was approved by
the Advarra institutional review board (Columbia, Maryland) and
deemed exempt from informed consent as all data were
retrospective and de-identified.

Whole slide image inclusion criteria
All available WSIs were reviewed by pathologists for slide-level
inclusion criteria and quality assurance. Only slides containing H&E
stained primary invasive breast carcinoma from formalin-fixed
paraffin-embedded resection specimens were included in this
study. Examples of excluded images include lymph node speci-
mens, needle core biopsies, frozen tissue, immunohistochemistry
slides, and slides containing carcinoma in-situ only.
This resulted in 1502 slides (657 cases) from TTH, 98 slides (98

cases) from MLAB, and 878 slides (829 cases) from TCGA. The
slides from TTH were used for training and tuning of the models,
slides from MLAB were used for tuning only, and TCGA slides
represent a held-out external test set used only for evaluation of
all models. For evaluating the individual DLS for each component
feature, slides without a pathologist majority were excluded to
ensure reliability of the reference for this performance evaluation,
resulting in 685 slides / 662 cases. See Table 1 and Supplementary
Fig. 1 for details regarding dataset usage and characteristics.

Annotations
Pathologist annotations were performed for segmentation of
invasive carcinoma as well as for all three components of the
Nottingham histologic grading system (MC, NP, and TF). Annota-
tions for the grading components were collected as slide-level
labels as well as region-level labels for specific regions of tumor
(three 1mm× 1mm regions per slide selected by pathologists to

Fig. 4 Inter-pathologist and DLS-pathologist concordance for slide-level component scoring. Analyses for mitotic count (A), nuclear
pleomorphism (B), and tubule formation (C) are shown in the individual panels. Each blue bar represents the agreement (quadratic-weighted
kappa) between a single pathologist and the other available pathologist scores on the same cases. The yellow bar represents the agreement
of the DLS-provided component score with all available pathologist’ scores on the matched set of cases. Error bars represent 95% confidence
intervals computed via bootstrap. Average values in legend represent quadratic-weighted kappa or the average of all blue bars and yellow
bars, respectively. DLS deep learning system, Paths pathologists.

Table 3. Prognostic performance of direct risk prediction using
histologic scoring provided by DLS and pathologists.

Scoring method C-index (All cases; n= 829)

DLS Pathologist

Combined Histologic Grade [1,2,3] 0.60 [0.55, 0.65] 0.58 [0.51, 0.63]

Summed Score Discrete
[3,4,5,6,7,8,9]

0.59* [0.53, 0.64] 0.58* [0.51, 0.63]

Summed Score Continuous
[3.00–9.00]

0.58* [0.52, 0.64] N/A

DLS deep learning system.
*Planned non-inferiority test comparing these configurations: DLS
Summed Score Continous and Pathologist Summed Score Discrete.
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capture representative tumor). For both slide-level and region-
level annotation tasks, 3 board-certified pathologists from a cohort
of 10 pathologists were randomly assigned per slide, thus
resulting in triplicate annotations per region of interest and per
slide. More detail as follows.

Invasive carcinoma segmentation. All regions considered to
represent invasive carcinoma were annotated, with guidance to
provide coarse annotations capturing regions of at least 70%
tumor purity (to account for non-tumor cells present in a given
region). Regions considered to be carcinoma in-situ were also
annotated and used to train the invasive carcinoma model. Slides
determined on initial review to contain only carcinoma in situ,
microinvasive tumor, lymphovascular invasion were excluded
prior to invasive carcinoma annotation.

Mitotic figures. For each slide, the initial annotating pathologist
selected three separate 1 × 1mm2 regions with enriched mitotic
count if present. Within each selected region, pathologists were
asked to exhaustively annotate all mitotic figures. Each selected
region was annotated by three pathologists, and only mitoses
with agreement between at least two pathologists were used as
“positive” events for training and evaluation.

Nuclear pleomorphism and tubule formation. For nuclear pleo-
morphism and tubule formation grading, we utilized the region
boxes already selected during the mitotic figure annotation.
Pathologists were asked to provide a component grade score for
each selected region according to the Nottingham grading scale
as though each region were independently representative of the
whole tumor (acknowledging that such grading in clinical practice
involves more holistic interpretation of tumor regions). Again,
each region was annotated by three pathologists, and the final
label for each region was based on the majority vote score.

Slide-level grading. Pathologists were asked to assess the whole
slide on each component of the Nottingham grading scale, providing
a 1–3 score for each component for each slide. Each slide was
reviewed by three pathologists, and the majority vote was used to
determine the slide-level label for training and evaluation. Addition-
ally, as a separate source of grading, available pathology reports were
reviewed and component grade scores from the original reports
were recorded (referred to as “historic pathologist scores”).

Deep learning system development
We developed 4 separate deep learning models: one to segment
invasive carcinoma within a WSI, and three “grading models” to
predict the slide-level component score for each of the three
tumor features comprising the Nottingham combined histologic
grade: MC, NP, and TF. The invasive carcinoma model was used to
provide tumor masks for the Nottingham grading model.

The invasive carcinoma model was trained using pathologist
annotations to distinguish between 3 classes: non-tumor, carcinoma
in situ, and invasive carcinoma. The resulting model was evaluated
on the tune set, achieving an AUC for invasive carcinoma vs. the
other 2 classes (carcinoma in situ or non-tumor) of 0.95.
To segment invasive carcinoma versus the rest of tissue when

applying DLS for histologic grading, we applied the argmax
function to each patch (1024 by 1024 pixels) in the output
likelihood map over the entire slides (with argmax referring to the
class with the highest prediction score for each patch). Then, the
patches for which the model estimated invasive carcinoma as the
most likely class are selected as the invasive carcinoma
segmentation for other downstream computing tasks (for e.g.,
slide-level MC, NP, and TF scores prediction).
For providing slide-level component scores, each model is used

as part of a DLS that consists of two stages. The first stage (“patch-
level”) tiles the invasive carcinoma mask regions of the WSI into
individual patches for input into a convolutional neural network,
providing as output a continuous likelihood score (0–1) that each
patch belongs to a given class. For mitotic figure detection, this
score corresponds to the likelihood of the patch corresponding to
a mitotic figure. For NP and TF, model output is a likelihood score
for each of the three possible grade scores of 1–3. All stage 1
models were trained using the data summarized in Table 1 and
Supplementary Table 7 and utilizing ResNet50x1 pre-trained on a
large natural image set (“JFT”)39. Stain normalization and color
perturbation18 were applied and the models were trained until
convergence. Hyperparameter configurations including patch size
and magnification were selected independently for each compo-
nent model using a combination of Vizier40 and sample grid
search. Hyperparameters and optimal configurations for each
stage 1 model are summarized in Supplementary Table 8.
The second stage of each DLS assigns a slide-level feature score

(1–3) for each feature (MC, NP, and TF). This is done by using the
stage 1 model output to train a lightweight classifier for slide-level
classification. For MC, the stage 1 output is used to calculate
“mitotic density” values over the invasive carcinoma region, and
the mitotic density values corresponding to the 5th, 25th, 50th,
75th, and 95th-percentiles for each slide are used as the input
features for the stage 2 model. Details regarding the conversion of
patch-level stage 1 output to mitotic figure detection and mitotic
density are provided in the following section. For NP and TF, the
stage 2 input feature set is the mean patch-level output (mean
softmax value) for each possible score (1, 2, or 3) across the
invasive carcinoma region. Based on tune set results, logistic
regression was selected for the stage 2 classifier for MC. For NP
and TF, performance of different stage 2 approaches were
comparable, including logistic regression, ridge regression, and
random forest. Ridge regression was selected, due to its simplicity
and the ease of generating continuous component scores with
this approach. All classifiers are regularized with their regulariza-
tion strengths chosen via a fivefold cross-validation on the training
set. For NP, additional experiments with a hand-engineered

Table 4. Prognostic performance using summation of histologic components in combination with baseline clinical and pathologic features.

Model features c-index p-value (likelihood ratio test) for adding features to baseline

Baseline Features Only 0.74 [0.67, 0.81] N/A (reference)

Baseline + AI-NGS 0.76 [0.69, 0.81] 0.036

Baseline + Single Pathologist 0.75 [0.69, 0.81] 0.064

Baseline + Majority Pathologist 0.76 [0.70, 0.82] 0.023

Cox models were fitted and evaluated directly on the test set and p-values are for likelihood ratio test of baseline versus baseline plus grading scores. Baseline
features include age (continuous), TNM (categorical), and ER status (binary). Number of cases represents all cases with baseline characteristics available
(n= 762 cases; 82 events). Majority pathologist refers to the majority voted scores of three pathologists. Confidence intervals computed via bootstrap with
1000 iterations.
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nuclear segmentation-based approach were also conducted13,14.
This approach did not improve performance in our experiments,
potentially due to the wide variability in staining and cellular
appearance in high-grade cases.

Mitotic figure detection and counting from patch-level stage-1
output. For the MC model, the output (likelihood score of
mitotic figure) across all patches was considered as a heatmap
that is used for downstream analysis. We thresholded this output
probability to achieve a positive detection map. The detection
threshold was set to 0.915 based on the tuning set. Because the
mitosis annotations were provided by pathologists using
16 μm× 16 μm bounding boxes (about the size of one cell), we
expected the detection of the model to be about the same size.
To get the list of location of detection, we applied morphological
erosion with a square structuring element of size 16 μm× 16 μm.
This operation on two overlapping 16 µm × 16 µm regions will
result in two disconnected points, allowing us to distinguish two
nearby mitoses. We then performed connected-component
analysis on the eroded map, and took the centroid of each
connected component as the location of mitoses. This list of
mitoses locations allowed counting of mitotic figures and the use
of a sliding window approach to calculate the mitotic density.
Mitotic density was calculated for all tiles across the entire
invasive carcinoma mask (1.8 × 1.8 mm tiles with 50% over-
lapping stride). For evaluation, a predicted mitotic figure was
considered a true positive event if there was a reference
standard mitotic figure within 16 µm.

Deep learning system evaluation
We evaluated DLS performance for histologic grading at both
the patch level and the slide-level using the TCGA test set and
the annotations described above. Patch-level evaluation corre-
sponds to the stage 1 model output and utilizes the annotated
regions of interest as the reference standard (three
1 mm × 1 mm regions per slide each annotated by three

pathologists; see Annotations section of Methods above and
Supplementary Methods). For MC, the patch-level reference
standard corresponds to cell-sized regions identified by at least
two of three pathologists as a mitotic figure. All other cell-sized
regions not meeting these criteria were considered negative for
the purposes of MC evaluation. For NP and TF, the majority vote
annotation for each region of interest was assigned to all
patches within that region and used as the reference standard
(consistent with the approach for stage 1 training labels). The
maximum probability in the model output probability map is
selected to obtain the final per-patch prediction. For slide-level
evaluation, the majority vote for each slide-level component
score was used.
For patch-level evaluation, F1 score was calculated for mitosis

detection and quadratic-weighted kappa was calculated for NP
and TF. For slide-level evaluation, quadratic-weighted kappa was
used for all components, including inter-pathologist agreement.
Use of quadratic-weighted kappa was based on informative
penalization of increased distance from the reference standard.
Because the weighting scheme used in the literature is variable,
additional kappa weighting schemes were also assessed and
reported in Supplemental Table 1.

Progression-free interval analysis
To further evaluate the histologic grading models, we also analyzed
the prognostic value of DLS-based grading for predicting
progression-free interval (PFI). PFI was chosen as a clinically
meaningful endpoint suitable for TCGA-BRCA specifically as
described previously28. Of note, 18 cases with PFI events in this
data correspond to “new primary tumors”, predominantly of non-
breast origin according to TCGA annotations. As such, and because
disease-specific progression events following a new primary tumor
could not be reliably identified from the available data, these cases
were censored at the disease-free interval time in our analysis,
resulting in the 829 cases and 93 events summarized in Table 1.

Table 5. Cox regression on the test set using pathologist grading or AI-NGS scores and baseline variables.

Univariable analysis Multivariable analysis

Feature Pathologist AI-NGS Pathologist AI-NGS

HR p HR p HR p HR p

Age 1.01 [0.99, 1.02] 0.378 1.01 [0.99, 1.02] 0.213 1.01 [0.99, 1.03] 0.230 1.01 [0.99, 1.03] 0.213

ER status

Negative 1.0 (ref) N/A 1.0 (ref ) N/A 1.0 (ref ) N/A 1.0 (ref ) N/A

Positive 0.59 [0.39, 0.91] 0.017 0.60 [0.39, 0.92] 0.018 0.54 [0.33, 0.86] 0.010 0.55 [0.33, 0.89] 0.016

Metastasis present

Negative 1.0 (ref) N/A 1.0 (ref ) N/A 1.0 (ref ) N/A 1.0 (ref ) N/A

Positive 14.03 [7.36, 26.76] <0.001 14.09 [7.39, 26.88] <0.001 11.54 [5.58, 23.87] <0.001 10.31 [4.85, 21.93] <0.001

Nodal status

N0 1.0 (ref) N/A 1.0 (ref ) N/A 1.0 (ref ) N/A 1.0 (ref ) N/A

N1+ 2.09 [1.41, 3.09] <0.001 2.10 [1.42, 3.11] <0.001 1.65 [1.05, 2.57] 0.029 1.70 [1.09, 2.66] 0.020

Tumor Size

T 1 1.0 (ref) N/A 1.0 (ref ) N/A 1.0 (ref ) N/A 1.0 (ref ) N/A

T2 0.89 [0.61, 1.30] 0.559 0.90 [0.62, 1.30] 0.566 0.99 [0.60, 1.64] 0.981 0.96 [0.58, 1.60] 0.880

T3+ 2.38 [1.56, 3.64] <0.001 2.39 [1.56, 3.65] <0.001 2.28 [1.30, 4.02] 0.004 2.36 [1.33, 4.18] 0.003

MC 1.27 [1.02, 1.56] 0.028 1.30 [1.05, 1.61] 0.015 1.01 [0.78, 1.29] 0.959 1.29 [0.99, 1.69] 0.061

NP 1.16 [0.86, 1.58] 0.336 0.97 [0.69, 1.37] 0.879 1.26 [0.87, 1.83] 0.226 0.91 [0.60, 1.37] 0.649

TF 1.60 [1.03, 2.50] 0.038 1.35 [0.89, 2.04] 0.157 1.79 [1.04, 3.07] 0.034 1.50 [0.92, 2.45] 0.102

For individual component scores (MC, NP, and TF), the discrete component scores were used (values are 1, 2, or 3 for each component).
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In planned analysis, we evaluated the prognostic value of the
DLS and pathologist-provided scores both in isolation and in the
context of available clinicopathologic features. As a pre-specified
non-inferiority test (based on development set results), we
compared the prognostic value of the sum of continuous DLS-
based component scores versus the sum of discrete component
scores provided by pathologists for the same images. Here,
continuous scores refer to the model output corresponding to any
fractional value between 1 and 3 for each component and discrete
scores refer to the traditional integer scores of 1, 2, or 3. Combined
histologic grade based on the summed scores (3–5: grade 1; 6–7;
grade 2; 8–9 grade 3) was also evaluated in additional analyses. To
conduct analyses adjusting for available baseline clinicopathologic
variables (TNM, ER status, age) and calculate hazard ratios, we fit
multivariable Cox regression models on the test set (TCGA-BRCA)
using either the DLS-based component scores or the pathologist-
provided component scores. To evaluate for improved prognostic
value when adding AI-NGS information to the baseline variables,
we performed likelihood-ratio tests for cox models fit on baseline
clinicopathologic variables alone versus models fit on baseline
variables combined with grading scores. The corresponding
c-index for the risk scores provided by these models on the test
were also calculated (as reported in Table 4).
In order to evaluate multivariable models for prognosis, we use

leave-one-out cross-validation on the TCGA test set, fitting a Cox
model per fold and calculating the mean C-index across folds.
Because the absolute value of the risk score depends on many
fitted parameters such as base hazard, which can vary, the risk
scores may not be directly comparable across folds. To remedy
this problem, the output risk score is normalized to a percentile
with regard to the training data.

Statistical analysis
Confidence intervals were generated via bootstrap resampling
with 1000 samples. For patch-level and region-level evaluation of
DLS, we performed bootstrap resampling over slides and for
progression-free interval analysis, we performed bootstrap resam-
pling over cases. All statistical tests are two-sided with the
exception of the non-inferiority test, which is one-sided (with a
pre-specified non-inferiority margin of 0.075 and alpha of 0.05).
The margin was selected based on projected confidence intervals
and power calculations using the tune dataset. No adjustment for
multiple comparisons was implemented. For Ki-67 correlation

analysis of mitotic count and Ki-67, permutation testing between
DLS and Pathologists MC score was performed with 1,000 samples.
C-indices were computed using the lifelines.utils.concordance_in-
dex function in the Python Lifelines package (v0.26.0) and
additional analyses were performed using Python (v3.7.10),
Numpy (v1.19.5), and scikit-learn (v0.24.1) libraries.
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