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Abstract. With the ever-increasing occurrence of skin cancer, timely
and accurate skin cancer detection has become clinically more impera-
tive. A clinical mobile-based deep learning approach is a possible solu-
tion for this challenge. Nevertheless, there is a major impediment in the
development of such a model: the scarce availability of labelled data
acquired with mobile devices, namely macroscopic images. In this work,
we present two experiments to assemble a robust deep learning model for
macroscopic skin lesion segmentation and to capitalize on the sizable der-
moscopic databases. In the first experiment two groups of deep learning
models, U-Net based and DeepLab based, were created and tested exclu-
sively in the available macroscopic images. In the second experiment, the
possibility of transferring knowledge between the domains was tested.
To accomplish this, the selected model was retrained in the dermoscopic
images and, subsequently, fine-tuned with the macroscopic images. The
best model implemented in the first experiment was a DeepLab based
model with a MobileNetV2 as feature extractor with a width multiplier
of 0.35 and optimized with the soft Dice loss. This model comprehended
0.4 million parameters and obtained a thresholded Jaccard coefficient
of 72.97% and 78.51% in the Dermofit and SMARTSKINS databases,
respectively. In the second experiment, with the usage of transfer learn-
ing, the performance of this model was significantly improved in the first
database to 75.46% and slightly decreased to 78.04% in the second.
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1 Introduction

Skin cancer is the most prevalent malignancy worldwide [5]. Among the carcino-
genic skin lesions, malignant melanoma is less common yet the most lethal, with
a worldwide morbidity of 60.7 thousand people in 2018 [5]. Timely and accurate
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skin cancer detection is clinically highly relevant since the estimated 5-year sur-
vival rate for malignant melanoma drops from over 98% to 23% if detected when
the metastases are distant from the origin point [20]. Nonetheless, this effective
diagnosis raises another paradigm: the clinical presentation of most common
cutaneous cancers is, every so often, identical to benign skin lesions.

The mobile technological advancement and the ubiquitous adoption of smart-
phones associated with the high performance of deep learning algorithms have
the potential to improve skin cancer triage with the creation of an algorithm
which can match or outperform the visual assessment of skin cancer. Convo-
lutional neural networks have been the staple method used in the skin lesion
segmentation challenge. Most methods are based on modifications of encoder-
decoder architecture of the U-Net [15]. From small changes, as modifying the
number of input channels and loss optimization [11] to the addition of recur-
rent layers and residual units [1], Sarker et al. [18] developed a U-Net with
an encoder path consisting of four pre-trained dilated residual networks and a
pyramid pooling block.

Nevertheless, the scarce availability of labelled data acquired with mobile
devices, namely macroscopic images may prove to be a major impediment for the
creation of such a method. Habitually, the cutaneous skin lesions are diagnosed
by skin lesion surface microscopy (dermoscopy) which allows for the visualization
of the subsurface skin structures which are usually not visible to the naked eye.
This compelled the creation of several dermoscopic databases of substantial size.
Withall, the direct inference between the macroscopic and dermoscopic domain is
not advisable due to their paradoxical characteristics and challenges namely, the
acquisition of images with the dermoscope generates several structures, colours
and artefacts which are not detectable in the macroscopic image. The polarized
light that permits the visualization of these characteristics eliminates the sur-
face glare of the skin, which is abundantly common in the macroscopic setting.
Additionally, structures clearly visible in dermoscopic images like pigmented net-
work, streaks, dots, globules, blue-whitish veil or vascular patterns are usually
less noticeable or even imperceptible in macroscopic images. Furthermore, the
flat outward aspect in the dermoscopic images, caused by the direct contact
of the dermoscope with the skin is paradoxical with the visual depth normally
present in the macroscopic images. In fact, even for the diagnosis, there are rules
and methods specific for each domain [9].

This work aims to evaluate the possibility of designing a deep learning algo-
rithm for segmenting the lesion in macroscopic images which would operate fully
in the mobile environment. This involves creating a fast and lightweight algo-
rithm with expert-level accuracy to be integrated into the mobile environment.
To assemble such a model, we explored the capitalization of the sizable dermo-
scopic databases and designed two separate experiments.

2 Methodology

2.1 Databases and Problem Definition

As there were several databases available which provided matching binary
segmentation masks, it was possible to assemble two distinct datasets: the
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dermoscopic (set D) and the macroscopic (set M). The set D was constituted by
the combined images of all ISIC Challenges (2016 [7], 2017 [4] and 2018 [3,21])
and the PH2 database [13] and set M was comprised of the Dermofit image
Library [12] and the SMARTSKINS database [22].

For the PH2 and Dermofit image Library, an 80/20 slip was used for the
creation of training/validation and test sets. In the case of the SMARTSKINS
database, a 50/50 split was used due to the database the small size. Considering
the three ISIC challenges had duplicate images in the different years, the training
datasets of ISIC 2016, ISIC 2017 and ISIC 2018 and the validation of ISIC 2017
were combined and the duplicates removed. Subsequently, the image instances
of the test dataset of ISIC 2017 were also eliminated from the combined dataset
and reserved as a test subset. When the databases were classified, the division
was structurally made to maintain an equal percentage of each class in the
training/validation and test sets. The characterization and the slitting of the
databases in each dataset are summarised in Table 1.

Table 1. Overview of available segmentation databases and separation into
train/validation and test subsets.

Set Database No. images (type) No. train/val. No. test

Set M Dermofit 1300 (MD) 1036 264

SMARTSKINS 80 (MP) 39 41

Set D ISIC 2594 (De) 1994 600

PH2 200 (De) 160 40

No. - Number; De - Dermoscopic images; MD - Macroscopic images
acquired with a digital camera; MP - Macroscopic images acquired
with a mobile phone;

As it can be observed in Table 1, the size of set D is almost double of the size
of set M, which lead to the creation of two experiments. In the first experiment,
a comparative study, using exclusively the set M, was performed with two major
groups of deep Learning models, U-Net and DeepLab based. From this study, a
model was to be chosen to be used in the following experiment. The second exper-
iment tested the possibility of transferring the knowledge from the dermoscopic
to the macroscopic domain was tested. This was accomplished by re-training the
chosen model in the first experiment with the set D and subsequent fine-tuning
of the model with set M.

2.2 Deep Learning Models for Semantic Segmentation

For implementation, we adopt the Tensorflow API r1.15 in Python 3.7.3 on three
NVIDIA Tesla V100 PCIe GPU module, two with 16GB and the other with
32 GB. Initially, the standard image resizing (512× 512 pixels) and standard-
ization were performed as a preprocessing stage. As for the training protocol,
we employ a batch size of 4, a 90/10 partition for the training/validation sub-
sets and the Adam optimizer to perform stochastic optimization with a cyclic
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learning rate (CLR) [19]. The cycle used was the cosine annealing variation with
periodic restarts [8] associated with early stopping and model checkpointing.

U-Net Based Models. As a baseline model, we implemented a classical U-
Net [15] with the addition of dropout layers (0.2) and zero-padding. The second
model was an Attention U-Net [14] (AttU-Net) which main modification lies in
the addition of an Attention Gate (AG) at the skip connection of each level.
The third U-Net based model trained was the R2U-Net [1] which is a recurrent
residual convolutional neural network based on U-Net. The last model imple-
mented was a combination of the two aforementioned models (AttR2U-Net) [10].
The optimal number of initial feature channels was also analysed. This model
parameter can be used to decrease the model complexity, however, it can also
downgrade the performance of the model. This hypothesis was tested, using the
values 16, 32 and 64, to ascertain the fidelity of this technique.

DeepLab Based Models. The second proposed approach was the state-of-
the-art DeepLabv3+ model [2]. Initially, the original modified Aligned Xception
encoder was used [2]. However, due to its considerable size which is not suited
to the mobile environment, the MobileNetV2 as in [17] was also implemented.
Primarily, all models were tested with randomly initialized weights and then two
different sets of pre-trained weights were used: one pre-trained in Cityscapes
and the other on the Pascal VOC 2012. Furthermore, some encoder specific
experiments were also performed. To the modified Aligned Xception encoder, two
output strides (OS), which refer to the spatial resolution ratio between the input
and the output images, were tested: 8 and 16. In the case of the MobileNetV2,
the variation of width multiplier (α) was analyzed. This hyperparameter allows
the manipulation of the input width of a layer, which can lead to the reduction
or augmentation of the models by a ratio roughly of α2.

Model Optimization. The selection of a suitable loss function for the challenge
at hand is pivotal to reach the appropriate capacity of the model. In total, five
losses were tested. Initially, cross-entropy (CE) was chosen as the standard loss.
Then four losses were tested: the soft Dice coefficient (DI) loss (1−DI) and soft
Jaccard coefficient (JA) loss (1 − JA), and the logarithmic combinations with
the cross-entropy (CE− log JA, CE− log DI). These losses use a soft variant of
the DI or JA, which uses the predicted probabilities instead of a binary mask,
to decrease the effect of the class imbalance amidst each sample.

Performance Assessment. In the first experiment all the image segmentation
models were trained on set M. Here, all the model configurations were tested and
selected based on the results on the validation dataset. The measures used to
evaluate the performance of the models were the ones used in the ISIC challenge
of 2018 [3]: threshold JA (TJA), JA, DI, accuracy (AC), sensitivity (SE) and
specificity (SP). The decision of the best model was a balance between model
complexity and TJA, as it was the scoring metric of the ISIC 2018 challenge.
The threshold on which these metrics were taken was inferred with the result
of a JA analysis performed on the validation subset. Considering the sigmoid
nonlinearity used in the last layer, the binarization threshold was estimated
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with the intent of maximizing the resultant JA. For this purpose, the JA was
evaluated in 50 thresholds within the [0.5, 1] range. In the second experiment,
the model was evaluated in the test subset and compared with the results of the
selected model of the first experiment.

3 Experimental Results

3.1 First Experiment

The best performing configurations for each model architecture of the U-Net
based models and each encoder of the Deeplab based models are summarized in
Table 2.

Regarding the best performing U-Net based models, the addition of the AG
proved to be quite disadvantageous. The models with this extension reach under-
performing results leading to a decrease in 2% in JA and TJA when compared
with the classical U-Net structure. Besides, the requirement of a higher number
of ifC, 64 instead of 32 needed in the baseline U-Net elucidates to the ineffi-
ciency of the networks with the AG in learning representative features. On the
other hand, the addition of the recurrent residual unit leads to 3% improve-
ment in JA and 4% in TJA when compared to the Classical U-Net. Contrarily
to the AttU-Net, the R2U-Net reached higher performance with the lowest ifC
tested, 16. However, the number of parameters of this network increases signif-
icantly when compared with the other networks. Consequentially, the R2U-Net
with 16 ifC and the classical U-Net with 32 ifC have a similar number param-
eter, around 7M. When adding the recurrent residual units with the AG the
results are entirely consistent with the aforementioned conclusions. Essentially,
the AttR2U-Net result improves in comparison to the classical U-Net however
it decreases 1% the JA when comparing with the R2U-Net.

Table 2. Performance metrics for each model architecture used in the U-Net approach
best configuration and for each encoder used in the DeepLab approach, evaluated in
the validation subset of set M.

U-Net based models

Model architecture L ifC P T TJA JA DI AC SE SP

U-Net 1 − JA 32 8M 0.52 78.44 80.80 89.24 93.16 90.42 94.65

AttU-Net 1 − DI 64 32M 0.50 76.55 78.78 87.91 93.27 88.27 95.69

R2U-Net 1 − JA 16 6M 0.50 83.02 83.02 90.60 94.39 90.05 96.48

AttR2U-Net CE−logJA 64 96M 0.50 82.08 82.08 90.00 93.98 89.38 96.18

Deeplab based models

Encoder L PreT P T TJA JA DI AC SE SP

Xception, OS=16 1 − JA Pascal 41M 0.50 85.37 85.37 92.00 95.54 91.46 97.05

MobileNetV2, α=1.0 1 − JA Pascal 2M 0.55 84.80 84.80 91.70 95.18 91.60 96.55

MobileNetV2, α=0.35 1 − DI None 0.4M 0.50 82.85 82.85 90.52 94.65 88.31 97.27

L - Loss Function; ifC - intial feature channels; P - Model Parameters; T - binarization threshold

used in the output probability map; PreT - Pretraining of weights;
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Concerning the DeepLab approach, an overall conclusion can be drawn from
the robustness of the combination of the soft JA loss function (1− JA) and the
pre-trained model in Pascal VOC 2012 which lead to the top-performing results
for each of the encoders. Concerning the output stride of OS = 16 surpasses in
terms of performance the OS = 8, meaning a denser feature extraction in the last
layers of the model decoder is not suitable for skin lesion segmentation. Not sur-
prisingly, the addition of the inverted residual depthwise separable convolution
of the MobileNetV2 encoder leads to a dramatical reduction of model complex-
ity. In fact, there is almost a reduction of approximately nineteen times fewer
parameters and with the loss of less than 1% in all of the performance metrics.
This result prompted a second study, which focuses only on the effects on the
reduction of the MobileNetV2. Thus, several models with various α and no pre-
training of weights were implemented and optimized with the five designed loss
functions. The best result from this study is summarised in Table 2 (Deeplab
based models, row 3).

Pertaining to the loss function the results are quite consistent. For each model
architecture, the stochastic optimization performed by a loss function, which
takes into account the soft variation of JA and DI, leads to improved results.
The soft DI and soft JA losses yielded the best results in all the models except the
AttR2U-Net. Therefore, the use of a loss function which takes into consideration
the measure of overlap between two samples is an effective way of reducing the
class imbalance between the surrounding skin and the lesion pixels.

Based on the aforementioned approaches and experiments, one model was
chosen to be evaluated in the test subset of set M. The main rationale behind
this selection was choosing the model which offers the best a balance between
two desirable but usually incompatible aspects features: performance and model
complexity. The selected model was the reduced Mobile DeepLab with α = 0.35
and optimized with soft DI loss function mainly due to its reduced size and its
JA and TJA values above the 80% threshold, which is above the interobserver
agreement and the visual correctness threshold [4].

3.2 Second Experiment

After the selection of the reduced Mobile DeepLab, the model was retrained with
set D. The same training procedure and network parameters were used. Subse-
quently, the model trained with set D was fine-tunned with set M. The obtained
results of both experiments, evaluated in the test subset of the SMARTSKINS
and Dermofit, are presented in Table 3. From this table, it is possible to infer
that the fine-tuning, with the macroscopic data, of the pre-trained model, on
set D, leads to a 2.49% TJA improvement in digital-acquired images (Dermofit)
and a slight decrease of less than 0.48% in the mobile-acquired images (SMART-
SKINS).

For the SMARTSKINS database, there is no standard used for the slitting
of the database into train-validation-test subset. Therefore, the comparison with
the models in the literature might not be as equitable as desired. Nevertheless,
the reduced Mobile DeepLab attains in the first experiment the performance of



234 C. Andrade et al.

Table 3. Comparison of the performance metrics of the reduced Mobile DeepLab from
the two proposed experiments, evaluated in the test subset of the SMARTSKINS and
Dermofit.

Test subset Experiment T TJA JA DI AC SE SP

SMARTSKINS Exp 1 0.50 78.51 82.64 90.14 98.96 95.40 99.15

Exp 2 0.56 78.04 82.21 89.89 98.90 96.05 99.09

Dermofit Exp 1 0.50 72.97 80.26 88.26 93.51 87.56 96.86

Exp 2 0.56 75.46 81.03 88.79 93.78 89.68 96.13

T - binarization threshold used in the output probability map;

82.64% in JA, 90.14% in DI and 99.15% in AC. These values set a new state-
of-the-art performance in the SMARTSKINS database which previously was of
81.58% in JA [16], 83.36% in DI [6] and 97.38% in AC [16].

Figure 1 presents several examples of the predicted segmentation mask of
the model trained in each experiment compared with the ground truth label
(GT). The model in both experiments shows highly satisfactory results when
the lesion is pigmentated with high contracts with the skin (Fig. 1, row 1). The
presence of lesions with dysplastic form and uneven pigmentation can lead to
the underperformance of the model of the second experiment (Fig. 1, row 2). The
model of the second experiment outperforms the other in the presence of dark
hair and lesions with other moles near (Fig. 1, row 3). Both experiments seem to
underperform when the lesion presents red regions amidst the normal skin and
vascularizations near the lesion border (Fig. 1, row 4).

Fig. 1. Examples of successful and failed segmentation results on the SMARTSKINS
(left) and Dermofit (right) test subset. In the comparison images: yellow - true positives;
red - false positives; green - false negatives; black - true negatives; (Color figure online)
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4 Conclusion and Future Work

The yielded results show considerable potential in the use of models with
decreased complexity and size. Altogether, the selected network had less than
half a million parameters and a decrease in performance of TJA of 3% when
compared with a model with approximately 41 M parameters.

When comparing the two experiments it can be inferred that the knowledge
transfer between the dermoscopic and macroscopic domains still resulted in an
overall improvement of the model. Despite the slight decrease in performance
on the SMARTSKINS dataset, the improvement in the Dermofit dataset is sig-
nificantly larger. It should be noted that the Dermofit dataset has more vari-
ety of skin lesion classes, including non-pigmented lesions that are not present
in the SMARTSKINS dataset, thus we can assume that the fine-tuning proce-
dure brought an overall model improvement. Nevertheless, there’s still room for
improvements, namely further experiments should be done in order to effectively
take advantage of the sizable dermoscopic datasets.
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