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ABSTRACT Speech enhancement for drone audition is made challenging by the strong ego-noise from
the rotating motors and propellers, which leads to extremely low signal-to-noise ratios (e.g. SNR < -15 dB)
at onboard microphones. In this paper, we extensively assess the ability of single-channel deep learning
approaches to ego-noise reduction on drones. We train twelve representative deep neural network (DNN)
models, covering three operation domains (time-frequency magnitude domain, time-frequency complex
domain and end-to-end time domain) and three distinct architectures (sequential, encoder-decoder and
generative). We critically discuss and compare the performance of these models in extremely low-SNR
scenarios, ranging from -30 to 0 dB. We show that time-frequency complex domain and UNet encoder-
decoder architectures outperform other approaches on speech enhancement measures while providing
a good trade-off with other criteria, such as model size, computation complexity and context length.
Specifically, the best-performing model is DCUNet, a UNet model operating in the time-frequency complex
domain, which, at input SNR -15 dB, improves ESTOI from 0.1 to 0.4, PESQ from 1.0 to 1.9 and SI-SDR
from -15 dB to 3.7 dB. Based on the insights drawn from these findings, we discuss future research in drone
ego-noise reduction.

INDEX TERMS Deep learning, drone audition, ego-noise reduction, single-channel, speech enhancement

I. INTRODUCTION

Drone audition enables a flying robot to understand
the surrounding acoustic environment from the sound
captured by one or multiple onboard microphones [1]. The
combination of acoustic signal analysis and the mobility of
the drone benefits a wide range of applications including
search and rescue, surveillance and monitoring, aerial
filming, and human-drone interaction. However, the audition
capability of the drone is severely limited by the strong
ego-noise from the rotating motors and propellers. The
motors and propellers are located much closer to onboard
microphones than target sound sources on the ground or in
the air, leading to extremely low signal-to-noise ratios at
onboard microphones, e.g. SNR < -15 dB [2]. The spectrum
of the ego-noise varies with the flight behaviour of the drone.
Recovering the signal of interest from severely corrupted
drone audio recording is a very challenging task.

Multi-channel microphone array approaches have been
widely employed to improve the acoustic sensing performance
on drones [2]–[20]. While promising results have been
reported, multi-channel techniques require customized
microphone array hardware, which is large and heavy for
mini-drones [21]–[23]. The spatial filtering performance

of microphone-array techniques degrades remarkably in
dynamic scenarios with moving microphones or sound
sources. Developing efficient single-channel ego-noise
reduction algorithms would encourage a wider application
of drone audition. However, traditional signal processing
approaches perform limitedly for single-channel noise
reduction in low-SNR and nonstationary scenarios [24]–[27].

In recent years, deep learning has revolutionized sound
and speech processing [28]. Given a sufficient amount of
training data, deep neural networks (DNN) can learn to
predict the clean speech from the noisy input, providing
better speech enhancement performance than traditional
signal processing approaches, especially when the noise
is nonstationary and is well represented in the training
data [29]. However, while deep learning based speech
enhancement has been intensively investigated, a large body
of the research is targeting daily environments with a
relatively high input SNR, e.g. above -5 dB [29]. The
extension to the specific drone ego-noise reduction problem
is still in the infant stage [18], [30]. We aim to understand
how general DNN models perform when applied to the
specific speech enhancement problem on drones.

We train twelve representative DNN models, which
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include FC [18] and SMoLnet [30], which were originally
proposed for drone ego noise reduction, and ten general
speech-enhancement models. The ten models were selected
among the best performing with a variety of architectures
and cover a range of typical designs for the time and
time-frequency domains. These include three TF-complex
masking models (DCUNet [31], DCCRN [32] and PHASEN
[33]); two time-domain UNet mapping models (WaveUNet
[34] and Demucs [35]), three time-domain TasNet masking
models (ConvTasNet [36], DPRNN [37], DPTNet [38]), and
two generative models (the time-domain mapping SEGAN
model [39] and the TF-magnitude masking VAE model [40]).
We train and evaluate these models in extremely low-SNR
scenarios, ranging from -30 dB to 0 dB. We systematically
analyze and extensively compare the performance of
these DNN models with a list of objective measures,
including speech enhancement performance, model size,
computational complexity, and context length.

The contribution of the work is summarized in two folds.

• This is the first work that comprehensively evaluates
the performance of deep learning models to single-
channel ego-noise reduction on drones. The survey
covers a wide range of representative models from three
operation domains (TF-magnitude, TF-complex, and
end-to-end time domain) and three distinct architectures
(sequential, encoder-coder and generative). The experiment
covers an extensive list of objective performance
measures in extremely low-SNR scenarios with recorded
drone ego-noise.

• The comparison results in extremely low-SNR scenarios
suggest great potential from models working in
the TF-complex domain and the UNet encoder-
decoder architecture. Specifically, TF-complex models
offer the best trade-off between speech enhancement
performance and model size, followed by time-
domain models and TF-magnitude models. Among the
three types of architectures, encoder-decoder models
achieve the best trade-off between speech enhancement
performance and model size, followed by sequential
models and generative models. These observations
provide significant insights to future research in drone
audition.

TF-complex models offer the best trade-off between
speech enhancement performance and model size, followed
by time-domain models, while TF-magnitude models
perform the worst. TF-magnitude models requires the
shortest context length to make inference, while TF-complex
and time-domain models require much larger context length.
A better speech enhancement performance typically requires
higher computational complexity and larger context length.
Overall, TF-complex models show the highest potential for
the ego-noise reduction problem.

Among the three types of architectures, encoder-decoder
models achieve the best trade-off between speech enhancement
performance and model size, followed by sequential models,

while generative models perform the worst. Meanwhile,
encoder-decoder models has the highest computational
complexity. For encoder-decoder architectures, UNet models
tend to outperform TasNet models with better speech
enhancement performance, smaller model size and less
computational complexity. Overall UNet models show the
highest potential for the ego-noise reduction problem.

The paper is organized as follows. Section II surveys
related work. Sections III-V present the principles of the
twelve selected models in three categories: TF-magnitude,
TF-complex, and time-domain. Sections VI and VII describe
model training and evaluation results, respectively. Finally,
conclusions are drawn in Section VIII.

II. RELATED WORK
A. DNN FOR GENERAL SPEECH ENHANCEMENT
DNN models for speech enhancement can be broadly
categorized based on the operation domain (time and time-
frequency (TF) domain) and the training target (mapping and
masking). TF-magnitude approaches process the magnitude
of the noisy signal in the time-frequency domain while
keeping the phase unchanged. Mapping models map the
noisy spectrum directly to clean magnitude spectra estimate
[41]–[43], while masking models predict time-frequency
masks which yield a clean spectrum estimate when applied
to the noisy spectrum, e.g. the ideal binary mask (IBM) [44]
or the ideal ratio mask (IRM) [45]. TF-complex approaches
process both the magnitude and phase information of the
noisy signal in the time-frequency domain. Mapping models
either estimate the complex spectrum directly [30], or
estimate the magnitude and phase information separately
[33], [46], [47], while masking models estimate a complex
ideal ratio mask (cIRM) [30]–[32]. Time-domain approaches
focus on end-to-end processing and thus involve mapping
models only, which predict clean speech waveforms directly
from the noisy input in the time domain [48]. Due
to the significance of the phase information for speech
reconstruction in low-SNR scenarios [49], TF-complex and
time-domain approaches typically outperform TF-magnitude
ones at the cost of more complicated architectures and higher
computational complexity.

Alternatively, the DNN models can be categorized based
on the architecture, i.e. sequential, encoder-decoder, and
generative. The sequential architecture consists of multiple
layers that process the input sequentially. This includes
traditional DNN models, such as fully-connected [43],
convolutional [50], and recurrent ones [51]. The encoder-
decoder architecture includes distinct encoder and decoder
blocks, which are usually symmetric to each other, and
(optionally) a middle processing block. The encoder usually
produces a compressed representation of the input, while
the decoder decompresses the given representation and
produces the output. UNet and TasNet are two well-
known instances in this category, with the former widely
deployed in TF-complex and time-domain approaches [52]
and the latter providing benchmark performance for speech
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TABLE 1: Summary of the twelve models selected for the comparative study.

Domain Ref Model
Architecture

Loss Output Model Size
[M parameters]Seq. Enc.-Dec. Generative

U
N

et

Ta
sN

et

G
A

N

VA
E

Time-frequency
Magnitude

[18] Baseline • M-MSE SMM 10.51
[40] VAE • M-MSE + KL 6.72

Time-frequency
Complex

[30] SMoLnet • S-MSE Complex spectra 0.22

[31] DCUNet • SI-SDR cIRM 3.53
[32] DCCRN • 3.67

[33] PHASEN • S-MSE Phase + SMM 8.59

Time-domain

[34] WaveUNet • MSE

Waveform

10.13
[35] Demucs • L1 18.87

[36] ConvTasNet •
SI-SDR

4.98
[37] DPRNN • 3.64
[38] DPTNet • 8.52

[39] SEGAN • • L1 + LSGAN 97.48

KEY
Seq.: Sequential; Disc.: Discriminative; SMM: spectral magnitude mask; [c]IRM: [Complex] Ideal ratio mask;
M-MSE: Mean squared error of the mask; S-MSE: Mean squared error of the speech signal.
KL: Kullback-Leibler divergence; SI-SDR: Scale-invariant signal-to-distortion ratio; LSGAN: Least-squares generative adversarial network loss;
VAE: Variational autoencoder; SMoLnet: Small Model on low-SNR; DCUNet: Deep complex U-net; DCCRN: Deep complex conv. recurrent network;
PHASEN: Phase and harmonics-aware speech enhancement network; Demucs: Deep extractor for music sources;
ConvTasNet: Convolutional time-domain audio separation network; DPRNN: Dual-path RNN; DPTNet: Dual-path Transformer network;
SEGAN: Speech enhancement generative adversarial network.

separation [53]. In comparison to sequential and encoder-
decoder models, which aim to learn a discriminative
transformation between noisy and the clean signal, the
generative category is motivated by a different purpose that
aims at learning the underlying distribution of the training
data to generate new data points from the learned distribution
with certain variations. Variational autoencoders (VAE) and
generative adversarial networks (GAN) are two well-known
generative approaches, where VAE aims at maximizing the
lower bound of the data log-likelihood [40], [42] and GAN
aims at achieving an equilibrium between the generator and
discriminator [39], [54].

B. DNN FOR EGO-NOISE REDUCTION

Drone ego-noise removal can be treated a special speech
enhancement problem targeting at a specific type of
noise. The drone ego-noise mainly consists of harmonic
components, from the mechanical sound of the rotating
motors, and full-band components, from the rotating
propellers cutting the air. The pitch of the harmonic
components is proportional to the rotating speed of the
motors and is varying dynamically corresponding to the flight
behaviour of the drone. The ego-noise is very strong and
dominant in the microphone signal: the recording of a person
talking aloud in front of the drone in a distance of 2 to 6
meters typically has SNR in the range of [-25, -10] dB [2].
The nonstationariy and the extremely low SNR makes drone
ego-noise removal a very challenging task. Fig. 1 illustrate
the an example of stationary and nonstationary ego-noise. A
more detailed analysis on the spatial and spectral properties

of the ego-noise was given in our previous work [2], [55].
To the best of our knowledge, only two DNN models

have been specifically proposed for speech enhancement on
drones [18], [30]. One work [18] employed a sequential
architecture of fully connected DNN that performs single-
channel ego-noise removal in the TF-magnitude domain.
The estimated TF masks can be further incorporated into a
multichannel spatial filtering framework. Another work [30]
proposed a DNN model called SMoLnet, which follows a
sequential architecture with dilated convolutional blocks in
the frequency dimension, which can better capture the long-
range harmonic correlations of the ego-noise. The SMoLnet
model has three variants, TF- magnitude mapping, TF-
complex masking and TF-complex mapping, where the last
one gives the best ego-noise reduction performance. While
the fully-connected model (which we call Baseline) has much
lower computational complexity, the SMoLnet model has a
more compact architecture and also reports better results for
ego-noise reduction.

We select twelve state-of-the-art DNN models for
inclusion of our comparative study. These models cover the
three working domains ( magnitude time-frequency domain,
complex time-frequency domain, and time domain) and
three types of architectures (sequential, encoder-decoder,
and generative). Table 1 summarizes these models and their
features.

• Two DNN models that were originally proposed for ego-
noise removal: the fully-connected DNN [18], which is
selected as the Baseline, and the SMoLnet model, which
works in the complex time-frequency domain [30].
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FIGURE 1: Time-domain waveform and time-frequency
spectrum of the ego-noise. (a) Stationary ego-noise with a
constant motor rotating speed. (b) Nonstatinary ego-noise
with a varying motor rotating speech.

• Three masking models working in the complex time-
frequency domain: using complex arithmetic (DCUNet
[31]), DCCRN [32]) and real arithmetic (PHASEN [33]).

• Two UNet mapping models working in the time domain:
WaveUNet [34] and Demucs [35].

• Three TasNet mapping models working in the time
domain: ConvTasNet [36], DPRNN [37], DPTNet [38]).

• Two generative models: the time-domain mapping
SEGAN model [39] and the magnitude TF-domain VAE
model [40].

We employed several criteria when selecting DNN models
for comparison. The first criteria was to cover a range
of commonly encountered design patterns both for time-
and TF-domain models for speech enhancement and/or
separation. The second was to select among the well-
established and best-performing models in each architectural
subcategory. For example, WaveUNet and SEGAN are
widely used for comparison in state-of-the-art works (e.g.
[32], [33], [35]); DCUNet, DCCRN and Demucs are
among the top-performing speech enhancement models on
the Diverse Environments Multi-channel Acoustic Noise
Database (DEMAND) [56] and Deep Noise Suppression
(DNS) Challenge [57]; PHASEN is the model designed to
capture harmonic noise frequencies, which is likely to be
useful for drone ego-noise removal; ConvTasNet, DPRNN
and DPTNet are recognised state-of-the-art models for
speech separation.

III. TIME-FREQUENCY MAGNITUDE METHODS
Let x(n) = s(n) + v(n) be the noisy signal, consisting of
the mixture of a clean speech signal s(n), and the drone
noise v(n), where n is the sample index in the time domain.
Let the signal in the time-frequency domain be represented
as X(k, l) = S(k, l) + V (k, l), where k and l are the
frequency and frame indices, respectively. Time-frequency
magnitude methods first estimate the magnitude of the clean
speech |Ŝ(k, l)| from the noisy magnitude |X(k, l)|, and then
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FIGURE 2: Time-frequency magnitude models selected
for the study: (a) Baseline and (b) VAE. KEY – ·©:
multiplication.

reconstruct the spectrum of the clean speech using the noisy
phase as

Ŝ(k, l) = |Ŝ(k, l)|ej∠X(k,l), (1)

where ∠· denotes the angle of a complex number.
The magnitude of the clean speech can be estimated with

a mapping approach or a masking approach. In the first case,
the DNN estimates a nonlinear function fM (·) that can map
the noisy magnitude to the clean magnitude:

|Ŝ(k, l)| = fM (|X(k, l)|). (2)

In the second case, the DNN estimates a time-frequency
mask M(k, l) that can be used to recover the clean
magnitude:

|Ŝ(k, l)| = |X(k, l)|M(k, l). (3)

M(k, l) can be a spectral magnitude mask, which is defined
as SMM(k, l) = min

(
|S(k,l)|
|X(k,l)| , 1

)
, or an ideal ratio mask

(IRM), which is defined as IRM(k, l) = |S(k,l)|2
|S(k,l)|2+|V (k,l)|2 .

We consider two masking approaches: Baseline [18] and
VAE [40].

A. BASELINE
Baseline [18] uses a fully connected DNN with an input
layer, three hidden layers of size 2048 with ReLU activation,
and an output layer with Sigmoid activation (Fig. 2a). The
signal is processed frame-by-frame in the normalized log-
magnitude domain, which is noted as X̃(k, l). The input at
the l-th frame is a spectrogram with a context window of
radius ∆L:

X in(l) = X̃(1 : K, l −∆L : l + ∆L). (4)

The output of the network is the SMM estimated at the l-th
frame:

Mout(l) = M(1 : K, l). (5)
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The model is trained to minimize the mean-square error
(MSE) loss between the estimated and the true SMM:

Lbaseline =
∑
k,l

(M(k, l)− SMM(k, l))2. (6)

The network uses short-time Fourier transform (STFT) of
size 256 with half overlap and sets context radius ∆L = 3,
which results in an input vector of size 903 and output vector
of size 129.

B. VAE
Similarly to Baseline, VAE (Fig. 2b) operates on normalized
log-magnitude of the noisy spectra, processes the input
spectrogram frame-by-frame using the context window of
radius ∆L = 3 (Eq. 4) and outputs the SMM estimate at the
given frame (Eq. 5). The same STFT parameters are used as
for Baseline (size 256, half overlap). We train the variational
autoencoder as a denoiser, using the noisy data as input and
the clean speech as a target (this is an adaption of the method
in [40]). The encoder maps the noisy input X in(l) into the
latent space, which can be characterized as a multivariate
normal distribution N (µ,Σ), with mean µ and variance Σ.
The decoder maps the latent variable, which is randomly
sampled from the latent space to the SMM mask. The encoder
and decoder are feed-forward DNNs. The encoder has three
hidden layers of sizes (2048, 2048, 196) with hyperbolic
tangent (tanh) activations and a linear output layer of size
64. The latent variable z thus has dimension 64. The decoder
has one hidden layer of size 2048 with tanh activation and a
linear output layer of size 129.

The loss function for model training is composed of the
MSE loss between true and estimated SMM and the KL
divergence between the distribution of the latent space and
a standard normal distribution, which can be formulated as

LVAE =
∑
k,l

(M(k, l)− SMM(k, l))2

+ KL(N (µ,Σ)||N (0, I)). (7)

During training, we use a reparametrization technique to
make the gradient descent backpropagation possible despite
the random sampling between the encoder and decoder [40].

IV. TIME-FREQUENCY COMPLEX METHODS
TF-complex methods process the whole complex spectrum
of the noisy signal X(k, l) to estimate the complex spectrum
of the clean signal Ŝ(k, l) with mapping, masking or hybrid
approaches. In the first case, the DNN estimates a nonlinear
function fC(·) that can map the noisy spectrum to the clean
spectrum:

Ŝ(k, l) = fC(X(k, l)). (8)

In the second case, the DNN estimates a complex-valued
time-frequency mask MC(k, l) that can be used to recover
the clean spectrum from the noisy spectrum:

Ŝ(k, l) = X(k, l)MC(k, l). (9)

Most commonly, given X = Xr + jXi and S = Sr + jSi,
MC(k, l) is a complex ideal ratio mask (cIRM) defined as
McIRM = XrSr+XiSi

X2
r+X

2
i

+ jXrSi+XiSr

X2
r+X

2
i

, where (k, l) is omitted
for brevity. In the third case, the hybrid approach estimates
the magnitude IRM and the phase separately, and combines
them into the complex spectrum. To operate in the time-
frequency complex domain, the models can be implemented
as real-valued and complex-valued ones. Real-valued models
treat the complex input as two-channel real data, either using
the cartesian (real and imaginary parts) coordinates [30],
[33] or the polar (amplitude and angle) coordinates [58],
[59]. Complex-valued models perform complex arithmetic
on complex tensors directly [60].

We consider a mapping approach (SMoLnet [30]), two
masking approaches (DCUNet [31] and DCCRN [32]), and a
hybrid approach (PHASEN [33]).

A. SMOLNET
SMoLnet is a mapping approach that estimates the complex
spectrum of the clean speech directly from the noisy
spectrum [30]1. SMoLnet is a real-valued network that treats
the real and imaginary components as separate channels. The
network consists of fourteen convolutional layers: 10 dilated
layers, 3 non-dilated layers and an output layer (Fig. 3b). The
input STFT is calculated using a window length of 2048 and
a half overlap. The 10 dilated layers aggregate information
across the frequency dimension: they have kernel size (3,
1) and dilation factor 2(d − 1), where d ∈ [1, 10] denotes
the depth of the layer. The 3 non-dilated layers aggregate
information across both time and frequency dimensions, with
a kernel size (3, 3). All these 13 layers have 64 filters with
ReLU activation. The output layer is a convolutional layer
with two filters with kernel size (1, 1): one for real and one
for the imaginary channel. The input and output spectrograms
of the model are represented as

Tin(k, l) =

[
Xr(k, l)
Xi(k, l)

]
, Tout(k, l) =

[
Ŝr(k, l)

Ŝi(k, l)

]
. (10)

The model parameters are optimized by minimizing the MSE
between the output Tout(k, l) and the ground-truth spectrum

TS(k, l) =

[
Sr(k, l)
Si(k, l)

]
, i.e.

LSMoLnet =
∑
k,l

|Tout(k, l)− Ts(k, l)|2, (11)

where the 2-element vectors Tout(k, l) and TS(k, l) are
interpreted as complex numbers.

B. DCUNET AND DCCRN
DCUNet [31] and DCCRN [32] are masking approaches that
estimate the complex cIRM from the noisy spectrum. Both
models are based upon UNet [52], which is a convolutional
encoder-decoder structure with skip connections (Fig. 3a).

1We use SMoLnet-TCS, which performs the best among the three
variations of SMoLnet [30].
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Both models are complex-valued networks that perform
arithmetic operations directly in the complex domain [31].

DCUNet obtains the spectrogram via STFT with window
64 ms and skip size 16 ms. We use DCUNet-10, which
contains 10 complex convolutional layers in the encoder
and decoder parts, respectively. Each convolutional layer is
followed by a batch normalization layer and a Leaky ReLU
activation. The architecture of DCCRN is very similar to
DCUNet. It contains 8 complex convolutional layers in the
encoder and decoder, respectively. One key difference is
that DCUNet connects the encoder and decoder directly,
while DCCRN includes a two-layer LSTM block between
the encoder and decoder, which aims to model the temporal
dependencies between audio frames.

While targeting at estimating the complex cIRM, DCUNet
and DCCRN are optimized using the time-domain loss
function between the clean and the reconstructed speech. In
the original papers, DCUNet [31] employs the weighted SDR
loss while DCCRN [32] employs the SI-SDR loss. In this
paper we use SI-SDR for both models. For instance, the loss
function of DCUNet is given by

LDCUNET = SI-SDR(s(n), ŝ(n)), (12)

where for true and estimated clean signals s and ŝ the SI-

SDR [61] is defined as SI-SDR = 10 log10

( ∥∥∥ ŝT s
‖s‖2

s
∥∥∥2∥∥∥ ŝT s

‖s‖2
s−ŝ

∥∥∥2
)

.

C. PHASEN
PHASEN is a hybrid approach that estimates magnitude IRM
and phase separately to reconstruct the complex spectrum of
speech [33]. PHASEN is designed to capture the correlation
between harmonic components of the acoustic signal and
thus is suitable for ego-noise removal. The architecture is

shown in Fig. 3c, which is featured with two-stream blocks
(TSB): the amplitude stream (Stream A) in the upper portion
estimates the magnitude mask and the phase stream (Stream
P) estimates the complex phase. The model contains three
TSBs, which are stacked sequentially. In Stream A of each
TSB, two frequency transformation blocks (FTBs) are used
to capture the harmonic correlation along the frequency
dimension. At the end of each TSB, Stream A and Stream P
exchange information, which is critical to phase estimation.

PHASEN is a real-valued model, which takes the whole
complex STFT spectrogram as input, stacking real and
imaginary parts in a way similar to SMoLnet, and outputs
two channels the magnitude IRM and the complex phase
(real and imaginary parts in two channels, and with
the magnitude normalized to 1). The model parameters
are optimized by minimizing a two-component MSE
loss: power-compressed magnitude spectrum and complex
spectrum. This is expressed as

LPHASEN =
∑
k,l

(|Ŝc(k, l)|−|Sc(k, l)|)2+
∑
k,l

|Ŝc(k, l)−Sc(k, l)|2

(13)
where Sc = |S|0.3ej∠S is ground-truth spectrum with the
magnitude compressed with power 0.3 (the same for Ŝc).

V. TIME-DOMAIN METHODS
The methods operate on the noisy signal x(n) in the
time domain to estimate the clean speech, ŝ(n). The DNN
estimates a nonlinear function fT (·) that maps the noisy
signal to clean signal:

ŝ(n) = fT (x(n)). (14)

We consider three architecturally distinct groups, namely
the UNet group (WaveUNet [34] and Demucs [35]), the
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FIGURE 4: Time-domain models selected for the study: (a) Conv-TasNet, (b) DPTNet, (c) WaveUNet and (d) SEGAN. Two
models are not shown are: Demucs is similar to WaveUNet, but has an LSTM block in the middle; DPRNN is similar to
DPTNet, but uses BiLSTM blocks instead of Transformer blocks. KEY – +©: addition; ·©: multiplication; ◦: concatenation.

TasNet group (ConvTasNet [36], DPRNN [37] and DPTNet
[38]), and GAN (SEGAN [39]).

A. WAVEUNET AND DEMUCS
Similar to DCUNet and DCCRN, WaveUNet and Demucs
are UNet-based, but they work with raw waveforms
using one-dimensional convolutions. The two models were
originally designed for music separation [62], [63] and
later adopted for speech enhancement [34], [35]. Fig. 4c
depicts the architecture of WaveUNet, where dimensionality
reduction/increasing in encoder/decoder is implemented via
downsampling/upsampling. A convolutional layer is placed
between the encoder and decoder. WaveUNet contains
12 layers in the encoder/decoder part. The number of
convolutional filters varies linearly with the depth of each
layer with a constant factor C = 24. WaveUNet takes the
whole noisy audio segment as input and outputs the estimated
speech. The model is trained by minimizing the MSE loss:

LWaveUNet =
∑
n

|s(n)− ŝ(n)|2. (15)

Demucs shares a similar architecture as WaveUNet. The
main difference is that Demucs uses an LSTM layer to
connect the encoder and decoder. Demucs contains 5 layers
in the encoder/decoder part, and the number of convolutional
filters in each layer varies exponentially with a factor of 2.
As a result, the size of the Demucs model is almost twice of
WaveUNet. Demucs is trained using L1 loss instead of MSE.

B. CONVTASNET, DPRNN AND DPTNET
The three models were originally designed for speech
separation [36]–[38] and we adopt them for speech
enhancement. The three models are all based on TasNet
[53], an encoder-decoder architecture consisting of three
components: encoder, masker, and decoder (Fig. 4(a)-(b)).
The encoder network performs 1D convolution on the
waveform to generate a learnt feature representation Z ,
which is fed to the masker network to generate a speech
mask in the learnt representation space. The mask is element-
wise multiplied with Z to obtain the speech representation,
which is passed to the decoder network, which employs 1D
transposed convolution to generate a clean speech estimate.

Conv-TasNet uses a masker network which consists of
a series of residual one-dimensional dilated convolutional
blocks (Fig. 4a). DPTNet’s masker features a series of dual-
path networks (DPN) (Fig. 4b). Each DPN consists of intra-
(DPNintra) and inter- (DPNinter) processing Transformer
blocks to model the local and global dependencies between
processing chunks. DPRNN shares a similar architecture
as DPTNet but uses bidirectional LSTM layers (BiLSTMs)
instead of Transformers. All three TasNet networks take the
noisy signal in the time domain as input and output the
estimated speech. The models are trained by minimizing the
SI-SDR loss (Eq. 12).

C. SEGAN
As one of the first generative adversarial networks applied to
speech enhancement, SEGAN [39] consists of two networks:
generator (G) and discriminator (D). The generator is used
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to estimate the clean speech ŝ(n) from the noisy input x(n),
i.e. ŝ(n) = G(x(n)). The discriminator is a binary classifier
that aims to distinguish between the true clean signals and

the ones produced by the generator:
{

[l]D(s, x) = 1
D(G(x), x) = 0

.

The generator aims to fool the discriminator by producing
samples which cannot be distinguished from true clean
signals, so that D(G(x), x) = 1. The two networks are
trained alternatively, competing with each other until both
converged. The objective functions to be minimized during
this joint adversarial learning can formulated as{
LG = E [(D(G(x), x)− 1)2] + λE [(s−G(x))2]

LD = E [D(G(x), x)2] + E [(D(s, x)− 1)2]
, (16)

where λ denotes the weight of regularization loss, and E
denotes expectation on the training set.

Fig. 4d depicts the SEGAN generator network, which is
a UNet architecture consisting of strided 1D convolutional
layers followed by PReLU activations. Both encoder and
decoder contain 11 layers, each with kernel size 31 and
stride 2. The encoder part only takes noisy signal x(n) as
input; the decoder part takes additional input from random
samples with prior distribution z ∼ N (0, I). The SEGAN
discriminator is similar to the encoder part of the generator
and is finalized with a 1× 1 convolutional layer followed by
a fully connected layer and sigmoid activation, which enables
it to produce a binary decision.

VI. MODEL TRAINING
We use the clean speech from the TIMIT corpus [64] and
the drone ego-noise from the AVQ [8] and AS [2] datasets
(Table 2). AVQ and AS contain 8-channel recordings of
real drone noise, which were recorded via a microphone
array mounted on a drone, which is fixed on a tripod.
During recording, the drone either operates at constant power
ranging from 50% to 150% of hovering motor speed or
changes the hovering speed dynamically. We only use the
first channel of each recording in the experiments. The
TIMIT dataset consists of a training subset with 4620
utterances (230 minutes) and a test subset with 1680
utterances (84 minutes). All the audio samples are resampled
at 8 kHz. From these datasets, we generate noisy speech for
training, validation and testing.

We use 90% (4158 utterances) of the TIMIT train subset
and the five AVQ ego-noise sequences (n116-n120) to
generate the training set. For each TIMIT utterance, a clean
speech segment of length T is randomly cropped from the
utterance and a noise segment of the same length is randomly
cropped from the ego-noise, which are mixed at a given SNR,
which is uniformly sampled from the interval [-25, -5] dB.
Given a clean speech signal s(n) and noise v(n), the SNR
of the mixture is defined as SNR = 10log10

∑T
n=1 s

2(n)∑T
n=1 v

2(n)
.

The training set is generated on the fly, i.e. the model will
see different noisy mixtures every epoch. We define one
epoch to be 10 full iterations over clean speech utterances,

TABLE 2: Drone ego-noise used in the experiments.

Dataset ID Noise power Length [s]

AVQ [8]
(training)

n116 constant (50%) 120
n117 constant (100%) 120
n118 constant (150%) 40
n119 constant (100%) 210
n120 dynamic 214

AS [2]
(testing)

n121 constant (100%) 130
n122 dynamic 140

TABLE 3: Training parameters of all the models. T : crop
length [samples]; α: initial learning rate; Nα: learning rate
reduction patience [epochs]; NE : early stopping patience
[epochs]; B: batch size

Model T α Nα NE B

Baseline 24000 10−4 5 10 32
VAE 24000 10−4 5 10 32
SMoLnet 10240 10−4 3 10 32
DCUNet 24000 10−3 15 30 32
DCCRN 24000 10−3 15 30 32
PHASEN 24000 10−3 15 30 32
WaveUNet 16384 10−3 15 30 32
Demucs 24149 3 × 10−4 15 30 32
ConvTasNet 24000 10−3 15 30 8
DPRNN 24000 10−3 15 30 8
DPTNet 24000 10−3 5 10 8
SEGAN 16384 2 × 10−4 – – 256

which corresponds to approximately 35 hours of training data
encountered per epoch. We use the same random seed across
all our experiments so that each model sees the same pieces
of data in the same order during training.

We employ a similar protocol to construct the validation
set, using the remaining 10% (462 utterances) of the TIMIT
train subset and the five AVQ ego-noise sequences to
generate the validation set. One difference is that the noisy
mixtures are generated with a fixed setup (not on the fly),
and the clean speech and the noise is added at an SNR
selected from {-25, -20, -15, -10, -5} dB. In total, we generate
9.5 hours of validation data at the default crop length of 3
seconds.

We use all the 1680 utterances of the TIMIT test subset and
the two AS ego-noise sequences (n121-n122) to construct
the testing set. Each utterance (full length) is mixed with
a noise segment randomly cropped from the two ego-noise
sequences, at an SNR selected from {-30, -25, -20, -15, -
10, -5, 0} dB. Here we use a wider range of testing SNR
to analyze how well the models behave for SNRs outside of
the training range. In total, we generate 20 hours of testing
data (23520 clips).

Table 3 specifies the parameters used by each model during
training. We use fixed-length audio clips for ease of mini-
batching processing. We set T = 24000 samples by default,
which corresponds to 3 seconds of 8 kHz audio, because
most utterances in the TIMIT dataset have a duration of
around 3 seconds. However, we change the value of T for
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some models whose architecture and/or original training
setup demand it. For instance, both WaveUNet and Demucs
require a particular input length to produce the output of the
same length after internal down-sampling and up-sampling
operations; for SMoLnet, we use the original setup T =
10240 [30].

We use Adam optimizer to train all the models, except
SEGAN. We employ early stopping to finish training if there
is no improvement in validation loss for 10 consecutive
epochs. During training, the learning rate is multiplied by 0.1
after no improvement in validation loss for Nα consecutive
epochs. The default values for initial learning rate α and Nα
are 10−3 and 5, respectively, but those values also differ for
some models as shown in Table 3. We use a batch size of
32 for all models for which GPU memory limits allow it, and
use a smaller batch size of 8 where it is impossible.

SEGAN consists of a pair of models which compete during
training and the losses observed during their training are
prone to oscillations. Approaches like on-plateau learning
rate reduction and early stopping are hardly applicable.
Hence, we employ a different training setup for SEGAN, as
instructed in the original paper [39], with one difference: we
do not use a high-frequency preemphasis as a preprocessing
step. Both generator and discriminator are trained using
RMSprop optimizer with learning rate 2 × 10−4, with crop
length T = 16384 and batch size 256 are used. The model
is trained for 300 epochs, where the discriminator and the
generator are updated one after another for each batch of data.

VII. EVALUATION RESULTS
We evaluate speech enhancement performance of the models
using perceptual evaluation of speech quality (PESQ)
[65], extended short-time objective intelligibility measure
(ESTOI) [66] and scale-invariant signal-to-distortion ratio
(SI-SDR) [61]. PESQ is a psychoacoustics-based metric
designed to predict the subjective mean opinion score (MOS)
of speech. It is one of the most popular metrics when
evaluating the speech enhancement performance [56], [57].
ESTOI is a modification of STOI [67], which is a widely used
metric to predict the intelligibility of the speech [35], [54].
ESTOI was originally shown to correlate well (including
better than STOI) with subjective intelligibility tests on
low-SNR data [66]. SI-SDR is the signal energy measure
equivalent to SNR but invariant to the absolute amplitude
of the estimated signal, and unlike two previous metrics,
it is not specific to speech signals. We also compare the
size of the model, in terms of the number of trainable
parameters, the training time and inference speed of the
models. Additionally, we analyze the lengths of input audio
segments that are used to produce a given sample of output
audio (i.e. the context length of a model).

A. SPEECH ENHANCEMENT
We split the twelve models into four groups: TF-magnitude,
TF-complex, time-domain UNet and time-domain TasNet
models. We discuss the results per group and then compare

 

(a) 

(e) 

(c) 

(b) 

(d) 

FIGURE 5: Speech enhancement performance of all the
twelve models, which are split into four groups: (a) TF-
magnitude models; (b) TF-complex models; (c) time-domain
UNet models; (d) time-domain TasNet models. The leading
models in each group are compared in (e).

the best models from each group.
TF-magnitudes models: In Fig. 5(a), VAE shows consistent

performance improvement over Baseline. The latter which
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even shows shows negative improvement over the noisy input
in terms of the ESTOI and SI-SDR measures.

TF-complex models: In Fig. 5(b), DCUNet consistently
outperforms all other models, except for PESQ at SNR ≤
-20 dB. The closest runner-ups are PHASEN, which shows
very similar performance overall for ESTOI and SI-SDR,
but much lower PESQ than DCUNet. SmoLnet achieves the
highest PESQ at SNR ≤ -15 dB; however, it achieves the
lowest ESTOI at most SNRs ≥ -20 dB. DCCRN performs
the worst for all three measures and at most SNRs. Overall,
DCUNet ranks the best performing model in the TF-complex
group.

Time-domain UNet models: In Fig. 5(c), WaveUNet
outperforms other models for all three measures (especially
PESQ) at SNR ≤ -10 dB. Demucs performs slightly better
than WaveUNet for the three measures at SNR ≥ -5 dB.
SEGAN performs the worst for PESQ and ESTOI, but
performs slightly better than Demucs for SI-SDR at SNR ≤
-10 dB.

Time-domain TasNet models: In Fig. 5(d), DPTNet
consistently outperforms DPRNN, while ConvTasNet performs
the worst for all three measures.

Finally, Fig. 5(e) compares the best-performing models
from each group, i.e. VAE, DCUNet, DPTNet, and WaveUNet.
VAE is outperformed by other models for all three measures,
except at SNR ≤ -20 dB for the PESQ score. DCUNet
outperforms other models, in terms of ESTOI and SI-SDR,
especially when the SNR is lower than -10 dB. However,
DCUNet performs relatively badly in terms of PESQ and
is outperformed by other models especially when the SNR
is lower than -20 dB. The closet runner is DPTNet, which
achieves higher PESQ but lower ESTOI and SI-SDR than
DCUNet at SNR ≤ -20 dB. WaveUNet performs slightly
worse than DPTNet for all three measures.

Table 4 summarizes the performance improvement averaged
for input SNR [-25, -10] dB.2 Overall, the speech enhancement
performance of the four groups can be ranked as TF-complex
> T-TasNet > T-UNet > TF-magnitude. SMoLnet achieves
the highest PESQ improvement while DCUNet achieve the
highest ESTOI and SI-SDR improvement. Finally, Fig. 6
illustrates the time-frequency spectrogram of a segment of
clean speech, noisy signal at -15 dB, and the output by the
twelve DNN models3.

B. MODEL SIZE
Fig. 7(a) compares the model size (number of trainable
parameters) and the speech enhancement performance.
We choose the ESTOI measure because it is closely
related to speech intelligibility and we compute the ESTOI
improvement averaged at SNR [-25, -10] dB of each model.
The upper-left corner of the plot indicates a better trade-off

2We consider this SNR range as those SNR values are more commonly
encountered in the outdoor drone audio recordings which include a human
speaking at the distance from 2 to 6 meters from the drone [2].

3More audio samples available at www.eecs.qmul.ac.uk/~linwang/
single-dnn

TABLE 4: Mean performance improvement over the noisy
input by each model. The evaluation score is averaged over
the SNR range [-25, -10] dB. The twelve models are split
into four groups. The highest values per group and measure
are underlined. The highest values for each measure are in
bold.

Group Model ∆PESQ ∆ESTOI ∆SI-SDR [dB]

TF-magnitude Baseline 0.119 -0.018 4.169
VAE 0.409 0.009 7.621

TF-complex

SMoLnet 0.731 0.100 17.043
DCUNet 0.660 0.209 17.751
DCCRN 0.450 0.093 10.395
PHASEN 0.469 0.194 16.173

Time-domain
UNet

WaveUNet 0.664 0.125 15.020
Demucs 0.430 0.124 12.388
SEGAN 0.430 0.107 15.147

Time-domain
TasNet

ConvTasNet 0.532 0.081 9.785
DPRNN 0.599 0.109 14.705
DPTNet 0.724 0.160 15.037
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FIGURE 6: Time-frequency spectrogram of the clean speech,
the noisy signal, and the output of the DNN models. The
input SNR is -15 dB. The title of each panel indicates ‘Model:
PESQ/ESTOI/SI-SDR’.

between speech enhancement and model size. The twelve
models are grouped based on their operation domain and
architecture: TF-FC, TF-CNN, TF-UNet, T-UNet, T-TasNet,
T-VAE and T-GAN. The operation domain is indicated with
the color and the architecture is indicated with the marker.

We first compare the models based on their operation
domain. TF-complex models show the best trade-off,
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FIGURE 7: Juxtaposition of each model comparing speech
enhancement performance and (a) model size; (b) inference
speed; (c) context length.

followed by T-TasNet models and T-UNet models, whereas
TF-magnitude models show the worst trade-off. We then
compare the models based on their architectures. TF-UNet
models shows the best trade-off, followed by TF-CNN
models, T-TasNet models, and T-UNet models, where TF-
FC, TF-VAE and T-GAN show worst trade-off. The two
TF-UNet models (DCUNet, DCCRN) show similar model
size but varying speech enhancement performance. The two
TF-CNN models (SMoLnet, PHASEN) vary in both speech
enhancement and model size. The three T-TasNet models
(ConvTasNet, DPTNet, DPRNN) perform similarly, with
minor difference in speech enhancement and model size.
The two T-UNet models (WaveUNet, Demucs) show similar
speech enhancement performance but varying model size.
TF-FC (Baseline) and TF-VAE (VAE) perform limited in
terms of speech enhancement, whereas T-GAN (SEGAN) has
a very large model size.

Among the twelve models, DCUNet achieves the highest
ESTOI improvement with the second smallest model
size (3.53M), while SMoLnet achieves a medium ESTOI
improvement with a very compact model (0.22M). SEGAN,
being the biggest model (94.78M), achieves a similar ESTOI
improvement as SMoLnet.

C. TRAINING TIME AND INFERENCE SPEED
All the models are trained on Tesla V100 GPU using the
setup specified in Sec. VI. We measure the training time
based on the GPU clock time. We also measure the inference
speed of each model when processing an audio clip with
16384 samples, which roughly corresponds to 2 seconds at
a sampling rate 8 kHz. The inference speed is measured
for end-to-end processing, e.g. including the STFT time for
time-frequency methods. We use GTX 1080 Ti GPU for
the computation, where the mean GPU clock time among
1000 runs is measured. Table 5 shows the training time
and inference speed of each model. Fig. 7(b) compares the
inference speed and the speech enhancement performance.
The upper-left corner of the plot indicates a better trade-off
between speech enhancement and model size.

We first compare the models based on their operation
domains. TF-complex models show the best trade-off,
followed by T-UNet models and T-TasNet models, whereas
TF-magnitude models show the worst trade-off. We further
compare the models based on their architectures. The
two TF-UNet models (DCUNet, DCCRN) vary in both
speech enhancement and inference speed, with DCUNet
outperforming in both measures. The two TF-CNN models
(SMoLnet, PHASEN) vary in both speech enhancement
and model size, with PHASEN achieving better speech
enhancement performance and SMoLnet showing faster
inference speed. The two T-UNet models (WaveUNet,
Demucs) show similar speech enhancement performance but
varying inference speed. SEGAN achieves similar speech
enhancement performance but slower inference speed than
T-UNet models. The three T-TasNet models (ConvTasNet,
DPTNet, DPRNN) vary in both speech enhancement
performance and inference speed, with ConvTasNet performing
the best in terms of inference speed while DPTNet
performing the best in terms of speech enhancement. TF-
FC (Baseline) and TF-VAE (VAE) use the least time
for inference, but achieve the worst speech enhancement
performance. Noticeably, T-TasNet models have smaller
model size but slower inference speed, whereas T-UNet
models behave inversely. This leads to swapped rank in
Fig. 7(a) and (b).

Similar observations can be made for the training time,
which is proportional to the inference time. The T-TasNet
models take the longest time for training, followed by TF-
complex models and T-UNet models, whereas TF-magnitude
models take the least time for training. One exception is
DCUNet, which takes less inference time than DCCRN, but
much longer training time than the latter.

D. TEMPORAL CONTEXT WINDOW
Table 6 summarizes the maximum lengths of future and past
input contexts used by each model to generate any given
sample of the output. For Baseline and VAE, the fixed context
window radius of 3 STFT frames was used and translated to
the number of samples and seconds; models with recurrent or
Transformer layers (DCRNN, PHASEN, Demucs, DPRNN,
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TABLE 5: Training and inference time for each model. The
models are trained on Nvidia V100 GPU. The models are
tested on GTX 1080 Ti for an audio segment of 2 seconds.

Model Training time [h] Inference time [ms]

Baseline 2.5 1.1
VAE 0.7 0.3
SMoLnet 46.2 4.3
DCUNet 140.0 16.3
DCCRN 90.1 21.5
PHASEN 44.4 18.7
WaveUNet 13.5 5.1
Demucs 38.4 8.2
SEGAN 42.5 17.1
ConvTasNet 140.4 24.2
DPRNN 140.9 41.8
DPTNet 140.5 45.8

DPTNet) use all the available context (future and/or past,
depending on the directionality of recurrent layers); in other
cases (SMoLnet, DCUNet, DCRNN, WaveUNet, Demucs,
SEGAN, Conv-TasNet), the rule for computing the receptive
field of convolutional networks is applied to compute the
context length [68]. Models with causal LSTM blocks
(DCCRN, Demucs) use all the past information available.
Models with BiLSTM or Transformer blocks (PHASEN,
DRNN, DPTNet) use all the past and future information
available. Since the maximum length of the TIMIT audio
clips used for evaluation does not exceed 8 seconds, we set
the past context length to 4 seconds for models using all the
past information available and set future context length to 4
seconds for models using all the future information available.

Fig. 7(c) compares the context length and the speech
enhancement performance. There seems to be no obvious
relationship between the context length and the operation
domain of the model. TF-magnitude models (Baseline, VAE)
have the shortest context windows, but also perform the
worst. TF-magnitudes, T-UNet and T-TasNet models all
have substantially varying context length. However, for
models with similar architecture, the speech enhancement
performance tends to increase with the context length. For
instance, among the three T-TasNet models, DPRNN and
DPTNet achieve better speech enhancement performance
with larger context window than ConvTasNet. Among
the two TF-CNN models, PHASEN has larger context
window than SMoLnet, and also better speech enhancement
performance.

In general, a large amount of context is helpful for speech
enhancement performance, but could lead to restrictions on
online processing. It is worthwhile noting that there is some
ongoing research on casual TF and casual TasNet models
that can be deployed for online processing by utilizing the
previous state of the models [69].

E. DISCUSSION
TF-complex models significantly outperforms TF-magnitude
models by additionally estimating phase information,
which is important for speech intelligibility in low-SNR

TABLE 6: Maximum past and future context used by the
models.

Model Past Future

STFT
frames Samples Time[s] STFT

frames Samples Time[s]

Baseline 3 512 0.064 3 512 0.064
VAE 3 512 0.064 3 512 0.064
SMoLnet 3 4096 0.512 3 4096 0.512
DCUNet 58 16640 2.080 58 16640 2.080
DCCRN All available 6 896 0.112
PHASEN All available All available
WaveUNet — 28656 3.585 — 28656 3.585
Demucs — All available — 298 0.037
SEGAN — 30784 3.848 — 30784 3.848
ConvTasNet — 6128 0.766 — 6128 0.766
DPRNN — All available — All available
DPTNet — All available — All available

scenarios [70]. TF-complex models also show better speech
enhancement performance than time-domain models. The
two-dimensional convolutional layers in TF-complex models
seem to capture the temporal context more efficiently
than one-dimensional convolutional layers of time-domain
models or (Bi)LSTM or Transformer layers. The two-
dimensional convolutional kernels in TF-complex models
can detect speech/noise patterns along the frequency
dimensions more efficiently, which helps to separate
speech and noise. For instance, both speech and ego-noise
have distinctive harmonic structures in the time-frequency
domain [55].

Sequential FC models perform limited in low-SNR
scenarios due to their simple architecture. Sequential CNN
models perform much better than FC models by working
in the 2D time-frequency domain. Depending on specific
architectures, the sequential CNN models varies in terms
of speech enhancement, model size and computational
complexity. For instance, SMoLNet achieves medium-level
speech enhancement performance with a compact model and
low computational complexity, whereas PHASEN achieves
better speech enhancement performance with a larger model
and higher computational complexity.

Encoder-decoder models, including UNet and TasNet, take
the majority of the twelve models, achieving medium- or top-
level speech enhancement performance. UNet models are
deployed in both TF-domain and time-domain processing.
TF-UNet models achieve a good balance between speech
enhancement and model size and computational complexity.
DCUNet achieves the highest speech enhancement performance
among all twelve models. T-UNet models have larger
model sizes but less computational complexity than TF-
UNet models. This implies the significant computational
advantage of one-dimensional convolutions used by time-
domain models over two-dimensional UNet architectures
and the complex operations in the time-frequency domain.
T-TasNet models achieve comparable speech enhancement
performance with T-UNet models. T-TasNet models have
smaller model sizes than T-UNet models, but more computational
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complexity. DPRNN and DPTNet are slowest among the
twelve models. This is possibly due to their dual-path
processing techniques that that introduces redundancy in
the data flow. For instance, using the default chunking
parameters (chunking with half overlap) essentially results in
processing each input audio sample twice. The employment
of BiLSTMs (DPRNN) and Transformers (DPTNet) further
increases the computational complexity.

The good performance of UNet architecture for our
task might be explained as follows: while the encoder
extracts high-level compressed features of the input, the skip
connections between encoder and decoder give the decoder
access to more high-fidelity information from the input
lost in the compressed representations (e.g. small individual
variations in the spectrum corresponding to speech in the
noise background). This behaviour might be beneficial for
speech enhancement in low-SNR scenarios, where high-
level compressed features represent global properties of
speech or noise (e.g. drone motors’ speed) and high-fidelity
information correspond to subtle variations in the spectrum
which indicate the presence of the speech (e.g. the phase
discrepancies between the noisy and clean signals).

Among the two generative models, VAE has very
low computational complexity but performs limitedly for
speech enhancement; SEGAN achieves medium-level speech
enhancement performance with an extremely large model.
Due to special architecture and training strategy, generative
models appear more suitable for other applications than ego-
noise reduction.

VIII. CONCLUSION
We evaluated and discussed single-channel DNN approaches
to drone ego-noise reduction in extremely low-SNR scenarios.
We trained twelve models that cover three operation domains
(TF-magnitude, TF-complex and time-domain) and three
types of architectures (sequential, encoder-decoder and
generative), and evaluated model performance in terms of
speech enhancement, model size, model complexity, and
context length.

TF-complex models offer the best trade-off between
speech enhancement performance and model size, followed
by time-domain models, while TF-magnitude models
perform the worst. TF-magnitude models requires the
shortest context length to make inference, while TF-complex
and time-domain models require much larger context length.
A better speech enhancement performance typically requires
higher computational complexity and larger context length.
Overall, TF-complex models show the highest potential for
the ego-noise reduction problem.

Among the three types of architectures, encoder-decoder
models achieve the best trade-off between speech enhancement
performance and model size, followed by sequential models,
while generative models perform the worst. Meanwhile,
encoder-decoder models has the highest computational
complexity. For encoder-decoder architectures, UNet models
tend to outperform TasNet models with better speech

enhancement performance, smaller model size and less
computational complexity. Overall UNet models show the
highest potential for the ego-noise reduction problem.

As a result, DCUNet, a UNet operating in the time-
frequency complex domain, achieves the highest ESTOI
score, the highest SI-SDR and the fourth PESQ. For instance,
at input SNR -15 dB, DCUNet improves ESTOI from 0.1 to
0.4, PESQ from 1.0 to 1.9 and SI-SDR from -15 dB to 3.7 dB.

The work is based on the comparison of twelve DNN
models. It would be interesting to include more types of
architecture for comparison. For instance, the TF magnitude
model is based on a simple fully-connected architecture,
it would make sense to use more advanced architecture
for predicting the magnitude mask. More recent GAN
models [54] or speech enhancement diffusion models [71]
could be adapted for the drone ego-noise reduction task. In
addition, the adaptation of deep learning to other transform
domains, e.g. orthogonal polynomial transform [27], can also
be investigated.

We recommend three main research directions. First, while
the considered deep learning models have promising results
at input SNR -15 dB, the performance drops quickly when
the input SNR is further decreased, which can be lower
than -30 dB if the human speaker is far from the drone.
Developing a better deep learning model that works in this
extremely challenging scenario is necessary. Given the good
performance of time-frequency UNet architectures in our
comparative study, further optimizing on this might lead to
favourable solutions.

Second, drone audition applications require real-time and
onboard processing, which impose restrictions on the model
size, computational complexity and context length. A better
deep learning model with good balance between speech
enhancement performance and other criteria is necessary.
For instance, the algorithm’s future context length (Table 6)
should be not more than a few milliseconds to avoid latency
detectable by a human listener (e.g.≤ 40 ms by rules of DNS
Challenge real-time track [57]). Thus, for models that involve
a large future context window (e.g. DCUNet), optimization
on the window length is necessary.

Third, the considered deep learning models were evaluated
with only one type of drone noise. In real applications, the
ego-noise from different types of drones sounds differently.
Investigating and improving the generality of deep learning
models is an important direction.
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