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Purpose: To develop and evaluate the feasibility of deep learning ap-
proaches for magnetic resonance (MR) imaging–based at-
tenuation correction (AC) (termed deep MRAC) in brain 
positron emission tomography (PET)/MR imaging.

Materials and 

Methods:

A PET/MR imaging AC pipeline was built by using a deep 
learning approach to generate pseudo computed tomo-
graphic (CT) scans from MR images. A deep convolutional 
auto-encoder network was trained to identify air, bone, 
and soft tissue in volumetric head MR images coregis-
tered to CT data for training. A set of 30 retrospective 
three-dimensional T1-weighted head images was used to 
train the model, which was then evaluated in 10 patients 
by comparing the generated pseudo CT scan to an ac-
quired CT scan. A prospective study was carried out for 
utilizing simultaneous PET/MR imaging for five subjects 
by using the proposed approach. Analysis of covariance 
and paired-sample t tests were used for statistical analysis 
to compare PET reconstruction error with deep MRAC 
and two existing MR imaging–based AC approaches with 
CT-based AC.

Results: Deep MRAC provides an accurate pseudo CT scan with a 
mean Dice coefficient of 0.971 6 0.005 for air, 0.936 6 
0.011 for soft tissue, and 0.803 6 0.021 for bone. Further-
more, deep MRAC provides good PET results, with aver-
age errors of less than 1% in most brain regions. Signifi-
cantly lower PET reconstruction errors were realized with 
deep MRAC (20.7% 6 1.1) compared with Dixon-based 
soft-tissue and air segmentation (25.8% 6 3.1) and an-
atomic CT-based template registration (24.8% 6 2.2).

Conclusion: The authors developed an automated approach that al-
lows generation of discrete-valued pseudo CT scans (soft 
tissue, bone, and air) from a single high-spatial-resolution 
diagnostic-quality three-dimensional MR image and eval-
uated it in brain PET/MR imaging. This deep learning 
approach for MR imaging–based AC provided reduced 
PET reconstruction error relative to a CT-based standard 
within the brain compared with current MR imaging–
based AC approaches.

q RSNA, 2017
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a decoder network is applied after the 
encoder network. This decoder net-
work is the reverse process of the en-
coder and consists of mirrored layers of 
the encoder network. The max pooling 
in the decoder is substituted by means 
of an upsampling process, where image 
features are consistently resampled to 
fully recover the original image size. 
The final layer of the decoder network 
is a multiclass softmax classifier (13), 
which produces class probabilities for 
each pixel.

Deep MRAC Network Training Procedure

The training data for deep MRAC con-
sists of raw MR images as input and 
reference tissue labels for air, bone, 
and soft tissue obtained by process-
ing coregistered unenhanced CT data. 
CT images were coregistered to MR 
images by using a rigid Euler transfor-
mation followed by nonrigid B-spline 
transformation with use of existing 
image registration tools (14). For each 
training dataset, the three-class tissue 
reference mask was created by means 
of pixel intensity–based thresholding 
(.600 HU for bone, less than 2500 
HU for air, and otherwise soft tissue) 
of the coregistered CT scan as shown 
in Figure 2. For the training proce-
dure, three-dimensional MR and CT 
volume data were input into the model 

cartilage (8) on MR images. The pur-
pose of this study was to develop and 
evaluate the feasibility of deep learning 
approaches for MRAC (termed deep 
MRAC) in brain PET/MR imaging.

Materials and Methods

This study was partially supported 
by GE Healthcare (Waukesha, Wis) 
through equipment provided to the 
authors’ department. The authors had 
control of study data and any infor-
mation submitted for publication at all 
times.

Convolutional Auto-Encoder Architecture

The critical component of the deep 
MRAC method is a deep convolutional 
auto-encoder (CAE) network, which is 
capable of providing robust tissue la-
beling. The CAE framework was built 
on the basis of network structures that 
have been used in studies for natural 
image object recognition (9) and for 
MR imaging segmentation for muscu-
loskeletal tissues (8). An illustration of 
this CAE network is shown in Figure 1.  
The entire network consists of a con-
nected encoder network and a decoder 
network. The encoder uses the same 
13 convolutional layers applied from 
the VGG16 network (10) designed for 
object recognition. Each layer in the 
encoder consists of two-dimensional 
convolution with a set of filters for de-
tecting image features, batch normal-
ization for accelerating network con-
vergence (11), and rectified linear unit 
activation (12), followed by max pool-
ing for reduction of data dimensions. 
By repeating the encoder layer multiple 
times, the network can achieve efficient 
data compression while probing robust 
and spatial invariant image features. 
To reconstruct pixelwise tissue labels, 
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Advances in Knowledge

 n A PET/MR imaging attenuation 
correction (AC) pipeline is pro-
posed that uses a deep learning 
approach to generate pseudo CT 
scans from MR images, yielding 
accurate and robust bone, air, 
and soft-tissue classification in 
PET/MR brain imaging.

 n A deep learning–based approach 
for MR imaging–based AC 
(MRAC) that uses a single MR 
acquisition performs better than 
current clinical approaches, 
where deep MRAC has a recon-
struction error of 20.7% 6 1.1, 
compared with 25.8% 6 3.1 and 
24.8% 6 2.2 for soft-tissue only 
and atlas-based approaches, 
respectively.

Implication for Patient Care

 n Deep learning–based approaches 
applied to MRAC have the poten-
tial to produce robust and reli-
able quantitative PET/MR images 
and have a substantial effect on 
future work in quantitative PET/
MR imaging.

S
imultaneous positron emission 
tomography (PET)/magnetic res-
onance (MR) imaging has been 

developed to combine the soft-tissue 
contrast of MR imaging with the molec-
ular sensitivity and specificity of PET. 
However, a remaining challenge lies in 
obtaining a reliable photon attenuation 
correction (AC) map, which is crucial 
for accurate PET quantitation. The lack 
of direct bone estimation from conven-
tional MR imaging–based AC (MRAC) 
approaches has led to a variety of 
novel strategies being applied (1–3), 
including atlas-based methods, image 
segmentation–based methods (particu-
larly those using ultrashort echo time 
and zero echo time approaches), and 
methods based on joint estimation of 
activity and attenuation with use of 
time-of-flight PET. Although each of 
these proposed solutions has specific 
merits and limitations (3), the develop-
ment of rapid and robust MRAC is still 
currently an unmet need. A summary 
of current approaches used for MRAC 
is included in Appendix E1 (online).

Deep learning approaches with 
convolutional neural networks have re-
cently been applied to medical imaging 
(4), with successful implementations 
showing promising results segmenting 
brain structures (5), brain tumors (6), 
cardiac structures (7), and bone and 
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leads to an image reduction factor of 2. 
The upsampling process in the decoder 
network used a nearest-neighbor inter-
polation, which increases image size by 
a factor of 2 through each layer. Once 
the training phase was complete, the 
CAE network structure was fixed and 
used for labeling of bone, air, and soft 
tissue for new MR images, which were 
subsequently processed into pseudo CT 
images.

In this study, the deep MRAC frame-
work was implemented in a hybrid com-
puting environment involving Python, 
MATLAB, and C/C++. The CAE net-
work was modified and fine-tuned based 
on the Caffe implementation with GPU 
parallel computing support (13).

image contrast and reference tissue la-
bels. The network was trained by using 
multiclass cross-entropy loss (18) as 
an objective function, where the loss 
is calculated in a mini-batch of four 
images in each iteration. The network 
training was performed with 60 000 it-
eration steps, which correspond to 33 
epochs for our training data to achieve 
training loss convergence. The training 
data were shuffled before each epoch 
to create randomization in batch train-
ing. Other network parameters include 
an increased number of convolutional 
filters from 64 to 512 from the first 
layer to the last in the encoder net-
work. The max pooling layer used a 2 
3 2 window with a stride of 2, which 

as a stack of two-dimensional axial im-
ages. All two-dimensional input images 
were normalized by using local contrast 
normalization (15) and resampled to 
a 340 3 340 matrix size by using bi-
linear interpolation before being used 
as input to the CAE. The encoder and 
decoder network weights were initial-
ized by using an initialization scheme 
described by He et al (16) and updated 
by using stochastic gradient descent 
(17) with a fixed learning rate of 0.01 
and momentum of 0.9. The CAE net-
work iteratively estimates output tissue 
labels and compares them to the ref-
erence mask generated from CT data. 
Reference CT data ensure that network 
learns the relationship between MR 

Figure 1

Figure 1: Schematic illustration of deep MRAC. Process consists of training phase and reconstruction (Recon) phase. BN = batch normalization, ReLu = rectified-linear unit.
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Intel Xeon W3520 quad-core CPU, 12 
GB DDR3 RAM, and a Nvidia Quadro 
K4200 graphic card (1344 CUDA cores, 
4GB GDDR5 RAM).

Pseudo CT Scan Generation

The output of the CAE, which are class 
probabilities for each pixel of the im-
age, were then converted into pseudo 
CT scans. For simplicity, pixels were 
assigned a Hounsfield unit value cor-
responding to the tissue class with the 
highest probability. Assigned values 
were 21000 HU, 42 HU, and 939 HU 
for air, soft tissue, and bone, respec-
tively, which is consistent with values 
used in other studies (19–21).

Evaluation of Deep MRAC Tissue Labeling 

Accuracy

Evaluation of the accuracy of pseudo 
CT scans was performed in 10 subjects 
that were not included in the training 
phase of the CAE network. The Dice 
coefficient, a similarity measure rang-
ing from 0 to 1 that describes the over-
lap between two labels, was calculated 
for soft tissue, bone, and air segments, 
where labels detected from deep MRAC 
and the ground truth (segmented CT 
image) were compared. A higher Dice 

our institution. Note that future models 
should use prospectively optimized MR 
imaging acquisitions; however, the ca-
pability of using retrospective data is a 
significant strength of deep learning ap-
proaches. The MR images used to train 
and test the model were obtained with a 
1.5-T unit (Signa HDxt or MR450w, GE 
Healthcare) by using an eight-channel 
receive-only head coil with the following 
parameters: T1-weighted BRAVO pulse 
sequence, 0.46–0.52-mm transaxial vox-
el dimensions, 1.2-mm-thick sections, 
450-msec inversion time, 8.9–10.4-msec 
repetition time, 3.5–3.8-msec echo time, 
and 13° flip angle. Likewise, CT images 
were obtained with three scanners (Op-
tima CT 660, Discovery CT750HD, or 
Revolution GSI; GE Healthcare) with the 
following acquisition and/or reconstruc-
tion settings: 0.43–0.46-mm transaxial 
voxel dimensions, 1.25–2.5-mm-thick 
sections, 120 kVp, automatic exposure 
control with GE noise index of 2.8–12.4, 
and helical pitch of 0.53.

The CAE network was trained by 
using 30 randomly selected subjects and 
evaluated in the 10 remaining subjects. 
All training and testing was performed 
with a desktop computer running a 
64-bit Linux operating system with an 

Image Datasets for Training

Our study was performed in compliance 
with Health Insurance Portability and 
Accountability Act regulations and with 
approval from our institutional review 
board. All prospective subjects provided 
written informed consent before their 
participation in the study. All retrospec-
tive subject data were obtained with a 
waiver of consent under institutional 
review board approval. Training and 
evaluation of the proposed deep MRAC 
method was carried out by performing 
an institutional review board–approved 
retrospective analysis of head images 
from 40 subjects who underwent both 
high-spatial-resolution T1-weighted con-
trast material–enhanced three-dimen-
sional MR imaging and unenhanced CT 
on the same day for the evaluation of 
acute stroke. Subjects had a median 
age of 61 years (range, 21–91 years), 
and there were 22 men and 18 women. 
Gadobenate dimeglumine (MultiHance; 
Bracco Diagnostics, Princeton, NJ) was 
administered at 0.1 mmol/kg. The post-
contrast T1-weighted image was chosen 
as the input to our model because this 
protocol best captures the whole head of 
the subject (not just the brain) compared 
with other MR imaging series used at 

Figure 2

Figure 2: Example of training data for deep MRAC. (a) T1-weighted BRAVO MR image obtained at 1.5 T, (b) real CT image spatially registered to MR image, and (c) 

tissue reference mask generated from spatially registered CT image. Pixel intensity–based thresholding is performed to create tissue reference mask (three classes: 

air, bone, and soft tissue) for training data.
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Results of PET reconstruction from 
each respective approach are shown 
in Figure 4, which includes the vari-
ous CT scans for reconstruction, PET 
image using identical reconstruction 
parameters, and pixelwise error map 
relative to the co-registered actual CT 
approach. As seen in Figure 4, deep 
MRAC performed better than the other 
MRAC approaches. The Table provides 
the average errors and standard devia-
tions with the three approaches within 
different brain regions. There was a sig-
nificant difference among Dixon-based 
soft-tissue and air segmentation, ana-
tomic CT-based template registration, 
and deep MRAC for errors in brain 
ROIs (P , .00001). Paired t testing on 
the ROI level showed that deep MRAC 
provided significantly lower PET errors 
than did Dixon-based soft-tissue and air 
segmentation for 10 of 23 regions with 
Bonferroni correction (P , .001) and 
for 21 of 23 regions without Bonfer-
roni correction (P , .05). Deep MRAC 
provided significantly lower PET errors 
than anatomic CT-based template regis-
tration for six of 23 regions with Bon-
ferroni correction (P , .001) and 20 of 
23 regions without Bonferroni correc-
tion (P , .05). The Table also shows P 
values from paired testing for each ROI.

Discussion

In this study, we demonstrated the 
feasibility of a deep learning–based 
approach for MRAC (deep MRAC), 
using a single MR acquisition that per-
forms better than current clinical ap-
proaches (Dixon-based soft-tissue and 
air segmentation and anatomic CT-
based template registration), where 
deep MRAC has a reconstruction error 
that is lower than 1% in most regions. 
Furthermore, we demonstrated that 
a deep learning model trained by us-
ing retrospective analysis of 1.5-T MR 
images is applicable to data acquired 
at 3.0 T, demonstrating the strength, 
flexibility, and promise of deep learn-
ing approaches. Note that we used a 
contrast-enhanced three-dimensional 
gradient-echo acquisition at 1.5 T 
solely because this type of acquisi-
tion provided the greatest number of 

normalizing to PET image intensity from 
CT-based AC, that is, the percentage 
error of PET image intensity. Region-of-
interest (ROI) analysis was performed 
by using the IBASPM parcellation soft-
ware with a brain atlas to compute ROI-
level errors (22). Error measurements 
were transformed by using the Box-Cox 
transform to ensure normality for statis-
tical testing. Analysis of covariance was 
used to compare errors within all ROIs 
for Dixon-based soft-tissue and air seg-
mentation, anatomic CT-based template 
registration, and deep MRAC. Subject 
and ROI were included as factors, and le-
sion size was included as a continuous co-
variate to account for variability in sizes 
between the different ROIs. Paired-sam-
ple t tests were used for pairwise com-
parison between deep MRAC and Dixon-
based soft- tissue and air segmentation 
techniques and between deep MRAC and 
anatomic CT-based template registration 
techiques. Statistical analysis was per-
formed with software (Matlab, version 
2013a [MathWorks, Natick, Mass], and 
R [R Development Core Team, Vienna, 
Austria; https://www.R-project.org]), 
with a statistically significant difference 
defined as P , .05 with Bonferroni cor-
rection for minimizing type I error.

Results

Examples of 3.0-T MR images, actual 
CT scans, and deep MRAC pseudo CT 
scans are shown in Figure 3. The train-
ing stage necessitated approximately 
34 hours, whereas labeling a single in-
put image by using the trained model 
required approximately 0.5 minute 
(which is suitable for clinical work-
flows). As shown, deep MRAC was able 
to accurately depict air, skull, and bone 
in the MR images.

The Dice coefficient for the evalua-
tion subset (n = 10) comparing the output 
tissue label mask to the reference mask 
was high for air (mean 6 standard devi-
ation, 0.971 6 0.005), soft tissue (mean, 
0.936 6 0.011), and bone (mean, 0.803 
6 0.021). Note that both the MR and CT 
images included in this study had limited 
coverage at the level of the jaw and be-
low, which limited the ability to properly 
train the algorithm below this level.

coefficient is indicative of better label-
ing accuracy.

Prospective PET Evaluation

Five additional subjects were recruited 
to undergo additional PET/MR imaging 
with a 3.0-T PET/MR imaging unit (Sig-
na, GE Healthcare) after their clinical 
oncologic PET/CT or PET/MR imaging 
examination under an institutional re-
view board–approved protocol. Subjects 
had a median age of 58 years (range, 
57–69 years). There were four men and 
one woman. None of the subjects had 
tumors in the brain. Imaging consisted 
of an additional 5- or 10-minute fluo-
rodeoxyglucose PET scan of the head 
and simultaneous contrast-ehanced T1-
weighted, inversion-prepared, spoiled 
gradient-recalled imaging (with pa-
rameters matching those given earlier, 
except with an inversion time of 400 
msec). Gadobenate dimeglumine was 
administered at 0.1 mmol/kg. To evalu-
ate reconstructed PET image quality, an 
offline PET reconstruction (PET Tool-
box, GE Healthcare) was performed 
by using the system default MRACs 
(Dixon-based soft-tissue and air seg-
mentation and anatomic CT-based tem-
plate registration [atlas-based AC]), 
CT-based AC (CT image spatially regis-
tered to MR image), and the proposed 
deep MRAC. The CT image was coreg-
istered to the in-phase LAVA-Flex image 
(two-point Dixon sequence [GE Health-
care]) used for Dixon-based soft-tissue 
and air segmentation. PET reconstruc-
tion parameters were as follows: 256 
3 256 matrix, 300 3 300-mm2 field 
of view, time-of-flight ordered subsets 
expectation maximum reconstruction 
algorithm, 28 iterations, four subsets, 
SharpIR application, and 4-mm post 
filter.

Image Analysis

PET images reconstructed with Dixon-
based soft-tissue and air segmentation, 
anatomic CT-based template registra-
tion, and deep MRAC were compared 
with those reconstructed by using the 
coregistered CT data. Pixelwise error 
maps were obtained by calculating the 
PET image intensity difference value 
between MRAC and CT-based AC after 
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brain regions studied herein, it is possi-
ble that the coregistered CT scan does 
not reflect a true standard of reference 
for quantitative reconstruction. Second, 
the current technique was evaluated in 
patients undergoing a clinical PET ex-
amination, but without any specific neu-
rologic abnormality. Further evaluation 
of deep MRAC in disease states and 
abnormal anatomy is necessary to de-
termine its robustness to anatomic and 
functional variability. This includes eval-
uation in cases such as dementia (where 
subjects typically have normal brain 
anatomy but distinct PET patterns) and 
epilepsy (where subjects may have ab-
normal skull and significant structural 
brain defects). We also recognize that 
improvements in the evaluation of PET 
reconstruction error could be made to 
more accurately assess errors near air, 
bone, and soft-tissue interfaces. In the 
ROI approach used herein, reconstruc-
tion error is averaged within the entire 
volume of the ROI, whereas the actual 
error may be larger near the interfaces. 

time (2–5 minutes, depending on im-
aging parameters) and typically have 
little diagnostic value, which impedes 
the workflow of simultaneous PET/MR 
imaging, especially for whole-body im-
aging, where very limited imaging time 
is available for MR imaging in each 
station. However, given the likely com-
plementary value of ultrashort echo 
time and zero echo time sequences 
in identifying bone in relation to CT, 
future studies using prospective (and 
accelerated) ultrashort echo time and/
or zero echo time MR acquisitions for 
deep MRAC are warranted.

This study has several limitations. 
First, the evaluation of the proposed 
techniques relied on intrasubject coreg-
istration of CT and MR imaging datasets. 
Given the different head positioning dur-
ing the respective acquisitions and inher-
ently different orientations of the neck 
and jaw, it is possible that some residual 
misregistration remains even when us-
ing nonrigid registration techniques. Al-
though this problem is likely small in the 

subjects and best covered the whole 
head with sufficiently high spatial 
resolution that best matched the ac-
quired CT scans for our retrospective 
analysis. Despite these potential lim-
itations, deep MRAC performs very 
well with extremely strong capability to 
estimate bone, as demonstrated with 
reported high Dice coefficient. Note 
that while the results of this study are 
highly promising, a major opportunity 
for future improvement is the develop-
ment of MR acquisitions that are pro-
spectively optimized for deep MRAC 
pseudo CT scan generation.

One promising technique for pro-
spective acquisition is the use of ultra-
short echo time and/or zero echo time 
imaging (23–25). Recently, ultrashort 
echo time– and/or zero echo time–
based MRAC has been highlighted 
owing to its capability to generate 
positive image contrast from bone. 
However, ultrashort echo time– and/
or zero echo time–based MRAC ac-
quisitions can have a long acquisition 

Figure 3

Figure 3: Examples of pseudo CT images obtained with deep MRAC. Multiple sections from (a) input 3.0-T T1-weighted BRAVO MR image, (b) acquired CT scan, 

and (c) pseudo CT scan generated with deep MRAC.
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sufficient training data, a deep learning 
approach would be expected to perform 
better than approaches based on a single 
atlas or a few atlases. In particular, deep 
MRAC may be a more feasible approach 
to realize robust MRAC acquisitions out-
side of the head, such as in the chest, 
where substantial population variability 
in anatomy would greatly complicate at-
las-based approaches.

In conclusion, we have demon-
strated that deep learning–based ap-
proaches applied to MRAC have the 
potential to produce robust and reliable 
quantitative PET/MR images. The flexi-
bility of deep MRAC is limited primarily 

approaches estimate bone and air struc-
ture in images by spatially registering to 
templates that are representative of the 
specific anatomy being studied. These 
require an assumption of mostly normal 
anatomy in every subject, which is often 
not true in clinical practice. Thus, in sub-
jects with anatomic abnormality, these 
methods can be challenged. For a deep 
learning approach, the only limitation 
is the diversity of data used to train the 
model. For the model to account for ab-
normal anatomy, training datasets repre-
sentative of these patterns of abnormal-
ity (but not necessarily spatially specific 
patterns) are necessary. Therefore, given 

Additional assessment of smaller corti-
cal-only regions or spatial normalization 
of all datasets into a single atlas space 
to facilitate pixel-wise error estimates 
may further highlight the performance 
of the respective MRAC approaches in 
various regions of the brain, where criti-
cal mislabeling of air and bone results in 
increased quantitative error.

In addition to the very fast compu-
tational time (0.5 minute) needed to 
generate a pseudo CT scan from the 
trained model, a major advantage of 
the proposed deep MRAC approach is 
that spatial normalization to a template 
space is not required. Atlas-based MRAC 

Figure 4

Figure 4: Comparison of PET reconstruction by using Dixon-based soft-tissue and air segmentation (MRAC-1), anatomic CT-based 

template registration (MRAC-2), deep MRAC, and acquired CT-based AC (CTAC). Relative error was calculated by using PET image 

reconstructed with CT-based AC.
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Image Error with Three Approaches within Different Brain Regions

Brain Region Deep MRAC Error (%)* MRAC-1 Error (%)* MRAC-2 Error (%)*

P Value†

MRAC-1 vs Deep MRAC MRAC-2 vs Deep MRAC

Left frontal lobe 20.1 6 0.9 28.6 6 0.5 23.7 6 2.2 .0001 .028

Right frontal lobe 20.2 6 1.1 210.1 6 0.4 22.2 6 2.2 ,.00001 .072

Left temporal lobe 20.5 6 2.0 23.2 6 1.2 28.2 6 0.6 .069 .0028

Right temporal lobe 22.2 6 1.7 27.5 6 0.7 27.6 6 0.7 .0044 .0032

Left parietal lobe 20.1 6 1.5 28.0 6 1.7 21.9 6 1.9 .0008 .067

Right parietal lobe 20.2 6 1.6 28.6 6 1.8 21.1 6 1.9 .0005 .21

Left occipital lobe 22.4 6 1.4 211.5 6 0.7 27.0 6 1.2 .0004 .0016

Right occipital lobe 23.2 6 1.3 214.0 6 0.9 26.2 6 1.5 .0002 .0002

Left cerebellum 22.7 6 1.0 26.6 6 1.7 29.3 6 1.6 .013 .0003

Right cerebellum 22.8 6 1.4 26.6 6 1.6 29.0 6 1.9 .027 .0022

Brainstem 20.6 6 1.5 22.8 6 1.2 27.7 6 1.3 .66 .0028

Left caudate nucleus 0.1 6 1.0 24.0 6 0.7 23.7 6 0.7 .0010 .0005

Right caudate nucleus 20.1 6 0.9 23.6 6 0.6 23.5 6 0.9 .0023 .0013

Left putamen 0.0 6 1.1 23.6 6 0.8 24.4 6 0.8 .0033 .0014

Right putamen 20.3 6 1.1 23.1 6 0.7 24.0 6 0.9 .0029 .0007

Left thalamus 0.2 6 1.1 23.5 6 1.0 23.9 6 0.7 .0012 .0012

Right thalamus 0.1 6 1.2 23.0 6 1.0 23.8 6 0.8 .0070 .0023

Left subthalamic nucleus 20.1 6 1.4 23.5 6 1.0 24.3 6 1.0 .0021 .0020

Right subthalamic nucleus 0.0 6 1.4 22.7 6 1.1 24.1 6 1.0 .0265 .0021

Left globus pallidus 20.6 6 1.0 25.1 6 0.9 24.8 6 0.7 .0004 .0003

Right globus pallidus 20.3 6 0.8 23.4 6 0.7 24.2 6 0.7 .0015 .0004

Left cingulate region 0.4 6 0.8 25.1 6 0.8 23.0 6 1.3 .0001 .0032

Right cingulate region 0.3 6 0.9 24.9 6 0.8 22.9 6 1.4 .0002 .0030

All regions‡
20.7 6 1.1 25.8 6 3.1 24.8 6 2.2 … …

Note.—MRAC-1 = Dixon-based soft-tissue and air segmentation, MRAC-2 = anatomic CT-based template registration.

* Data are means 6 standard deviations.

† P , .001 is defined as the Bonferroni-corrected significance level.

‡ Overall P value was obtained with analysis of covariance F test and was ,.00001.
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