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Abstract

Deep learning algorithms seek to exploit the unknown structure in the input distribution
in order to discover good representations, often at multiple levels, with higher-level learned
features defined in terms of lower-level features. The objective is to make these higher-
level representations more abstract, with their individual features more invariant to most
of the variations that are typically present in the training distribution, while collectively
preserving as much as possible of the information in the input. Ideally, we would like these
representations to disentangle the unknown factors of variation that underlie the training
distribution. Such unsupervised learning of representations can be exploited usefully under
the hypothesis that the input distribution P (x) is structurally related to some task of
interest, say predicting P (y|x). This paper focusses on why unsupervised pre-training of
representations can be useful, and how it can be exploited in the transfer learning scenario,
where we care about predictions on examples that are not from the same distribution as
the training distribution.

Keywords: Deep Learning, unsupervised learning, representation learning, transfer learn-
ing, multi-task learning, self-taught learning, domain adaptation, neural networks, Re-
stricted Boltzmann Machines, Autoencoders.

1. Introduction

Machine learning algorithms attempt to discover structure in data. In their simpler forms,
that often means discovering a predictive relationship between variables. More generally,
that means discovering where probability mass concentrates in the joint distribution of all
the observations. Many researchers have found that the way in which data are represented
can make a huge difference in the success of a learning algorithm.

Whereas many practitioners have relied solely on hand-crafting representations, thus ex-
ploiting human insights into the problem, there is also a long tradition of learning algorithms
that attempt to discover good representations. This is where this paper is situated. What
can a good representation buy us? What is a good representation? What training principles
might be used to discover good representations?

Supervised machine learning tasks can be abstracted in terms of (X,Y ) pairs, where
X is an input random variable and Y is a label that we wish to predict given X. This
paper focuses on the case where labels for the task of interest are not available at the time
of learning the representation. One wishes to learn the representation either in a purely
unsupervised way, or using labels for other tasks. This type of setup has been called self-
taught learning (Raina et al., 2007) but also falls in the areas of transfer learning, domain
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adaptation, and multi-task learning (where typically one also has labels for the task of
interest) and is related to semi-supervised learning (where one has many unlabeled examples
and a few labeled ones).

This paper also focuses on Deep Learning, i.e., learning multiple levels of representation.
The intent is to discover more abstract features in the higher levels of the representation,
which hopefully make it easier to separate from each other the various explanatory factors
extent in the data.

The paper also considers the special context of the Unsupervised and Transfer Learning
Challenge1, with the following learning setup. The test (and validation) sets have examples
from classes not well represented in the training set. They have only a small number of
unlabeled examples (4096) and very few labeled examples (1 to 64 per class) available to a
Hebbian linear classifier (which discriminates according to the median between the centroids
of two classes compared) applied separately to each class against the others. In the second
phase of the competition, some labeled examples (from classes other than those in the test
or validation sets) are available for the training set. Participants can use the training set
(with some irrelevant labels in the second phase) to construct a representation for test set
examples. The challenge server then trains the Hebbian linear classifier on top of that
representation, on a small random subset of the test set, and evaluates generalization on
the rest (many random subsets are computed to get an average score). The main difficulties
are the following:

1. The input distribution is very different in the test (or validation) set, compared to
the training set, making it unclear if anything can be transfered from the training to
the test set.

2. Very few labels are available to the linear classifier on the test set, meaning that
generalization of the classifier is inherently difficult and sensitive to the particulars of
the representation chosen.

3. No labels for the classes of interest (of the test set) are available at all when learning the
representation. The labels from the training set might in fact mislead a representation-
learning algorithm, because the directions of discrimination which are useful among
the training set classes are likely to be useless among the test set classes.

This puts great pressure on the representation learning algorithm applied on the training
set (unlabeled, in the experiments we performed) to discover really generic features likely to
be of interest for many classification tasks on such data. Our intuition is that more abstract
features are more likely to fit that stringent requirement, which motivates the use of Deep
Learning algorithms.

2. Representations as Coordinate Systems

Representation learning is also intimately related to the research in manifold learning (Hin-
ton et al., 1997; Tenenbaum et al., 2000; Saul and Roweis, 2002; Belkin and Niyogi, 2003).
The objective of manifold learning algorithms is two-fold: identify low-dimensional regions

1. http://www.causality.inf.ethz.ch/unsupervised-learning.php
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of high-density (called manifold), and construct a coordinate system on these manifolds,
i.e., a low-dimensional representation for input examples. Principal Components Analysis
(PCA) is the linear ancestor of manifold learning algorithms: it provides a projection of each
input vector to a low-dimensional coordinate vector, implicitly defining a low-dimensional
hyperplane in input space near which density is hopefully concentrating. The extent of this
mass concentration can be measured by the proportion of variance explained by principal
eigenvectors. Changes in the directions of the principal components are perfectly captured
by the PCA, whereas changes in the orthogonal directions are completely lost. The propor-
tion of the variance in the data captured by the PCA is a good measure of the effectiveness
of a PCA dimensionality reduction (for a given choice of number of dimensions). The as-
sumption is that directions where there is very little change in the data do not matter and
can be considered noise, but this is not always true, especially when one assumes that the
manifold is linear (as with PCA). Non-linear manifold learning algorithms avoid the linear
assumption but retain the notion of a drastic dimensionality reduction.

As we argue more at the end of this paper, although cutting the low-variance directions
out (i.e., considering those directions as noise) is often very effective, it is not always clear
what is signal and what is noise: although the extent of variability is a good hint, it is
not perfect. As an example, consider images of faces, and two factors: person identity and
pose. Most of the variation in pixel space can be explained by pose (especially the 2-D
translation, scaling, and rotation), and two persons of the same sex, age, and hair type will
be distinguishible only by looking at low variance components. That is why one often starts
by preprocessing such images to align them as much as possible or focus only on images of
faces in the same pose, e.g. frontal view.

It is a good thing to test, for one’s data, if one can get better classification by sim-
ply removing the low-variance components, and in that case one should definitely do it2.
However, we believe that a more encompassing and more conservative but more ambitious
approach is to use a learning algorithm that separates the explanatory factors from each
other as much as possible, and let a discriminant classifier pick out those that are relevant
to a particular task.

In this context, overcomplete3 sparse4 representations have often (Ranzato et al., 2007b,
2008; Goodfellow et al., 2009) been found to work better than dense undercomplete repre-
sentations (such as produced by PCA). Consider a sparse overcomplete representation in
the neighborhood of an input example x. Most local changes around x involve a continuous
change of the “active” (non-zero) elements of the representation. Hence the set of active
elements of the representation defines a local chart, a local coordinate system. Those charts
are stitched together through the zero/non-zero transitions that occur when crossing some
boundaries in input space. Goodfellow et al. (2009) have found that sparse autoencoders
gave rise to more invariant representations (compared to non-sparse ones), in the sense that
a subset of the representation elements (also called features) where more insensitive to input
transformations such as translation or rotation of the camera. One advantage of such as
an overcomplete representation is that it is not “cramped” in a small-dimensional space.

2. and in fact, removing some of the low-variance directions with a preliminary PCA has worked well in
the challenge.

3. overcomplete representation: with more dimensions than the raw input
4. sparse representation: with many zeros or near-zeros
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The effective dimensionality (number of non-zeros) can vary depending on where we look.
It is very plausible that in some regions of space it may be more appropriate to have more
dimensions than in others.

Let h(x) denote the mapping from an input x to its representation h(x). Overcomplete
representations which are not necessarily sparse but where h is non-linear are characterized
at a particular input point x by a “soft” dimensionality and a “soft” subset of the represen-
tation coordinates that are active. The degree to which hi(x) is active basically depends on

||Ji(x)|| = ||∂hi(x)∂x ||. When ||Ji(x)|| is close to zero, coordinate i is inactive and unresponsive
to changes in x, while the active coordinates encode local changes around x. This is what
happens with the Contracting Autoencoder described a bit more in section 5.5.

3. Depth

Depth is a notion borrowed from complexity theory, and that is defined for circuits. A circuit
is a directed acyclic graph where each node is associated with a computation, and whose
output results are used by the successors of that node. Input nodes have no predecessor and
output nodes have no successor. The depth of a circuit is the longest path from an input
to an output node. A long-standing question in complexity theory is the extent to which
depth-limited circuits can efficiently represent functions that can otherwise be efficiently
represented. A depth-2 circuit (with appropriate choice of computational elements, e.g.
logic gates or formal neurons) can compute or approximate any function, but it may require
an exponentially large number of nodes. This is a relevant question for machine learning,
because many learning algorithms learn “shallow architectures” (Bengio and LeCun, 2007),
typically of depth 1 (linear predictors) or 2 (most non-parametric predictors). If AI-tasks
require deeper circuits (and human brains certainly appear deep), then we should find ways
to incorporate depth into our learning algorithms. The consequences of using a too shallow
predictor would be that it may not generalize well, unless given huge numbers of examples
and capacity (i.e., computational resources and statistical resources).

The early results on the limitations of shallow circuits regard functions such as the par-
ity function (Yao, 1985), showing that logic gates circuits of depth-2 require exponential
size to implement d-bit parity where a deep circuit of depth O(log(d)) could implement it
with O(d) nodes. H̊astad (1986) then showed that there are functions computable with a
polynomial-size logic gate circuit of depth k that require exponential size when restricted
to depth k− 1 (H̊astad, 1986). Interestingly, a similar result was proven for the case of cir-
cuits made of linear threshold units (formal neurons) (H̊astad and Goldmann, 1991), when
trying to represent a particular family of functions. A more recent result brings an example
of a very large class of functions that cannot be efficiently represented with a small-depth
circuit (Braverman, 2011). It is particularly striking that the main theorem regards the
representation of functions that capture dependencies in joint distributions. Basically, de-
pendencies that involve more than r variables are difficult to capture by shallow circuits.
An r-independent distribution is one that cannot be distinguished from the uniform distri-
bution when looking only at d variables at a time. The proof of the main theorem (which
concerns distribution over bit vectors) relies on the fact that order-r polynomials over the
reals cannot capture r-independent distributions. The main result is that bounded-depth
circuits cannot distinguish data from r-independent distributions from independent noisy
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bits. We have also recently shown (Bengio and Delalleau, 2011) results for sum-product
networks (where nodes either compute sums or products, over the reals). We found two
families of polynomials that can be efficiently represented with depth-d circuits, but require
exponential size with depth-2 circuits. Interestingly, sum-product networks were recently
proposed to efficiently represent high-dimensional joint distributions (Poon and Domingos,
2010).

Besides the complexity-theory hints at their representational advantages, there are other
motivations for studying learning algorithms which build a deep architecture. The earliest
one is simply inspiration from brains. By putting together anatomical knowledge and
measures of the time taken for signals to travel from the retina to the frontal cortex and
then to motor neurons (about 100 to 200ms), one can gather that at least 5 to 10 feedforward
levels are involved for some of the simplest visual object recognition tasks. Slightly more
complex vision tasks require iteration and feedback top-down signals, multiplying the overall
depth by an extra factor of 2 to 4 (to about half a second).

Another motivation derives from what we know of cognition and abstractions: as argued
in Bengio (2009), it is natural for humans to represent concepts at one level of abstraction
as the composition of concepts at lower levels. Engineers often craft representations at
multiple levels, with higher levels obtained by transformation of lower levels. Instead of a
flat main program, software engineers structure their code to obtain plenty of re-use, with
functions and modules re-using other functions and modules. This inspiration is directly
linked to machine learning: deep architectures appear well suited to represent higher-level
abstractions because they lend themselves to re-use. For example, some of the features that
are useful for one task may be useful for another, making Deep Learning particularly well
suited for transfer learning and multi-task learning (Caruana, 1995; Collobert and Weston,
2008). Here one is exploiting the existence of underlying common explanatory factors that
are useful for both tasks. This is also true of semi-supervised learning, which exploits con-
nections between the input distribution P (X) and a target conditional distribution P (Y |X).
In general these two distributions, seen as functions of x, may be unrelated to each other.
But in the world around us, it is often the case that some of the factors that shape the
input variables X are predictive of the output variables Y . Deep Learning relies heavily on
unsupervised or semi-supervised learning, and assumes that representations of X that are
useful to capture P (X) are also in part useful to capture P (Y |X).

In the context of the Unsupervised and Transfer Learning Challenge5, the assumption
exploited by Deep Learning algorithms goes even further, and is related to the Self-Taught
Learning setup (Raina et al., 2007). In the unsupervised representation-learning phase, one
may have access to examples of only some of the classes, and the representation learned
should be useful for other classes. One therefore assumes that some of the factors that
explain P (X|Y ) for Y in the training classes, and that will be captured by the learned
representation, will be useful to predict different classes, from the test set. In phase 1
of the competition, only X’s from the training classes are observed, while in phase 2 some
corresponding labels are observed as well, but no labeled examples from the test set are ever
revealed. In our team (LISA), we only used the phase 2 training set labels to help perform
model selection, since selecting and fine-tuning features based on their dicriminatory ability

5. http://www.causality.inf.ethz.ch/unsupervised-learning.php
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on training classes greatly increased the risk of removing important information for test
classes. See Mesnil et al. (2011) for more details.

4. Greedy Layer-Wise Learning of Representations

The following basic recipe was introduced in 2006 (Hinton and Salakhutdinov, 2006; Hinton
et al., 2006; Ranzato et al., 2007a; Bengio et al., 2007):

1. Let h0(x) = x be the lowest-level representation of the data, given by the observed
raw input x.

2. For ` = 1 to L

Train an unsupervised learning model taking as observed data
the training examples h`−1(x) represented at level ` − 1, and
producing after training representations h`(x) = R`(h`−1(x)) at
the next level.

From this point on, several variants have been explored in the literature. For supervised
learning with fine-tuning, which is the most common variant (Hinton et al., 2006; Ranzato
et al., 2007b; Bengio et al., 2007):

3. Initialize a supervised predictor whose first stage is the parametrized representation
function hL(x), followed by a linear or non-linear predictor as the second stage (i.e.,
taking hL(x) as input).

4. Fine-tune the supervised predictor with respect to a supervised training criterion,
based on a labeled training set of (x, y) pairs, and optimizing the parameters in both
the representation stage and the predictor stage.

A supervised variant involves using all the levels of representation as input to the predictor,
keeping the representation stage fixed, and optimizing only the predictor parameters (Lee
et al., 2009a,b):

3. Train a supervised learner taking as input (hk(x), hk+1(x), . . . , hL(x)) for some choice
of 0 ≤ k ≤ L, using a labeled training set of (x, y) pairs.

A special case of the above is to have k = L, i.e., we keep only the top level as input to
the classifier without supervised fine-tuning of the representation. In our experiments, this
version worked better in the Unsupervised and Transfer Learning Challenge, characterized
by a non-discriminant linear classifier and very few labeled examples (and not labels from
test classes).

Finally, there is a common unsupervised variant, e.g. for training deep autoencoders (Hin-
ton and Salakhutdinov, 2006) or a Deep Boltzmann Machine (Salakhutdinov and Hinton,
2009):

3. Initialize an unsupervised model of x based on the parameters of all the stages.

4. Fine-tune the unsupervised model with respect to a global (all-levels) training crite-
rion, based on the training set of examples x.
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As detailed in Mesnil et al. (2011), it turned out for the challenge to always work better
to have a low-dimensional hL (i.e. the input to the classifier), e.g., a handful of dimensions.
This top-level representation was typically obtained by choosing PCA as the last stage of
the hierarchy. In experiments with other kinds of data, with many more labeled examples,
we had obtained better results with high-dimensional top-level representations (thousands
of dimensions). We found higher dimensional top-level representations to be most hurtful
for the cases where there are very few labeled examples. Note that the challenge criterion
is an average over 1, 2, 4, 8, 16, 32 and 64 labeled examples per class. Because the cases
with very few labeled examples were those on which there was most room for improvement
(compared to other competitors), it makes sense that the low-dimensional solutions were
the most successful.

Another remark is important here. On datasets with a larger labeled training set, we
found that the supervised fine-tuning variant (where all the levels are finally tuned with
respect to the supervised training criterion) can perform substantially better than without
supervised fine-tuning (Lamblin and Bengio, 2010).

4.1. Transductive Specialization to Transfer Learning and Domain Adaptation

On the other hand, in the context of the challenge, there were no training labels for the
task of interest, i.e., the classes of the test set, so it would not even have been possible to
perform meaningful supervised fine-tuning. Worse than that in fact, the input distribution
as well was very different between the training set and the test set. The large majority of
examples from the training set were from classes other than those in the test set. This is a
particularly extreme transfer learning or domain adaptation setup.

How could one hope to generalize in this context? If the training set input distribution had
nothing to do with the test set input distribution, then even unsupervised representation-
learning on the training set might not be helpful as a learned preprocessing for the test set.
The only hope is that a representation-learning algorithm would discover features that cap-
ture the generic factors of variation present in all the classes, and that the classifier trained
on the test set would then just need to pick up those factors relevant to the discrimination
among test set classes. Unfortunately, because of the very small number of labeled examples
available to the test set classifier, we found that we could not obtain good results (on the
validation set) with high-dimensional representations. This implied that some selection of
the relevant features had to be performed even before seeing any label from the test set.
We believe that we achieved some of that by using a transductive strategy. The top
levels(s) of the unsupervised feature-learning hierarchy were trained purely or mostly on the
test set examples. Since the training set was much larger, we used it to extract a large set
of general-purpose features that covered the variations across many classes. The unlabeled
test set was then used transductively to select among the non-linear factors extracted from
the training set those few factors varying most in the test set. Typically this was simply
achieved by a simple PCA applied at the last level, trained only on test examples, and with
very few leading eigenvectors selected.
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5. A Zoo of Possible Layer-Wise Unsupervised Learning Algorithms

5.1. PCA, ICA, Normalization

Existing linear models such as PCA or ICA can be useful as one or more of the levels of
a deep hierarchy. In fact, on several of the challenge datasets, we found that using a PCA
as the first and the last level often worked very well. PCA preserves the global linear
directions of maximum variance, and separates them into orthogonal components. The
representation learned is the projection on the principal eigenvectors of the input covariance
matrix. This corresponds to a coordinate system associated with a linear manifold spanned
by these eigenvectors (centered at the center of mass of the data). For the first PCA, we
typically kept a fairly large number of directions, so the main effect of that step is to smooth
the input distribution by eliminating some of the variations involved in the least globally
varying directions. Optionally, the PCA transformation can include a whitening step which
means that the projections are normalized to variance 1 (by dividing each projection by the
square root of the corresponding eigenvalue, i.e., component variance).

Whereas PCA can already perform a kind of normalization across examples (by sub-
tracting the mean over examples and dividing by the standard deviation over examples,
in the chosen directions), there is a complementary form of normalization which we have
found useful. It is a simple variant of the contrast normalization commonly employed as an
intermediate step in deep convolutional neural networks (LeCun et al., 1989, 1998a). The
idea is to normalize across the elements of each input vector, by subtracting the mean and
dividing by the standard deviation across elements of the input vector.

5.2. Autoencoders

An autoencoder defines a reconstruction r(x) = g(h(x)) of the input x from the composi-
tion of an encoder h(·) and a decoder g(·). In general both are parametrized and the most
common parametrization corresponds to r(x) being the output of a one-hidden layer neural
network (taking x as input) and h(x) being the non-linear output of the hidden layer. Train-
ing proceeds by minimizing the average of reconstruction errors, L(r(x), x). If the encoder
and decoder are linear and L(r(x), x) = ||r(x) − x||2 is the square error, then h(x) learns
to span the principal eigenvectors of the input, i.e., being equivalent (up to a rotation) to a
PCA (Bourlard and Kamp, 1988). However, with a non-linear encoder, one obtains a rep-
resentation that can be greedily stacked and often yields better representations with deeper
encoders (Bengio et al., 2007; Goodfellow et al., 2009). A probabilistic interpretation of
reconstruction error is simply as a particular form of energy function (Ranzato et al., 2008)
(the logarithm of an unnormalized probability density function). It means that examples
with low reconstruction error have higher probability according to the model. A sparsity
term in the energy function has been used to allow overcomplete representations (Ranzato
et al., 2007b, 2008) and shown to yield features that are (for some of them) more invariant
to geometric transformations of images (Goodfellow et al., 2009). A successful alterna-
tive (Bengio et al., 2007; Vincent et al., 2008) to the square reconstruction error in the case
of inputs that are binary or in the (0,1) interval (like pixel intensities) is the sum of KL
divergences between the binomial probabilities associated with each input xi and with each
reconstruction ri(x) (both seen as binary probabilities).
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5.3. RBMs

As shown in Bengio and Delalleau (2009), the reconstruction error gradient for autoencoders
can be seen as an approximation of the Contrastive Divergence (Hinton, 1999, 2002) update
rule for Restricted Boltzmann Machines (Hinton et al., 2006). Boltzmann Machines are
undirected graphical models, defined by an energy function which is related to the joint
probability of inputs (visible) x and hidden (latent) variables h through

P (x, h) = e−energy(x,h)/Z

where the normalization constant Z is called the partition function, and the marginal
probability of the observed data (which is what we want to maximize) is simply P (x) =∑

h P (x, h) (summing or integrating over all possible configurations of h). A Boltzmann
Machine is the equivalent for binary random variables to the multivariate Gaussian distri-
bution for continuous random variables, in the sense that it is defined by an energy function
that is a second-order polynomial in the random bit values. Both are particular kinds of
Markov Random Fields (undirected graphical models), but the partition function of the
Boltzmann Machine is intractable, which means that approximations of the log-likelihood
gradient ∂ logP (x)

∂θ must be employed to train it (where θ is the set of parameters).
Restricted Boltzmann Machines (RBMs) are Boltzmann Machines with a restriction in

the connection pattern of the graphical model between variables, forming a bipartite graph
with two groups of variables: the input (or visible) and latent (or hidden) variables. Whereas
the original RBM employs binomial hidden and visible units, which worked well on data
such as MNIST (where grey levels actually correspond to probabilities of turning on a pixel),
the original extension of RBMs to continuous data (the Gaussian RBM) has not been as
successful as more recent continuous-data RBMs such as the mcRBM (Ranzato and Hinton,
2010), the mPoT model (Ranzato et al., 2010) and the spike-and-slab RBM (Courville
et al., 2011), which was used in the challenge. The spike-and-slab RBM energy function
allows hidden units to either push variance up or down in different directions, and it can
be efficiently trained thanks to a 3-way block Gibbs sampling procedure.

RBMs are defined by their energy function, and when it is tractable (which is usually the
case), their free energy function is:

FreeEnergy(x) = − log
∑
h

e−energy(x,h).

The log-likelihood gradient can be defined in terms of the gradient of the free energy on
observed (so-called positive) data samples x and on (so-called negative) model samples
x̃ ∼ P (x̃):

−∂ logP (x)

∂θ
=
∂FreeEnergy(x)

∂θ
− E[

∂FreeEnergy(x̃)

∂θ
]

where the expectation is over x̃ ∼ P (x̃). When the free energy is tractable, the first term can
be computed readily, whereas the second term involves sampling from the model. Various
kinds of RBMs can be trained by approximate maximum likelihood stochastic gradient
descent, often involving a Monte-Carlo Markov Chain to obtain those model samples. See
Bengio (2009) for a much more complete tutorial on this subject, along with Hinton (2010)
for tips and tricks.
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5.4. Denoising Autoencoders

Denoising autoencoders training is a simple variation on autoencoder training: try to re-
construct the clean original input from an artificially and stochastically corrupted version
of it, by minimizing the denoising reconstruction error. Denoising autoencoders are simply
trained by stochastic gradient descent, typically using mini-batches (of 20 to 200 examples)
in order to take advantage of faster matrix-matrix operations on CPUs or GPUs. Denoising
autoencoders solve one of the thorny limitations of ordinary autoencoders: the represen-
tation can be overcomplete without causing any problem. More hidden units just means
that the model can more finely represent the input distribution. Denoising autoencoders
have recently been shown to be directly related to score matching (Vincent, 2011), an in-
duction principle that can replace maximum likelihood when it is not tractable (and the
inputs are continuous-valued). The score matching criterion is the squared norm of the

difference between the model’s score (gradient ∂ logP (x)
∂x of the log-likelihood with respect

to the input x) and the score of the true data generating density (which is unknown, but
from which we have samples). A simple way to understand the connection between de-
noising autoencoders and score matching is the following. Considering that reconstruction
error is an energy function, the reconstruction from an autoencoder normally goes from a
lower-probability (higher energy) input configuration to a nearby higher-probability (lower
energy) one, so the difference r(x̃)− x̃ between reconstruction and input is the model’s view
of a direction of maximum increase in probability (i.e., the model’s score). On the other
hand, when one takes a training sample x and one randomly corrupts it into x̃, one typically
obtains a lower probability neighbor, i.e., the vector x− x̃ is nature’s hint about a direction
of rapid increase in probability (when starting at x̃). The squared difference of these two
differences is just the denoising reconstruction error (r(x̃)− x)2, in the case of the squared
error reconstruction loss.

In the challenge, we used (Mesnil et al., 2011) particular denoising autoencoders that
are well suited for data with sparse high-dimensional inputs. Instead of the usual sigmoid
or tanh non-linear hidden unit activations, these autoencoders are based on rectifier units
(max(x, 0) instead of tanh) with L1 penalty in the training criterion, which tends to make the
hidden representation sparse. Stochastic rectifier units had been introduced in the context
of RBMs earlier (Nair and Hinton, 2010) and we have found them to be extremely useful
for deterministic deep networks (Glorot et al., 2011a) and denoising autoencoders (Glorot
et al., 2011b). A recent extension of denoising autoencoders is particularly useful for two
of the challenge datasets in which the input vectors are very large and sparse. It addresses
a particularly troubling issue when training autoencoders on large sparse vectors: whereas
the encoder can take advantage of the numerous zeros in the input vector (it does not need
to do any computation for them), the decoder needs to make reconstruction predictions
and compute reconstruction error for all the inputs, including the zeros. With the sampled
reconstruction algorithm (Dauphin et al., 2011), one only needs to compute reconstructions
and reconstruction error for a small stochastically selected subset of the zeros, yielding very
substantial speed-ups (20-fold in the experiments of Dauphin et al. (2011)), the more so as
the fraction of non-zeros decreases.
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5.5. Contractive Autoencoders

Contractive autoencoders (Rifai et al., 2011) minimize a training criterion that is the sum
of a reconstruction error and a “contraction penalty”, which encourages the learnt represen-
tation h(x) to be as invariant as possible to the input x, while still allowing to distinguish
the training examples from each other (i.e., to reconstruct them). As a consequence, the
representation is faithful to changes in input space in the directions of the manifold near
which examples concentrate, but it is highly contractive in the orthogonal directions. This
is similar in spirit to a PCA (which only keeps the leading directions of variation and
completely ignores the others), but is softer (no hard cutting at a particular dimension),
is non-linear and can contract in different directions depending on where one looks in the
input space (hence can capture non-linear manifolds). To prevent a trivial solution in which
the encoder weights go to zero and the decoder weights to infinity, the contractive autoen-
coder uses tied weights (the decoder weights are forced to be the transpose of the encoder
weights). Because of the contractive criterion, what we find empirically is that for any
particular input example, many of the hidden units saturate while a few remain sensitive to
changes in the input (corresponding to changes in the directions of changes expected under
the data distribution). That subset of active units changes as we move around in input
space, and defines a kind of local chart, or local coordinate system, in the neighborhood of
each input point. This can be visualized to some extent by looking at the singular values
and singular vectors of the Jacobian matrix J (containing the derivatives of each hidden
unit output with respect to each input unit). Contrary to other autoencoders, one tends
to find only few dominant eigenvalues, and their number corresponds to a local rank or
local dimension (which can change as we move in input space). This is unlike other dimen-
sionality reduction algorithms in which the number of dimensions is fixed by hand (rather
than learnt) and fixed across the input domain. In fact the learnt representation can be
overcomplete (larger than the input): it is only in the sense of its Jacobian that it has an
effective small dimensionality for any particular input point. The large number of hidden
units can be exploited to model complicated non-linear manifolds.

6. Tricks and Tips

A good starting point for tricks and tips relevant to training deep architectures, and in
particular Restricted Boltzmann Machines (RBMs), is Hinton (2010). An older guide which
is also useful to some extent is Orr and Muller (1998), and in particularLeCun et al. (1998b),
since many of the ideas from neural networks training can be exploited here.

6.1. Monitoring Performance During Training

RBMs are tricky because although there are good estimators of the log-likelihood gradient,
there are no known cheap ways of estimating the log-likelihood itself (Annealed Importance
Sampling (Murray and Salakhutdinov, 2009) is an expensive way of doing it). A poor
man’s option is to measure reconstruction error (as if the parameters were those of an
autoencoder), which works well for the beginning of training but does not help to choose a
stopping point (e.g. to avoid overfitting). The practical solution is to save the model weights
at different numbers of epochs (e.g., 5, 10, 20, 50) and plug the learned representation into
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a supervised classifier (for each of these training durations) in order to decide what training
duration to select.

In the case of denoising autoencoders, on the other hand, the denoising reconstruction
error is a good measure of the model’s progress (since it corresponds to the training crite-
rion) and it can be used for early stopping. However, the best generative model or the one
with the best denoising is not always the one that works best in terms of providing a good
representation for a classifier. This is especially true in the transfer setting of the competi-
tion, where the training distribution is different from the test and validation distributions.
In that case, the expensive solution of evaluating validation classification error at different
training durations is the approach we have chosen. The training criterion of contractive
autoencoders can also be used as a good monitoring device (and its value on a validation
set used to perform early stopping). Note that we did not really “stop” training, we only
recorded representations at different points in the training trajectory and estimated ALC
or other criteria associated with each. The advantage is that we do not need to retrain a
separate model from scratch for each of the possible durations tested.

6.2. Random Search and Greedy Layer-wise Strategy

Because one can have a different type of representation-learning model at each layer, and
because each of these learning algorithms has several hyper-parameters, there is a huge
number of possible configurations and choices one can make in exploring the kind of deep
architectures that led to the winning entry of the challenge. There are two approaches that
practitioners of machine learning typically employ to deal with hyper-parameters. One
is manual trial and error, i.e., a human-guided search. The other is a grid search, i.e.,
choosing a set of values for each hyper-parameter and training and evaluating a model for
each combination of values for all the hyper-parameters. Both work well when the number
of hyper-parameters is small (e.g. 2 or 3) but break down when there are many more 6.
More systematic approaches are needed. An approach that we have found to scale better
is based on random search and greedy exploration. The idea of random search (Berstra
and Bengio, 2011) is simple and can advantageously replace grid search. Instead of forming
a regular grid by choosing a small set of values for each hyper-parameter, one defines a
distribution from which to sample values for each hyper-parameter, e.g., the log of the
learning rate could be taken as uniform between log(0.1) and log(10−6), or the log of the
number of hidden units or principal components could be taken as uniform between log(2)
and log(5000). The main advantage of random (or quasi-random) search over a grid is that
when some hyper-parameters have little or no influence, random search does not waste any
computation, whereas grid search will redo experiments that are equivalent and do not bring
any new information (because many of them have the same value for hyper-parameters that
matter and different values for hyper-parameters that do not). Instead, with random search,
every experiment is different, thus bringing more information. In addition, random search
is convenient because even if some jobs are not finished, one can draw conclusions from
the jobs that are finished. In fact, one can use the results on subsets of the experiments
to establish confidence intervals (the experiments are now all iid), and draw a curve (with

6. Experts can handle many hyper-parameters, but results become less reproducible and algorithms less
accessible to non-experts.
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confidence interval) showing how performance improves as we do more exploration. Of
course, it would be even better to perform experimental design in order to take advantage
of results of training experiments as they are obtained and sample in more promising regions
of configuration space, but more research needs to be done towards this. On the other hand,
random search is very easy and does not introduce hyper-hyper-parameters.

Another trick that we have used successfully in the past and in the challenge is the idea
of a greedy search. Since the deep architecture is obtained by stacking layers and each layer
comes with its own choices and hyper-parameters, the general strategy is the following.
First optimize the choices for the first layer (e.g., try to find which single-layer learning
algorithm and its hyper-parameters give best results according to some criterion such as
validation set classification error or ALC). Then keep that best choice (or a few of the best
choices found) and explore choices for the second layer, keeping only the best overall choice
(or a few of the best choices found) among the 2-layer systems tested. This procedure can
then be continued to add more layers, without the computational cost exploding with the
number of layers (it just grows linearly).

6.3. Hyper-Parameters

The single most important hyper-parameter for most of the algorithms described here is
the learning rate. A too small learning rate means slow convergence, or convergence to a
poor performance given a finite budget of computation time. A too large learning rate gives
poor results because the training criterion may increase or oscillate. Like most numerical
hyper-parameters, the learning rates should be explored in the log-domain, and there is
not much to be gained by refining it more than a factor of 2, whereas the dynamic range
explored could be around 106 learning rates are typically below 1. To efficiently search for
a good learning rate, a greedy heuristic that we used is based on the following strategy.
Start with a large learning rate and reduce it (by a factor 3) until training does not diverge.
The largest learning rate which does not give divergent training (increasing training error)
is usually a very good choice of learning rate.

For the challenge, another very sensitive hyper-parameter is the number of dimensions of
the top-level representation fed to the classifier. It should probably be close to or related
to the true number of classes (more classes would require more dimensions to be separated
easily by a linear classifier).

Early stopping is another handy trick to speed-up model search, since it can be used to
detect overfitting (even in the unsupervised learning sense) for a low computational cost.
After each training iteration one can compute an indicator of generalization error (either
from the application of the unsupervised learning criterion on the validation set or even by
training a linear classifier on a pseudo-validation set, as described below, sec. 6.5).

6.4. Visualization

Since the validation set ALC was an unreliable indicator of test set ALC, we used several
strategies in the second phase of the competition to help guide the model selection. One
of them is simply visualization of the representations as cloud points. One can visualize
3 dimensions at a time, either the leading 3 or a subset of the leading ones. To order
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dimensions we used PCA or t-SNE dimensionality reduction (van der Maaten and Hinton,
2008).

6.5. Simulating the Final Evaluation Scenario

Another strategy that often comes handy is to simulate (as much as possible) the final
evaluation scenario, even in the absence of the test labels. In the case of the second phase
of the competition, some of the training classes labels are available. Thus we could simulate
the final evaluation scenario by choosing a subset of the training classes as “pseudo training
set” and the rest as “pseudo test set”, doing unsupervised training on the pseudo training
set (or the union of pseudo training and pseudo test sets) and training the linear classifier
using the pseudo test set. We then considered hyper-parameter settings that led not only to
high accuracy in average across different choices of class subsets (for the pseudo train/test
split), but also to high robustness (low variance) across these splits.

7. Examples in Transfer Learning

Deep Learning seems well suited to transfer learning because it focuses on learning represen-
tations and in particular “abstract” representations, representations that ideally disentangle
the factors of variation present in the input.

This has been demonstrated already not only in this competition (see Mesnil et al. (2011))
for more details), but also in several other instances. For example, in Bengio et al. (2011),
it has been shown that a deep learner can take more advantage of out-of-sample training
examples than a shallow learner. Two settings were explored, with both results illustrated
in Figure 1. In the first one (left hand side of figure), training examples (character images)
are distorted by adding all kinds of noises and random transformations (coherent with
character images), but the target distribution contains clean examples. Training on the
distorted examples was found to help the deep learners (SDA{1,2}) more than the shallow
ones (MLP{1,2}), when the goal is to test on the clean examples. In the second setting
(right hand side of figure), i.e., the multi-task setting, training is on all 62 classes available,
but the target distribution of interest is a restriction to a subset of the classes.

Another successful transfer example also using stacked denoising autoencoders arises in
the context of domain adaptation, i.e., where one trains an unsupervised representation
based on examples from a set of domains but a classifier is then trained from few examples
of only one domain. In that case the output variable always has the same semantics, but the
input distribution (and to a lesser extent the relation between input and output) changes
from domain to domain. Glorot et al. (2011b) applied stacked denoising autoencoders
with sparse rectifiers (the same as used for the challenge) to domain adapation in sentiment
analysis (predicting whether a user liked a disliked a product based on a short review). Some
of the results are summarized in Figure 2, comparing transfer ratio, which indicates relative
error when testing in-domain vs out-of-domain, i.e., how well transfer works (see Glorot et al.
(2011b) for more details). The stacked denoising autoencoders (SDA) are compared with the
state of the art methods: SCL (Blitzer et al., 2006) or Structural Correspondence Learning,
MCT (Li and Zong, 2008) or Multi-label Consensus Training, SFA (Pan et al., 2010) or
Spectral Feature Alignment, and T-SVM (Sindhwani and Keerthi, 2006) or Transductive
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Figure 1: Relative improvement in character classification error rate due to out-of-
distribution examples. Left: Improvement (or loss, when negative) induced by
out-of-distribution examples (perturbed data). Right: Improvement (or loss,
when negative) induced by multi-task learning (training on all character classes
and testing only on either digits, upper case, or lower-case). The deep learner
(stacked denoising autoencoder) benefits more from out-of-distribution examples,
compared to a shallow MLP. {SDA,MLP}1 and {SDA,MLP}2 are trained on dif-
ferent types of distortions. The NIST set includes all 62 classes while NIST digits
include only the 10 digits. Reproduced from Bengio et al. (2011).

SVM. The SDAsh (Stacked Denoising Autoencoder trained on all domains) clearly beats
the state-of-the-art.

8. Moving Forward: Disentangling Factors of Variation

In spite of all the nice results described here, and in spite of winning the final evaluation of
the challenge, it is clear to the author that research in Deep Learning of representations is
only in its infancy, and that much more should be done to improve the learning algorithms.
In particular, it is the author’s belief that these algorithms would be much more useful
in transfer learning if they could better disentangle the underlying factors of variation. In
a sense it is obvious that if we had algorithms that could do that really well, than most
learning tasks (supervised learning, transfer learning, reinforcement learning, etc.) would
become much easier, and the effect would be most felt when only very few labeled examples
for the final task of interest are present. The question is whether we can actually improve
in this direction, and the hypothesis we propose is that by explicitly designing the models
and training criterion towards that objective, there is much to be gained. Ultimately, one
can view the problem of learning from very few labeled examples of the task of interest
almost as a an inference problem (“given that I define a new class based on this particular
example, what is the probability that this other example also belongs to it?”), where the
parameters of the model (i.e., the representation) have already been established through
prior training on many more related examples (labeled or not) which help to capture the
underlying factors of variation, some of which are relevant in the target task.
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Figure 2: Transfer ratios on the Amazon benchmark. Both SDA-based systems out-
performs the rest, and SDAsh (unsupervised training on all domains) is best.
Reproduced from Glorot et al. (2011b).
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