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Abstract 
Objective: This study aimed to produce a novel Deep Learning (DL) model for the classification of subjects with 

Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI) subjects and Healthy Ageing (HA) subjects using resting-state 
scalp EEG signals. 

Approach: The raw EEG data were pre-processed to remove unwanted artefacts and sources of noise. The data were then 
processed with the Continuous Wavelet Transform (CWT), using the Morse mother wavelet, to create time-frequency graphs 
with a wavelet coefficient scale range of 0 to 600. The graphs were combined into tiled topographical maps governed by the 
10-20 system orientation for scalp electrodes. The application of this processing pipeline was used on a data set of resting-state 
EEG samples from age-matched groups of 52 AD subjects (82.3 ± 4.7 years of age), 37 MCI subjects (78.4 ± 5.1 years of age) 
and 52 HA subjects (79.6 ± 6.0 years of age). This resulted in the formation of a data set of 16,197 topographical images. This 
image data set was then split into training, validation and test images and used as input to an AlexNet DL model. This model 
was comprised of 5 hidden convolutional layers and optimised for various parameters such as learning rate, learning rate 
schedule, optimiser, and batch size. 

Main Results: The performance was assessed by a 10-fold cross-validation strategy, which produced an average accuracy 
result of 98.9% ± 0.4% for the three-class classification of AD vs. MCI vs. HA. The results showed minimal overfitting and 
bias between classes, further indicating the strength of the model produced. 

Significance: These results provide significant improvement for this classification task compared to previous studies in this 
field and suggest that DL could contribute to the diagnosis of AD from EEG recordings. 

Keywords: Alzheimer’s Disease, Biomedical Signal Processing, Classification, Deep Learning, Electroencephalogram 
(EEG), Mild Cognitive Impairment (MCI). 
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1. Introduction 
Dementia is a term that describes a collection of diseases 

that affects approximately 50 million people worldwide 
(Prince et al., 2015). It is characterised by a measured 
cognitive decline in two or more domains such as memory, 
language, behaviour and personality, ultimately leaving the 
individual unable to perform simple everyday tasks (Weller & 
Budson, 2018). The global healthcare cost of dementia is 
upwards of $818 billion, which is increasing year by year 
(Prince et al., 2015). Alzheimer’s Disease (AD) contributes to 
approximately 60-80% of the global dementia diagnoses and 
is most prevalent in adults aged 60 and above (Weller & 
Budson, 2018). The biggest risk for AD is age, with a reported 
doubling of the disease prevalence every 6.3 years after the 
age of 60 (Prince et al., 2015). Other factors include health 
risks such as high Body Mass Index (BMI), high fasting 
glucose, smoking and increased intake of sugar-sweetened 
beverages (GBD 2016 Dementia Collaborators, 2019). 

AD is related to neurofibrillary tangles and amyloid 
plaques developing in the cerebral cortex area of the brain, 
especially in the hippocampus (DeTure & Dickson, 2019). An 
intermediary stage between Healthy Ageing (HA), sometimes 
referred to as Healthy Control (HC), and AD has been widely 
recognised as a stage called Mild Cognitive Impairment 
(MCI). It is currently unclear who amongst individuals with 
MCI will develop AD dementia (Kramer et al., 2007). At 
present, the only definitive way to diagnose AD is via post-
mortem examination to find the plaques or tangles within the 
brain (DeTure & Dickson, 2019). However, with the advent of 
novel dementia biomarkers which can be gathered in vivo, a 
new biological definition of AD has been introduced (Jack Jr 
et al., 2016) (Jack Jr et al., 2018). Biomarkers are expensive, 
invasive, little specific, and only available in specialised 
centres (Parra et al., 2019). 

The gold standard, or current state of the art, for diagnosing 
AD uses mental examinations combined with costly and time-
consuming neuroimaging scans such as Magnetic Resonance 
Imaging (MRI) and Positron Emission Tomography (PET) 
(Cassani et al., 2018). These imaging tools aim to highlight 
biomarkers, such as amyloid-β peptides, that indicate the 
formation of plaques within the brain. This method is highly 
dependent on trained doctors that interpret and analyse the 
results to determine the diagnosis. The reported diagnostic 
accuracy of AD by experts alone is only 77% (Sabbagh et al., 
2017). 

Early diagnosis of AD, during the MCI stage, would allow 
healthcare professionals to avoid misdiagnosis, deliver quick 
and more appropriate treatment options, and provide better 
overall disease management. To achieve this, the analysis of 
electroencephalogram (EEG) signals has been suggested by 
researchers to find features and biomarkers that may aid in AD 
diagnosis (Dauwels et al., 2010) (Rossini et al., 2020). 

Conventionally, EEG analysis has been used clinically to 
evaluate different conditions such as epilepsy, sleep disorders 
and strokes (Britton et al., 2016). In addition, these signals 
have also been analysed in research settings using visual and 
statistical methods for the diagnosis of AD. The drawback of 
this is that standalone, EEG analyses have not produced results 
which can compete with standard practices (Craik et al., 
2019). Typically, EEGs are subject to signal processing 
techniques that provide condensed features for classification. 
There are three main features of EEGs that differ between AD 
and HA which are: slowing of the EEG, reduced complexity 
of the EEG and EEG synchrony (Dauwels et al., 2010). 
Examples of signal processing methods for the detection of 
slowing of the EEG include time frequency analysis 
techniques such as Discrete Fourier Transform (DFT), Power 
Spectral Density (PSD) and Continuous Wavelet Transform 
(CWT). Entropy and Lempel-Ziv complexity are examples of 
algorithms used to explore EEG complexity and the Pearson 
Correlation Coefficient and Coherence Function have been 
used to identify perturbations in EEG synchrony (Dauwels et 
al., 2010). The problematic poor performance of EEG analysis 
for AD diagnosis has drawn interest from new developments 
in Artificial Intelligence (AI), with the ability to analyse 
signals with increased complexity and depth. 

Deep Learning (DL) is a subsection of AI that has become 
popular in recent years due to advancements of Graphics 
Processing Units (GPUs) in computing. It aims to mimic the 
learning of the human brain by using complex algorithms to 
obtain features of data that cannot be seen using conventional 
statistical analysis methods. Thus, millions of learnable 
parameters, particularly useful in image classification 
problems, are built to detect perturbation features. These 
algorithms have proven results that exceed human 
performance in classification problems such as ImageNet   
(Dodge & Karam, 2017). Many biomedical engineering 
applications, including EEG analysis, can produce graphical 
image outputs that can be used as inputs to these DL networks. 

It is hypothesised that improved accuracies for the 
diagnosis of AD can be achieved using DL to correctly 
classify the EEG recordings from AD, MCI or HA subjects. 
This study employed a novel signal processing technique to 
convert complex EEG recordings into usable input images for 
a DL network. A pre-trained DL model was optimised for this 
study’s focus, trained using the ground truth values associated 
with each image. It was then cross validated to evaluate the 
reported classification accuracy result. 

The outline of this paper is as follows. Section 2 details the 
related literature and studies in this field. Section 3 describes 
the materials and methods used. Section 4 displays the results 
of the study and Section 5 contains the discussion. Finally, 
section 6 presents the conclusions and further work. 
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2. Related Studies 

This section details seven studies that relate to the research 
topic of improving diagnosis of AD using DL of EEG signals. 
It is split into two sections detailing three-class and two-class 
classification.  

The first reported paper to complete three-class (tertiary) 
classification of AD vs. MCI vs. HA using DL techniques was 
by Morabito et al. (2016). The authors propose a 2-layers deep 
Convolutional Neural Network (CNN) that uses extracted 
features from time-frequency maps as the input to the network. 
The signal processing method used was CWT with the 
Mexican Hat mother wavelet. The reported accuracy was 
relatively low at 82% and used a reasonably small data set 
consisting of 23 AD, 23 MCI and 23 HA subjects. 
A discriminative deep probabilistic model was proposed by Bi 
& Wang (2019) which produced an accuracy result of 95.04% 
for three-class classification of AD, MCI and HA. The 
employed signal processing technique created spectral 
topography maps from raw signals, showing the relative 
power per frequency band across each electrode in one image. 
One shortfall of this paper is that, although a combined 12,000 
images were used across training and validation, the data 
originated from a very small sample size of four subjects per 
class. This could indicate that the results are more susceptible 
to error and less accurate than what is stated within the paper. 

A paper published by Ieracitano et al. (2019) used 2D 
greyscale Power Spectral Density (PSD) images as an input to 
a CNN for the three-class classification of AD, MCI and HA. 
The authors report an accuracy of 83.33% for the CNN, which 
was superior compared to shallow machine learning 
techniques such as SVM, MLP and Linear Discriminant 
Analysis (LDA). This result showed clear accuracy benefits 
for using CNNs within this field; however, the authors 
correctly conclude that without future work, this method 
would not be sufficient alone for clinical diagnosis of AD. In 
addition to the large data set of 63 HA, 63, MCI and 63 AD 
subjects, a clear explanation of the importance of avoiding 
bias by balancing and age-matching the data set was included. 
Despite the large number of subjects, there were only 2,340 
images used within the model due to the sampling size which 
is below the general guidelines of 1,200 images per class 
(Stanford Vision Lab, 2010). 

The most recent published paper by Ieracitano et al. (2020) 
used a “multi-modal machine learning” approach to classify 
EEG recordings in dementia. The authors make use of a novel 
combination of features extracted from Bispectrum analysis 
and CWT time-frequency analysis to classify AD vs. MCI vs. 
HA. The results indicate a maximum of 89.22% accuracy for 
this classification, which is a significant increase in using 
either signal processing method individually. The results 
published are supported with statistical evidence and used the 
largest number of features seen within this field equalling 
207,900. However, the authors do not innovate within 

machine learning, using a simple Multi-Layered Perceptron 
(MLP) as the classifier for this problem. It successfully 
identifies areas of future research, such as linking this work 
with a feasibility study using a novel spiking neural network 
architecture called NeuCube (Capecci et al., 2014). 

Three of the seven papers analysed only reported two-class 
classification which severely reduced the complexity 
requirement of the models proposed. 

Zhao & He (2015) used time-domain EEG signals as the 
input to a Restricted Boltzmann Machine (RBM) network to 
obtain features from the data, which are classified using an 
SVM. The unique feature of this paper is that the authors 
conducted a detailed optimisation experiment on the number 
of hidden layers and number of nodes within each layer for 
this network. They conclude that a low number of layers (L=3) 
and high number of nodes (n=2000) was preferential, resulting 
in a two-class (binary) classification accuracy of 92%. The 
authors reduced computing time by only using 10 out of the 
30 available subjects (15 AD, 15 HA) but showed that the 
sample size was small in comparison to a relatively large 
19,200 input images.  

Kim & Kim (2018) investigated early diagnosis of AD by 
producing a model that detects the difference between MCI 
and HA subjects. The model comprises of a Deep Neural 
Network (DNN) with feature-based inputs relating to the 
Relative Power (RP) of different frequency bands within EEG 
signals. The model’s performance was poor in comparison to 
other papers analysed, with just 75% accuracy over a small 
data set of 10 HA and 10 MCI subjects. In comparison to the 
paper by Zhao & He (2015), the authors also investigate the 
effect of the number of hidden layers within the network but 
report the highest accuracy with the largest number of hidden 
layers tested (L=4). This difference could be explained by 
various factors such as the difference in NN type, data set and 
type of two-class classification. 

Fan et al. (2018) made use of a complexity measure, 
Multiscale Entropy (MSE), to extract features of the EEG 
signals, in numerical form, for the input to a DL Linear 
Regression (LR) model. A calculated 46,470 features were 
used which produced a maximum accuracy result of 82%, low 
compared to the other papers in this section. An interesting 
data set classification was used which compared HA subjects 
to three different severities of AD based on increasing Clinical 
Dementia Rating (CDR) scores (AD1, AD2 and AD3). The 
specificity of each AD diagnosis has advantages and 
disadvantages; it could lead to better diagnosis accuracy 
results but limits the model to this data set as the CDR scale is 
not readily available for many other databases. Although the 
data set was large with 123 subjects, it was also highly 
unbalanced with only 15 HA subjects. The authors were able 
to suggest future improvements including altering the MSE 
method, collecting more data and assessing the interactions 
between electrodes. 
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A summary of the key information presented in each 
discussed paper is detailed in Table 1. 

Cassani et al. (2018) produced a review paper on EEG for 
AD diagnosis and includes recommendations for the future of 
this research area. The author’s recommendations focus on the 
EEG databases, which should be balanced around 
demographics such as age, gender, number of subjects and 
education level as well as being as large as possible. The paper 
also suggests that clearer and more detailed information 
should be provided about the process of machine or deep 
learning. This is apparent after reviewing the above seven 
papers, as they all provide different levels of detail 
surrounding the experimentation and design process and make 
it difficult to reproduce or build upon their results. The 
reviewed papers show the possibility of high accuracy 
classification using a combination of signal processing and 
DL of EEGs, and there are lots of different methods that are 
yet to be explored. 

3. Materials and Methods 

3.1 Model Design 

The overall design of the proposed model within this study 
is outlined in the experimental flow diagram in Figure 1. First, 
the raw EEG signals were pre-processed and split into epochs 
of 5 seconds. Each sample was then subject to signal 
processing and converted into Red, Green and Blue (RGB) 
colour images that were suitable as an input to an optimised 
DL Neural Network (NN). The resulting image data set was 
then randomly split into 10 folds, from which a discrete 
portion of the folds were used in the training, validation, and 
test splits of the DL NN model. The model was then validated 
using k-fold cross validation and assessed using confusion 
metrics. 

 

Table 1: A summary of the previous directly related papers in the field of Deep Learning of EEG signals for the 
diagnosis of Alzheimer’s Disease, showing the database size & age matching, signal processing methods employed, 

machine learning architectures used and final classification results. 
Legend:  AD = Alzheimer’s Disease, CNN = Convolutional Neural Network, CWT = Continuous Wavelet Transform, 
DCssCDBM = Discriminative Contractive Slab and Spike Convolutional Deep Boltzmann Machine, DNN =  Deep 
Neural Network, HA = Healthy Aging, LASSO =  Least Absolute Shrinkage and Selection Operator, MCI = Mild 
Cognitive Impairment, MLP =  Multi-layer Perceptron, MSE = Multiscale Entropy, RBM =  Restricted Boltzmann 

Machine, RGB = Red, Green & Blue, RP =  Relative Power. 

Reference Database Size & 
Age Matching Signal Processing Method Machine Learning 

Architecture Results 

(Ieracitano 
et al., 2020) 

63 HA 
63 MCI 
63 AD 

Balanced 

Features from Mexican Hat CWT & 
Bispectrum Estimation. MLP AD-MCI-HA = 89% 

(Bi & 
Wang, 2019) 

4 HA 
4 MCI 
4 AD 

Balanced 

2D RGB images by combining 
spectral topographical maps 

DCssCDBM 
2 hidden layers AD-MCI-HA = 95% 

(Ieracitano 
et al., 2019) 

63 HA 
63 MCI 
63 AD 

Balanced 

2D greyscale Periodogram images CNN 
1 hidden layer 

AD-MCI-HA = 80% 
MCI-HA = 92% 
AD-HA = 91% 

MCI-AD = 84% 

(Kim & 
Kim, 2018) 

10 NC 
10 MCI 

Age-matched 
Features from RP DNN 

4 hidden layers MCI-HA = 75% 

(Fan et al., 
2018) 

15 HA 
15 AD1 
69 AD2 
24 AD3 

Unknown 

Features from MSE Analysis LASSO Model 

HA-AD1 = 42% 
HA-AD2 = 69% 
HA-AD3 = 79% 

AD1-AD3 = 82% 
AD2-AD3 = 72% 
AD1-AD2 = 71% 

(Morabito 
et al., 2016a) 

23 HA 
23 MCI 
23 AD 

Balanced 

2D RGB images from Mexican Hat 
CWT 

CNN 
2 hidden layers 

AD-MCI-HA = 82% 
MCI-HA = 85% 
AD-HA = 85% 

MCI-AD = 78% 

(Zhao & 
He, 2015) 

15 HA 
15 AD 

Unknown 
Raw Data RBM 

3 hidden layers AD-HA = 92% 
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3.2 Subjects 

This study consisted of 141 subjects originating from the 
Behavioural and Cognitive Neurology Unit of the Department 
of Neurology and the Reference Centre for Cognitive 
Disorders at the Hospital das Clinicas in São Paulo, Brazil 
(henceforth referred to as the ‘Brazil’ study) (Cassani et al., 
2017). The Brazil study diagnosed AD and HA subjects 
according to the National Institute of Neurological Disorders 
and Stroke and Alzheimer’s Disease and Related Disorders 
(NINCDS-ADRA) criteria. Typically, within this study AD 
subjects presented a Mini Mental State Examination (MMSE) 
score of ≤24 and a CDR of 0.5-2, and HA subjects presented 
an MMSE score of ≥25 and a CDR of 0. The AD subjects were 
required to have shown functional and cognitive decline over 
the previous 12 months. The MCI subjects are presented with 
an MMSE score of ≥24 and a CDR of 0-0.5, with objective 
evidence of impairment in one or more cognitive domains but 
retaining independence in functional abilities (Albert et al., 
2011) (Petersen & Knopman, 2006) (Petersen & Negash, 
2008). In addition, all subjects were required to display 
absence of conditions that cause cognitive decline specified as 
diabetes mellitus, kidney disease thyroid disease, alcoholism, 
liver disease, lung disease or vitamin B12 deficiency (Cassani 
et al., 2017).   

The EEG recordings from the Brazil study were collected 
using a resting-awake eyes-closed method using the Braintech 
3.0 EEG device (EMSA Equipa-mentos Médicos Inc., Brazil) 
with a sampling frequency of 200Hz. The electrode 

positioning consisted of 21 electrode, positioned on the scalp 
according to the 10-20 layout system (Fp1, Fp2, Fpz, F3, F4, 
Fz, C3, C4, Cz, P3, P4, Pz, O1, O2, Oz, F7, F8, T3, T4, T5, 
T6), in which each point corresponds to a brain region. A time 
series of 587 seconds (~10 minutes) was captured for each 
subject (excluding 2 AD, 1 MCI and 3 HA subjects which had 
shorter recordings).  

3.3  EEG Pre-processing 

The data were pre-processed by utilising a sequence of 
different methods. They were first filtered using a 1-60Hz 
band-pass, FIR filter with an order of 330 and de-noised using 
Independent Component Analysis (ICA) and notch filters at 
21 and 42 Hz to remove significant oscillatory noise artefacts 
and its harmonic. They were processed further using the 
Multiple Artefact Rejection Algorithm (MARA) (EEGLAB 
plugin for MATLAB®) to automatically classify and remove 
other noise related ICA components. The de-noised data set 
was then split into age-matched groups of 52 AD subjects 
(82.3 ± 4.7 years of age, MMSE score of 21.0 ± 4.8), 37 MCI 
subjects (78.4 ± 5.1 years of age, MMSE score of 25.4 ± 2.7) 
and 52 HA subjects  (79.6 ± 6.0 years of age, MMSE score of 
27.5 ± 1.6). It is noted that 22 AD subjects, 19 MCI subjects 
and 24 HA subjects did not have recorded MMSE scores but 
were still used for this analysis. Misclassification of older HA 
subjects and younger AD subjects can occur when comparing 
subjects of a large age-range due to the natural progressive 
neurological degradation during human ageing. Therefore, it 

 
Figure 1: Experimental Flow Diagram showing a simplified version of the proposed model.  

Image for ‘5. Deep Learning’ taken from (Krizhevsky et al., 2012). The training folds/test folds describe a proportion of 
the data assigned to train or test the model respectively. 
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is important to use data sets with age-matched subject groups 
to ensure reliable results (Dukart et al., 2011). 

The time series was then split into 5 second epochs, 
removing 3.5 seconds from the start and end of the signal to 
account for any discrepancies or noise. Using all the raw data 
available from the 141 subjects over the 21 electrode 
positions, a total of 340,137 samples of 1,000 data points were 
made available for analysis. The number of artefact-free 
epochs for each subject differed, however all available data 
were included to provide as many data as possible for analysis. 

3.4 Signal Processing 

For each sample, the data were processed using the 
Continuous Wavelet Transform (CWT), shown by Equation 
(1).  

 𝑾(𝒂, 𝒃) = 𝒙(𝒕) 𝟏|𝒂|𝝍∗ 𝒕 − 𝒃𝒂 𝒅𝒕 (1) 

 Where: 𝑡 = time; 𝜓 = mother wavelet; 𝑥(𝑡) = 
time domain signal; 𝑎 = range of scales; 𝑏 = 
translations; 𝑊(𝑎, 𝑏) = wavelet coefficients 
(amplitudes of a series of wavelets), * = 
complex conjugate. 

 

 

The CWT function is an analysis method that transforms 
the raw, one-dimensional input signal into the time-frequency 
(often called the time-scale) domain. The transform is 
controlled by a mother wavelet with a zero average which is 
subject to adaptations over a range of scales (a) and time 
translations (b), resulting in the output wavelet coefficients 
(W). The signal is fit to match the wavelet, so it is important 
that an appropriate shaped mother wavelet is chosen for each 
individual application. There is a plethora of families of 
mother wavelet choices such as Haar, Daubechies, Coiflets, 
and Morlet, with the Mexican Hat wavelet proving most 
popular within this specific field as shown in Table 1 (Mallat, 
2009). Despite this, a family of wavelets called the Morse 
wavelets, introduced by Olhede & Walden (2002), was chosen 
for this study (Greco et al., 2003). This mother wavelet is a 
form of analytic wavelet, which are complex-valued wavelets 
designed for the analysis of modulated oscillations that have 

useful information in both magnitude and phase (Lilly & 
Olhede, 2010). Due to this unique feature, the Morse wavelet 
is directly applicable to the complex and non-stationary nature 
of EEG signals.  

3.5 Image Data Set Generation 

The output of the CWT function can be displayed visually 
as a time-frequency map. In this situation, a plot called a 
scalogram is created which plots frequency against time, with 
the energy of the CWT coefficients indicated by the colour of 
the plot.  

When computing the CWT over many EEG samples, it is 
important to determine a standard for the colour bar scale. The 
colours presented on the plot are governed by the scale choice, 
including the maximum and minimum values and the scale 
base (i.e. logarithmic or linear). The scalogram plot, by design, 
plots absolute values of the wavelet coefficients, so a 
minimum value of 0 was chosen. To obtain the maximum 
value on the scale and the type of scale, the maximum value 
of the coefficients for each sample were plotted on a linear 
scale and a logarithmic scale. These plots indicated that a 
logarithmic scale would be more appropriate for this task as 
the data contained a high quantity of low maximum coefficient 
values in contrast to a low quantity of high maximum 
coefficient values, as shown in Figure 2. By rounding the 
highest maximum coefficient to the nearest whole number, a 
maximum scale value of 6x102 was chosen that could 
encompass all the signals. 

The colour map used for the time-scale representation of 
the coefficients was ‘parula’, with the default number of 
unique colours set at 256. This value was kept relatively low 
to reduce image complexity and therefore computational 
expense. A dark blue colour represents an intensity value of 0 
(absolute coefficient value = 0), and a light-yellow colour 
represents an intensity value of 1 (absolute coefficient value = 
6x102), changing colour logarithmically between these values 
(Mathworks, 2020).  

The generated scalogram plots were then saved and 
combined into tiled images based on the 10-20 system. The 
images relating to each electrode in a 5 second epoch were 

 
Figure 2: A line graph of the maximum absolute coefficient value on a logarithmic scale against sample number (n=340,137). 
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combined using the orientation in Figure 3 to produce 
topographical images based on the 10-20 system.  

The resulting image data set consisted of 16,197 images, of 
which there were 6,020 AD, 2,389 MCI and 2,888 HA images. 

 
- Fp1 Fpz Fp2 - 
F7 F3 Fz F4 F8 

T3 C3 Cz C4 T4 

T5 P3 Pz P4 T6 

- O1 Oz O2 - 

Figure 3: A 5x5 tiled image created from individual 
electrode position images. 

3.6 Deep Learning Model 

The DL model used was a modified AlexNet architecture 
that was optimised for three-class classification, shown in 
Figure 4. AlexNet, is a deep Convolutional Neural Network 
(CNN) that consists of eight main layers, five of which are 
convolutional layers and the remaining three as fully 
connected layers (Krizhevsky et al., 2012).  

The architecture had to be altered by reducing the weights 
on the final fully connected layer from the standard 1,000 
classes to 3. A variety of parameters and hyperparameters 
were optimised throughout the training of this model and were 
altered one-by-one over a range of values to provide a model 
which produced the best output accuracy performance. 

3.6.1 Deep Learning Parameters 
This section will detail the DL parameter and 

hyperparameter choices that were optimised to tune the model. 
The tuned model provided the best results in terms of 
accuracy, loss and generalisation performance. These were 
manually adjusted and tested sequentially to obtain the final 
model. The order of optimisation was chosen by starting with 
the most impactful parameters first and ending with fine 
tuning parameters, relating to the performance determined by 
the final classification accuracy. 

The optimiser choice was tuned first, comparing three 
common optimisers: Stochastic Gradient Descent (SGD), 
Moving Average of Squared Gradients (RMSProp) and 
Adaptive Moment Estimation (ADAM). Optimiser choice is 
important as it is used to update the weights of the model 
during training. SDG is a gradient descent method whereas 
RMSProp and ADAM are both adaptive techniques. In short, 
RMSProp is an extension of SGD and ADAM is a further 
extension of RMSProp (Ruder, 2017). As expected, the 
ADAM optimiser produced the best accuracy performance 
(Kingma & Ba, 2015). 

The learning rate is one of the most impactful parameters 
as it describes how often the weights of the model are updated 
and is therefore important to be paired with the optimiser. Four 

learning rates were tested, 1x10-3, 1x10-4, 5x10-5 and 1x10-5, 
with a learning rate of 1x10-4 producing the best accuracy 
performance. 

The learning rate can either be kept constant or reduced 
over time with a policy. This policy can allow greater control 
over the weights at the later stages of training for fine tuning 
and avoidance of overfitting. The reduction is split into the 
Period and the Factor. The period describes the rate of change 
and the factor describes the magnitude of the reduction. 
During this step, Factors of 1/2, 1/3 and 1/5 were combined 
with Periods of 10 and 5 epochs and were compared against a 
stationary learning rate with no policy. This resulted in a 
chosen policy of Factor = 1/3 and Period = 10 epochs. 

 The batch size describes how many sample images are 
used in each iteration of the training. Smaller batch sizes result 
in noisy updates and are computationally expensive but they 
offer a good regularising effect. In contract, larger batch sizes 
decrease processing time but may have poorer generalisation 
to unseen data. Batch sizes of 50, 100 and 150 were chosen as 
an initial starting point, moving on to batch sizes of 16, 32, 64 
and 128 due to MATLAB’s computational efficiency when 
working with powers of 2. Although a smaller batch size 
produced superior accuracy results, a batch size of 64 was 
used as it produced results that had a good compromise 
between the advantages of both small and large batch sizes, 
running each fold in approximately 30 minutes using a GTX 
1050Ti GPU.  

Validation patience is a method of early stopping and is 
governed by the number epochs used to train the model. 
Patience is beneficial as it reduces the chance of overfitting 
and gives the model enough time to generalise. It does this by 
stopping the model a certain number of epochs after it has 
reached its lowest validation loss. The validation patience of 
10 allowed the model to reach its minimum validation loss 
whilst avoiding overfitting. One epoch is comprised of using 
each sample in the whole data set once.  

Weight Learn Rate Factor (WLRF) and Bias Lean Rate 
Factor (BLRF) were the last parameters that were optimised 
and relate directly to the final fully connected layers of the 
network. They determine the relationship between the weight 
and bias learning rates and the global learning rate, used to 
fine-tune the result. Values of 10, 20, 30 and 40 for both 
WLRF and BLRF were tested which varied the final accuracy 
by ~0.1%. From this, values of 20 for both WLRF and BLRF 
was chosen as it produced the best combined validation 
accuracy result. 

A summary of each parameter, its value and the 
justification for the choice can be seen in Table 2. 

3.7 Reporting Metrics 
To assess the performance of the proposed model, 

Confusion Matrices and Receiver Operating Characteristic 
(ROC) curves were generated, in addition to the calculation of 
four different confusion metrics (Hossin & Sulaiman, 2015). 
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Confusion matrices show the relationship between the 
predicted classes of each image in the test data set (Predicted 
Output) in relation to the true class (ground truth) of each 
image in the test data set (True Output), given by the 
predefined label. In general terms, the results along the 
diagonal show correct predictions and off-diagonal values 
show the incorrect predictions. Within this, there are four bins 
each prediction can belong to: 
 True Positive (TP) – Predicting the sample as positive 

when it is actually positive (i.e. AD classified as AD). 
 True Negative (TN) – Predicting the sample as 

negative when it is actually (i.e. MCI classified as MCI 
and HA classified as HA). 

 False Positive (FP) – Predicting the sample as positive 
when it is actually negative (i.e. MCI/HA classified as 
AD). Also known as a Type I error. 

 False Negative (FN) – Predicting the same as negative 
when it is actually positive (i.e. AD classified as 
MCI/HA). Also known as a Type II error. 
 

These definitions relate directly to the calculation of the per 
class accuracies shown in Equation (2). 
 

 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝑻𝑷 + 𝑻𝑵𝑻𝑷 + 𝑭𝑷 + 𝑭𝑵 + 𝑻𝑵 (2) 

 Where: 𝑇𝑃 = True Positive; 𝑇𝑁 = True 
Negative; 𝐹𝑃 = False Positive; 𝐹𝑁 = False 
Negative 

 

3.8 Model Validation 

The proposed model was validated using k-fold cross-
validation (k=10) using the 10 splits of the image data set. This 
method is a statistically based evaluation method which is 
applied to a DL model with a limited data set to show its 
expected performance on new data. The data set is shuffled 
and split into folds randomly, reducing the chance of the order 
of the data affecting the model results. 

For each fold, 8/10 folds were used for training, 1/10 fold 
was used for validation and 1/10 fold was used for testing. 
Using the results from them 10 folds, and average (mean) and 
standard deviation (std) of the reporting metrics were 
calculated. 

4. Results 

For each subject in the database, the EEG signals were split 
into sample epochs of 5 seconds for each electrode. For each 
sample, time-frequency maps were created using the CWT for 
each electrode (number of images produced from data analysis 
= 340,137), then the electrode images were combined using 
the 10-20 system to create one image per epoch (number of 
images = 16,197). The images, an example of which is shown 
in Figure 5, were randomly split into 10 folds, comprising of 
8/10 folds training data, 1/10 fold validation data and 1/10 fold 
test data, ensuring that there was the correct proportion of 
classes within each split. These were then fed into an 
optimised AlexNet DL model to predict the classes associated 
with each image. The model was split into 10 folds and 
assessed using k-fold cross validation for robustness, 
producing results in approximately 30 minutes per test.  

 

 
Figure 5: An example output image, showing a 5x5 tiled 

image of CWT scalograms as detailed in Figure 3. 

 
Figure 4: A schematic of the AlexNet deep learning architecture, showing the tensor size as cuboids, kernel size as dashed 

pyramids and informative descriptions of areas with max pooling and stride lengths, culminating in an example binary 
classifier (Krizhevsky et al., 2012). 
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The results of the 10 fold cross validation tests are shown 
in Table 3 and present an overall test accuracy of 98.9 ± 0.4%. 
The confusion matrices of fold 1-10 are shown in Figure 6a-j 
respectively. To show additional information about the model, 
the validation loss and accuracy values were used as a 
comparrison to the test accuracy. The average validation loss 
value, 0.07 ± 0.02,  is very low, which showed that the model 
was fit to the data well. Across the folds, the average 
validation accuracy was 98.8 ± 0.3% which is similar to the 
overall average test accuracy, indicating that the model has 
been trained appropriately to stop over or underfitting. 
In relation to class specific classification, there was an 
accuracy for HA of 99.3% ± 0.06%, MCI of 98.3% ± 0.06% 
and AD of 98.8% ± 0.05%. This shows a very small bias 
towards the HA and AD classes, indicative of the bias within 
the original data set. The overall range of 1.0% shows that this 
bias is minimal, and the skewed data set has been accounted 
for in the model. 

The low standard deviation values across all the accuracy 
values also shows robustness and consistency between the ten 
validation tests. 

5. Discussion 

This paper has presented a classification method with an 
overall 3-class classification accuracy for AD vs. MCI vs. HA 
of 98.9% ± 0.04%. The resulting classification accuracy 
showed minimal bias between class predictions over a large 
database of 52 AD, 37 MCI and 52 HA subjects. The proposed 
method extracted artefact free, 5-second-long EEG signals 
and analysed them using the CWT signal processing method 
with a Morse mother wavelet. Image maps created from the 
output scalogram graphs were then used as the input to an 

optimised DL model based on the AlexNet architecture for 3-
class classification. The model was assessed using a 10-fold 
cross validation method, presenting results that improved 
upon current reviewed literature within the proposed field.  

During the development of this model, alternative signal 
processing techniques and pretrained DL models were 
researched and tested. Networks such as ‘ResNet-18’ and 
‘GoogLeNet’ were investigated and compared to ‘AlexNet’ 
leading to surprising results. ResNet-18 has 18 convolutional 
layers and makes use of residual learning every 2 
convolutional layers to skip over layers of the network if 
required. These address the vanishing gradient problems 
which occurs when adding a large number of layers to a 
network (He et al., 2015). GoogLeNet is even larger, with 22 
convolutional layers. GoogLeNet introduced a unique model 
that uses inception modules to reduce the depth of the model 
by collating convolutional resulting using parallel layers of 
1x1, 3x3 and 5x5 kernel filters. This resulted in a model that 
has 12-time fewer parameters than AlexNet, which has 
5,000,000. It also contains two auxiliary classifiers that offer 
a regularising effect on the network (Szegedy et al., 2014). 
Despite the increased complexity of both GoogLeNet and 
ResNet-18 compared to AlexNet, they produced models that 
took longer to train and had worse accuracy results. This is 
suggested to be due to more overfitting present due to higher 
divergence in training and validation loss plots. 

Alternative signal processing methods could have been 
used in this method such as Short-Term Fourier Transform 
(STFT). The output spectrogram from STFT analysis is very 
similar to the scalogram from CWT analysis, with the main 
difference being the resulting frequency and time resolutions. 
STFT uses a fixed window size resulting in time-frequency 

Table 2: A summary of the optimised parameters, detailing the parameter name, chosen value and justification of the 
choice. 

Parameter Value Description 

Architecture AlexNet Shallowest investigated network but produced the fastest and most accurate 
results. 

Optimiser ADAM Proven in experiment and literature to be a high performing optimiser for 
image classification learning. 

Weight Learn Rate Factor 20 Optimised to provide the highest accuracy values. 

Bias Learn Rate Factor 20 Optimised to provide the highest accuracy values. 

Mini Batch Size 64 Maintains a good relationship between the usage of GPU memory and 
model fine detail. 

Validation Frequency 177 Provides a validation point at the end of every epoch. 

Validation Patience 10 Provides enough time for the validation accuracy results to stabilise. 

Initial Learning Rate 1e-4 Set to allow for a learning rate curve that asymptotes to zero roughly 
following a smooth curved trajectory. 

Learn Rate Schedule Piecewise Allows the learning rate to be altered as the model progresses. 

Learn Rate Drop Period 10 Reduces learning rate by 1/3 every 10 epochs which were optimised for this 
application to avoid overfitting. Learn Rate Drop Factor 0.33 
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graphs with uniform time and frequency resolutions. A trade-
off between the frequency and time resolutions must be made 
when choosing the fixed window size for STFT, which is not 
required for CWT. CWT uses variable, scaled window sizes 
to create graphs with non-uniform time and frequency 
resolutions.  The non-uniform resolutions allow lower 
frequency trends in the data to be seen at longer time intervals 
and higher frequency trends to be seen at shorter time 
intervals. Due to the non-stationary nature and varied 
frequency range of EEG signals, CWT was chosen as the most 
appropriate signal processing method. 

In comparison to the literature reviewed in Section 2, the 
results improve on the accuracy of HA vs. MCI vs. AD 
presented by the most recent study from Ieracitano et al. 
(2020), who produced a combined bispectrum and CWT 
feature model, with a maximum average accuracy of 89%. 
Their paper uses more subjects (n=189) in comparison to the 
subjects in this study’s database (n=141) and is balanced 
between classes which means the data are better suited for DL 
applications. The results are also calculated over a range of 10 
tests which gives reliability to their results. The results also 
improve on the maximum accuracy found in literature, from 
Bi & Wang (2019) at 95% accuracy of HA vs. MCI vs. HA 
using an alternative method and dataset. The input to their 
bespoke machine learning model uses a unique combination 
of spectral topography maps to produce this result, however, 
lacks depth as the subject pool is very small (n=16) in 
comparison to our data set. Both papers included a statistical 
analysis of the results, such as ROC curves and confusion 
matrices, further allowing direct discussions and comparison 
between the papers. 

The other papers in Section 2 by Kim & Kim (2018), Fan 
et al. (2018) and Zhao & He (2015) are all binary classifiers. 
As this research study produced three-class classification of 
AD vs. MCI vs. HA, it has a clear impact advantage. The 
signal processing methods of RP from Kim & Kim (2018) and 
MSE from Fan et al. (2018) are less computationally complex 
compared to CWT. Conversely, their respective DNN and 
LASSO classification models were more complex than the 

proposed CNN in this study. All three papers also use 
databases that are much smaller compared to the database used 
in this study, despite this still produce lower accuracy results.  

Despite the promising results presented, our study has 
limitations. The recording of scalp EEG signals was 
conducted in a controlled environment, requiring clinical 
space and trained professionals which can be time consuming 
and expensive. Bias is an important topic in medical AI and 
DL and should be reduced as much as possible. By removing 
human interaction in the signal processing and classification 
stages, this study has attempted to avoid bias; however, there 
were still areas for improvement. The database required initial 
input of labels for this supervised learning method, which 
means that there was a possibility of errors within the 
diagnosis via the standard clinical criteria explained in Section 
3.2 (Batum et al., 2015). The educational level of the subjects, 
which is a known contributor to AD, has not been assessed in 
the data pre-processing. The similarities and differences 
between the 5 second epochs within the 10-minute samples 
have also not been assessed, which could affect the results.  
Furthermore, it is unrealistic to compare these results directly 
to the in vivo diagnostic accuracy of AD (77%) as the results 
within this report rely on pre-defined labels using gold 
standard techniques. To be used in a clinical setting, this 
method would need to be validated using additional data, 
ideally progressing onto a model that produces significant 
results regardless of the patient’s demographical information 
such as age, location, and educational history. 

6. Conclusions 
In this study, a signal processing method combined with an 

optimised DL model has been developed that presents 
accuracy results of 98.9%, currently higher than any results 
presented in literature within this field. 

Other methods were tested and discussed, including 
spectrogram time-frequency images, alternative DL 
architectures GoogLeNet and ResNet-18 and a variety of 
different hyperparameter values. These different strategies did  

Table 3: Model performance of each fold, detailing each class accuracy and the overall accuracy, including the mean and 
standard deviation of each category, shown to 1 decimal place. 

Fold AD Class Accuracy (%) MCI Class Accuracy (%) HA Class Accuracy (%) Overall Accuracy (%) 
1 99.5 97.7 98.5 98.6 
2 99.0 97.9 99.3 98.8 
3 99.2 98.1 98.3 98.6 
4 99.8 98.1 99.0 99.1 
5 99.0 97.2 97.5 98.0 
6 99.3 98.6 99.0 99.0 
7 99.7 99.1 99.0 99.3 
8 99.5 99.1 99.3 99.3 
9 98.5 98.1 99.2 98.6 
10 99.3 99.1 99.2 99.2 
Mean 99.3 98.3 98.8 98.9 
Std 00.4 00.6 00.5 00.4 
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(a) Fold 1 Confusion Matrix 

 
(b) Fold 2 Confusion Matrix 

 
(c) Fold 3 Confusion Matrix 

 
(d) Fold 4 Confusion Matrix 

 
(e) Fold 5 Confusion Matrix 

 
(f) Fold 6 Confusion Matrix 

 
(g) Fold 7 Confusion Matrix 

 
(h) Fold 8 Confusion Matrix 

 
(i) Fold 9 Confusion Matrix 

 

 
(j) Fold 10 Confusion Matrix 

 

Figure 6: (a-j) Confusion matrices showing the model predictions (Output Class) against the ground truth (Target Class) 
from Folds 1-10 respectively, relating to Table 3. 
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not produce superior accuracy results but provided a useful 
comparison to the final model.  

This study has shown some very promising results but 
further work is required to progress this research, with the end 
goal to produce a clinically accurate tool that could be used to 
aid healthcare professionals in providing better diagnosis for 
elderly patients with symptoms that are typical of MCI or AD. 
Recommendations for future work could encompass the 
following:  
 Test this model as a 2-class problem by comparing the 

AD vs. MCI accuracies against the MCI vs. HA 
accuracies. This leads to a hypothesis that a lower 
number of classification categories would result in 
improved accuracies.  

 Explore alternative ways to create RGB images from 
EEG signals, possibly by combining other signal 
processing methods quantifying changes in these 
signals related to AD. 

 Explore additional pre-trained networks or bespoke 
DL architectures. 

 Use the model on other databases (out of sample data) 
to further understand its reliability and accuracy. 

 Test the use of automatic hyperparameter selection 
using methods such as Bayesian optimisation. 

 Create an ‘International Standard’ data set for training 
and testing similar systems for the diagnosis of AD. 

 
The findings presented in this study have significantly 

added to the continued knowledge surrounding DL of EEG 
signals for AD diagnosis. The increased accuracy results show 
promising outcomes for future applications of DL to the 
classification and diagnosis of AD. This could eventually help 
combat the resource-intensive and human dependant methods 
that are currently used, ultimately providing a quantitative 
probability value for the diagnosis of a patient. 
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