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Abstract. The performance of a detector depends much on its training
dataset and drops significantly when the detector is applied to a new
scene due to the large variations between the source training dataset
and the target scene. In order to bridge this appearance gap, we pro-
pose a deep model to automatically learn scene-specific features and
visual patterns in static video surveillance without any manual labels
from the target scene. It jointly learns a scene-specific classifier and the
distribution of the target samples. Both tasks share multi-scale feature
representations with both discriminative and representative power. We
also propose a cluster layer in the deep model that utilizes the scene-
specific visual patterns for pedestrian detection. Our specifically designed
objective function not only incorporates the confidence scores of target
training samples but also automatically weights the importance of source
training samples by fitting the marginal distributions of target samples.
It significantly improves the detection rates at 1 FPPI by 10% compared
with the state-of-the-art domain adaptation methods on MIT Traffic
Dataset and CUHK Square Dataset.

1 Introduction

Pedestrian detection is a challenging task of great interest in computer vision.
Significant progress has been achieved in recent years [8]. However, the per-
formance of detectors depends much on the training dataset. For example, the
performance of pedestrian detectors trained on the mostly used INRIA pedes-
trian dataset [5] drops significantly when they are tested on the MIT Traffic
dataset [33]. Fig. 1 shows that the appearance differences between the samples
from the two datasets are so large that it is difficult for a detector trained on
one dataset to get a satisfactory performance when being applied to the other.
Manually labeling examples in all specific scenes is impractical especially when
considering the huge number of cameras used nowadays. On the other hand,
for applications like video surveillance, the appearance variation of a scene cap-
tured by a camera is most likely to be small. Therefore, it is practical to train
a scene-specific detector by transferring knowledge from a generic dataset in or-
der to improve the detection performance on a specific scene. Much effort has
been made to develop scene-specific detectors, whose training process is aided
by generic detectors for automatically collecting training samples from target
scenes without manually labeling them [33,34,23,32,1,30].
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Fig. 1. (a): Image from INRIA dataset. (b): Image from MIT Traffic dataset. (c):
Positive samples in INRIA. (d): Negatives in INRIA. (e)-(h): Detection results of a
generic detector (HOG-SVM [5] trained on INRIA) on MIT Traffic. (e): True positives.
(f): True negatives. (g): False negatives. (f): False positives. Best viewed in color.

Learning scene-specific detectors can be considered as a domain adaptation
problem. It involves two distinct types of data: xs from the source dataset and
xt from the target scene, with very different distributions ps(xs) and pt(xt).
The source dataset contains a large amount of labeled data while the target
scene contains no or a small amount of labeled training data. The objective is
to adapt the classifier trained on the source dataset to the target scene, i.e.
estimating the label yt from xt using a function yt = f(xt). As an important
preprocessing, we can extract features from xt and have yt = f(φ(xt)), where
φ(xt) is the extracted features like HOG or SIFT. We also expect that the
marginal distribution ps(φ(xs)) is very different from pt(φ(xt)). Our motivation
of developing deep models for scene-specific detection is three-folds.

First, instead of only adaptively adjusting the weights of generic hand-crafted
features as existing domain adaptation methods [33,34,23,32], it is desirable to
automatically learn scene-specific features to best capture the discriminative
information of a target scene. This can be well achieved with deep learning.

Second, it is important to learn pt(φ(xt)), which is challenging when the
dimensionality of φ(xt) is high, while deep models can learn pt(φ(xt)) well in
a hierarchical and unsupervised way [16]. 1) In the case that the number of
labeled target training samples is small, it is beneficial to jointly learn the feature
representations for both pt(φ(xt)) and f(φ(xt)) to avoid overfitting of f(φ(xt))
since regulation is added by pt(φ(xt)). 2) pt(φ(xt)) also helps to evaluate the
importance of a source sample in learning the scene-specific classifier. Some
source samples, e.g. the blue sky in Fig. 1(d), do not appear in the target scene
and may mislead the training. Their influence should be reduced.

Third, a target scene has scene-specific visual patterns across true and false
detections, which repeatedly appear. For example, the true positives in Fig. 1 (e)
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and false negatives in Fig. 1 (g) have similar patterns because pedestrians in a
specific scene share similarity in viewpoints, moving modes, poses, backgrounds
and pedestrian sizes when they walk on the same zebra crossing or wait for the
traffic light at nearby locations. Similarly for the samples in Fig. 1 (f) and Fig.
1 (h). Therefore, it is desirable to specifically learn to capture these patterns.

These observations motivate us in developing a unified deep model that learns
scene-specific visual features, the distribution of the visual features and repeated
visual patterns. Our contributions are summarized below.

– Multi-scale scene-specific features are learned by the deep model.
– The deep model accomplishes both tasks of classification and reconstruction,

which share feature representations with both discriminative and represen-
tative power. Since the target training samples are automatically selected
and labeled with context cues, the objective function on classification en-
codes the confidence scores of target training samples, so that the learned
deep model is robust to labeling mistakes on target training samples. In the
meanwhile, an auto-encoder [16] reconstructs target training samples and
models the distribution of samples in the target scene.

– With our specifically designed objective function, the influence of a training
sample on learning the classifier is weighted by its probability of appearing
in the target data.

– A new cluster layer is proposed in the deep model to capture the scene-
specific patterns. The distribution of a sample over these patterns is used as
additional features for detection.

Our innovation comes from the sights on vision problems and we well incorporate
them into deep models. Compared with the state-of-the-art domain adaptation
result [34], our deep learning approach has significantly improved the detection
rates by 10% at 1 FPPI (False Positive Per Image) on two public datasets.

2 Related Work

Many generic human detection approaches learn features, clustered appearance
mixtures, deformation and visibility using deep models [31,26,39,21,25] or part
based models [9,38,24,27]. They assume that the distribution of source samples is
similar to that of target samples. Our contributions aim at tackling the domain
adaptation problem, where the distributions of data in the two domains vary
significantly and the labeled target training samples are few or contain errors.

Many domain adaptation approaches learn features shared by source domain
and target domain [14,12]. They project hand-crafted features into subspaces
or manifolds, instead of learning features from raw data. Some deep models
are investigated in the Unsupervised and Transfer Learning Challenge [15] and
the Challenge on Learning Hierarchical Models [19]. And transfer learning using
deep models has been proved to be effective in these challenges [22,13], in animal
and vehicle recognition [13], and in sentiment analysis [11,3]. We are inspired by
these works. However, they focus on unsupervised learning of features shared in
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different domains and use the same structures and objective functions as existing
deep models for general learning. We have innovation in both aspects.

A group of works on scene-specific detection [23,29,35,33,34] construct auto-
labelers for automatically obtaining confident samples from the target scene
to retrain the generic detector. Wang et al. [34] explore a rich set of context
cues to obtain reliable target-scene samples, predict their labels and confidence
scores. Their training of classifiers incorporates confidence scores and is robust
to labeling errors. Our approach is in this group. The confident samples obtained
by these approaches can be used as the input of our approach in learning the
deep model. Another group of works [36,20] are under the co-training framework
[2], in which two different classifiers on two different sets of features are trained
simultaneously for the same task. An experimental comparison in [34] shows
that it is easy for co-training to drift when training pedestrian detectors and its
performance is much lower than the adaptive detector proposed in [34].

Samples in the source and target datasets are re-weighted differently using
SVM [35,33,34] and Boosting [4,28]. However, these approaches are heuristic but
do not learn the distribution of target data. Our approach learns the distribution
of target samples with a deep model and uses it for re-weighting samples.

3 The Proposed Deep Model at the Testing Stage

Our full model employed at the training stage is show in Fig. 3 and Fig. 4. It
accomplishes both classification and reconstruction tasks, and takes input from
source and target training samples. However, at the testing stage, we only keep
the parts for classification and take target samples as input. An overview of the
proposed deep model for pedestrian detection in the target scene is shown in Fig.
2. This deep model contains three convolutional neural network (CNN) layers
[18], three fully connected layers, the proposed cluster layer and the classification
label y on whether a window contains a pedestrian or not.

The three CNN layers contain three convolutional sub-layers and three average
pooling sub-layers:
– The convolutional sub-layer convolves its input data with the learned filters

and then the nonlinearity function | tanh(x)| is used for each filter response.
The output is the filtered data map.

– Feature maps are obtained by average pooling of the filtered data maps.
– The next convolutional layer treats feature maps as the input data and this

procedure repeats for three times.
Details for convolutional sub-layers and average pooling sub-layers are as follows:
– The first convolutional sub-layer has 64 9×9×3 filters, the second has 20

2×2×64 filters and the last has 12 4×4×20 filters.
– The average pooling sub-layer down-samples the filtered data map by sub-

sampling step K ×K using K ×K boxcar filters. K = 4 in the first pooling
sub-layer, K = 2 in the second and the third sub-layer.

The fully connected layers have 2888 hidden nodes at the first layer, 2400 nodes
at the second layer, and 800 nodes at the third layer. The parameters of the
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Fig. 2. Our deep model at the testing stage. There are three CNN layers, where each
layer contains one convolutional sub-layer and one pooling sub-layer. The input data
has three channels and is convolved with 64 9×9×3 filters, then averagely pooled within
the 4×4 region to output the second layer. Similarly for the second layer and the third
layer. The feature f is composed of the output from both the second layer and the third
layer. Then the features are transferred to the fully connected layers and the cluster
layer for estimating the class label y. Best viewed in color.

CNN structure are chosen by using the INRIA test set as the validation set.
Details about the cluster layer is given in Section 4.5.

3.1 Input Data and Feature Preparation

We follow the approach in [26] for preparing the input data in Fig. 2. The
only difference is the image size. The size of the input image is 152×76 in our
implementation to have higher resolution images.

The output of all the CNN layers can be considered as features with different
resolutions [31]. We concatenate the output of the second layer and the third
layer in the CNN to form our features in order to use the information at different
resolutions. The second layer has 20 maps of size 17×8, the third layer has 12
maps of size 7×2. Thus we obtain 2888-dimensional features, which is the f in
Fig. 2. In this way, information at different resolutions are kept.

4 Training the Deep Model

4.1 Multi-stage Learning of the Deep Model

The overview of the stages in learning the deep model is shown in Fig. 3. It
consists of the following steps:
– (1) Obtaining Confident Target Training Samples. Confident positive

and negative training samples can be collected from the target scene using
any existing approach. The method in [34] is used in our experiment. It starts
with a generic detector trained on the source training set (INRIA dataset)
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Fig. 3. Overview of our deep model. Confident samples are obtained from the target
scene. Then features and their distributions in the target scene are learned. Scene-
specific patterns are clustered and used for classification. Auto-encoder is used for
reconstructing features and reweighting samples. The objective function is a combi-
nation of reconstruction error, visual pattern estimation error, and classification error
weighted by reconstruction error and confidence score. Classification error, reconstruc-
tion error and visual pattern error are the first, second and third terms for the proposed
objective function in (7) used for training the model in Fig. 4. Best viewed in color.

and automatically labels training samples from the target scene with addi-
tional context cues, such as motions, path models, and pedestrian sizes. Since
automatic labeling contains errors, a score indicating the confidence on the
predicated label is associated with each target training sample. Both target
and source training samples are used to re-train the scene-specific detector.

– (2) Feature Learning. With target and source training samples, three CNN
layers in Fig. 2 are used for learning discriminative features for the pedestrian
detection task.

– (3) Distribution Modeling. The distribution of features in the target scene
is learned with the deep belief net [16] using the target samples only.

– (4) Scene-Specific Pattern Learning. A cluster layer in our deep model
is learned for capturing the scene-specific visual patterns.

– (5) Joint Learning of Classification and Reconstruction. Since target
training samples are error prone, source samples are used to improve training.
The target training samples have their classification estimation error weighted
by their confidence scores in the objective function, in order to be robust to
labeling mistakes. In addition to learning the discriminative information for
the scene-specific classifier, an auto-encoder is included so that the deep model
can learn the representative information in reconstructing the features. With
a new objective function, the reconstruction error is used for reweighting the
training samples. Samples better fitting the distribution of the target scene
have smaller reconstruction errors and have larger influence on the objective
function. At this stage, the parameters pre-trained in stage (2)-(4) are also
jointly optimized with backpropagation.
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Fig. 4. Architecture of our proposed deep model at the training stage. Features f are
extracted from the image data using three layers of CNN. In this figure, there are
one input feature layer f , two hidden layers h1, h2, one cluster layer c̃, one estimated
classification label ỹ, one reconstruction hidden layer h̃1, and one reconstructed feature
layer f̃ . They are computed using Equations (1)- (6). Best viewed in color.

4.2 The Deep Model at the Training Stage

The architecture our deep model is shown in Fig. 4. The model for forward
propagation is as follows:

h1 = σ(WT
1 f + b1), (1)

h2 = σ(WT
2 h1 + b2), (2)

c̃ = softmax(WT
4 h2 + b4), (3)

ỹ = σ(wT
3 h2 +wT

5 c̃+ b5), (4)

h̃1 = σ(W̃T
2 h2 + b̃2), (5)

f̃ = σ(W̃T
1 hi + b̃1), (6)

where σ(a) = 1/[1 + exp(−a)] is the activation function.

– f is the feature obtained from CNN.

– hi for i = 1, . . . , L denotes the vector containing hidden nodes in the ith hid-
den layer of the deep belief net used for capturing the shared representation
of the target scene. As shown in Fig. 4, we use L = 2 hidden layers.

– c̃ is the vector representing the cluster layer to be introduced in Section 4.5.
Each node in this layer represents a scene-specific visual pattern.

– ỹ is the estimated classification label on whether a window contains a pedes-
trian or not.

– h̃1 is the hidden vector for reconstruction, with the same dimension as h1.

– f̃ is the reconstructed feature vector for f .

– W∗, w∗, b∗, W̃∗, and b̃∗ are the parameters to be learned.
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The dimensionality of h2 is lower than that of f . From f to h1 to h2, the
features f are represented by low dimensional hidden nodes in h2. h2 is shared
on the following two paths.

– The first path, from h2 to c̃ to ỹ, is used for estimating the classification
label. This path is exactly the same as the model at the testing stage in Fig.
2. h2 is used for classification on this path.

– The second path, from the features f , hidden nodes h1, h2, h̃1 to recon-
structed features f̃ , is the auto-encoder used for reconstructing the features
f . This path is only used at the learning stage. f is reconstructed from the
low dimensional nonlinear representation h2 on this path.

Denote the nth training sample with extracted feature fn and label yn as
{fn, yn, sn, vn} for n = 1, . . . , N , where vn = 1 if fn is from the target data and
vn = 0 if fn is from the source data, sn is the confidence score obtained by
the existing approach [34] in our experiment. With the source samples and the
target samples, the objective function for back-propagation (BP) learning of the
deep model in Fig. 4 is as follows:

L =
∑

n

e−λ1L
r(fn,f̃n)Lc(yn, ỹn, sn) + λ2vnL

r(fn, f̃n) + vnL
p
n, (7)

where Lr(fn, f̃n) = ||fn − f̃n||
2, (8)

Lc(yn, ỹn, sn) = snL
E(yn, ỹn), (9)

LE(yn, ỹn) = −yn log ỹn − (1− yn) log(1− ỹn). (10)

– Lr(fn, f̃n) is the error of the auto-encoder in reconstructing fn.
– LE(yn, ỹn) is the error in estimating the classification label yn, which is

implemented by the cross-entropy loss.
– Lc(yn, ỹn, sn) is the reweighted classification error. For the source sample,

sn = 1 and LE is directly used. For the target sample, the confidence score
sn ∈ [0 1] is used for reweighting the classification estimation error LE so
that the classifier is robust to the labeling mistake of the confident samples.

– Lp
n is the error in estimating the visual pattern membership of the target

data, which is detailed in Section 4.5.
– λ1 = 0.00025, λ2 = 0.1 in all our experiments.

4.3 Motivation of the Objective Function

The Objective Function for Confident Target Samples. The objective
function have three requirements for target samples:
– h2 should be representative so that the reconstruction error on target samples

of the auto-encoder is small.
– h2 should be discriminative so that the class label estimation error is small.
– h2 should be able to recognize the scene-specific visual patterns.
Therefore, h2 should be a compact, nonlinear representation of the representative
and discriminative information in the target scene.
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The Objective Function for Source Samples. Denote the source sample by
{fs, ys, vs}. Since vs = 0 in (7), the source sample does not influence the learning
of the auto-encoder and the cluster layer. Denote the probability of fs appearing
in the target scene by pt(fs).
– If pt(fs) is very low, this sample may not appear in the scene and may mislead

the training procedure. Thus the influence of fs on learning the scene-specific
classifier should be reduced. The objective function in (7) fits this goal. In our
model, the auto-encoder is used for learning the distribution of the target data.
If the auto-encoder produces high reconstruction error for a source sample,
this sample does not fit the representation of the target data and pt(fs) should

be low. In the extreme case, Lr(fs, f̃s) → ∞ and e−aLr(fs,f̃s) → 0 in (7). Thus
the weighted classification loss is 0 and this sample has no influence on learning
the scene-specific classifier.

– If pt(fs) is high, it should be used. In this case, the sample can be well repre-
sented by the auto-encoder and has low reconstruction error. In our objective

function, e−aLr(fs,f̃s) ≈ 1 and the classification error Lc of this sample influ-
ences the scene-specific classifier.

In this way, the source samples are weighted by how they fit the low dimensional
representation of the target domain. The other purpose of Lr in (7) is to require
that the low-dimensional feature representation h2 used for classification can
also well reconstruct most target samples. The regularization avoids overfitting
when the number of training samples is not large and they have errors.

4.4 Learning Features and Distribution in the Target Scene

The CNN layers in Fig. 2 are used for extracting features from images. We train
these layers by using source and target samples as input and putting their labels
above the third CNN layer. The cross-entropy error function in (10) and BP are
used for learning CNN. In this way, the features for the pedestrian detection
task are pre-trained1.

Then the distribution of features in the target scene is learned in an unsuper-
vised way using targe samples only. This is done by treating f , h1, h2 as a deep
belief net (DBN) [16]. The weights W1 and W2 in Fig. 4 are pre-trained us-
ing the greedy layer-wise learning algorithm in [16] while all matrices connected
to the cluster layer c̃ are fixed to zero. Many studies have shown that DBN
can well learn the distribution of high-dimensional data and its low-dimensional
representation. Pre-trained with DBN, auto-encoder can well reconstruct high-
dimensional data from this low-dimensional representation.

4.5 Unsupervised Learning of Scene-Specific Visual Patterns

This section introduces the cluster layer in Fig. 4 for capturing scene-specific
visual patterns.

1 They will be fine-tuned with other parts of the deep model in the final stage using
BP.
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w5

Fig. 5. Examples of scene-specific pattern clusters in the target scene and their learned
weights w5. Pedestrians in cluster (a) are walking cross the road. Pedestrians in (b)
are either waiting for green light or starting to cross the street. Samples in (c) are
zebra crossings in different positions. Samples in cluster (d) contain lamp posts, trees
and pedestrians. Each cluster share a similar appearance. Each cluster corresponds to
a node in the cluster layer c̃ and a weight in vector w5. The corresponding learned
weights in w5 for estimating the class label ỹ are delineated for the patterns. ỹ =
σ(wT

3 h2 + wT
5 c̃ + b3). The clusters (a)(b), which mainly contain positive samples,

have large positive weights in w5. The pattern (d), which contains mixed positive and
negative samples, has its corresponding weight close to zero. Best viewed in color.

Scene-Specific Pattern Preparation. In order to capture scene-specific ap-
pearance patterns, e.g. pedestrians walking on the same road or zebra crossing,
we cluster selected target samples into subsets with similar appearance. The
features f learned from the CNN is used as the input for clustering.

We use the affinity propagation (AP) clustering method [10] to get initial clus-
tering labels. AP fits our goal because it automatically determines the number
of clusters and produces reasonable results. Fig. 5 shows some clustering results,
where the visual patterns in the scene for positive and negative samples are well
captured. The number of nodes in the cluster layer is set as the cluster number
produced by AP. Each node in this layer corresponds to a cluster. The cluster
labels of target samples are used for training the cluster layer. 51 clusters are
found on the MIT Traffic dataset.

Training the Cluster Layer. The input of the nodes in the cluster layer take
the combination of feature representation h2 with matrix W4. With CNN, W1,
and W2 in Fig. 4 learned as introduced in Section 4.4, W4 in (3) is learned using
the following cross-entropy error function for estimating the cluster label:

Lp
n = −cTn log c̃n, (11)

where cn is the cluster label obtained by AP, c̃n is the predicted cluster la-
bel. Then w3 and w5 are fine-tuned using the objective function in (7). Finally,
the parameters in the CNN, the cluster layer, and the fully connect layers are
fine-tuned using (7). A summary of the overall training procedure is given in Al-
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Algorithm 1. Stage-by-Stage Training

Input: Source training set: Ψs = {xs, ys}
confident target scene set: Ψt = {xt, yt}
Output: CNN parameters and matrices Wi, W̃i ∀i ≤ L, wL+1, WL+2, wL+3,

L = 2 in our implementation.
1 Learn scene-specific features in CNN;
2 Layer-wise unsupervised pre-training of matrices Wi ∀i ≤ L;
3 BP to fine tune Wi ∀i ≤ L+ 1, while keeping WL+2, WL+3 as zero;
4 Cluster confident samples to obtain cluster label cn for the nth sample using

AP and set the number of nodes in c according the number of clusters obtained;
5 Fix Wi ∀i ≤ L, randomly initialize WL+2, then BP to fine tune WL+2 using cn

as ground truth. Lp in (11) is used as the objective function ;
6 Randomly initialize wL+3. BP to fine tune wL+1 and wL+3 using the objective

function in (7) ;
7 BP to fine tune all parameters using the objective function in (7) ;
8 Output parameters.

gorithm 1. Lp
n in (11) is used in (7) for constraining that the learned appearance

pattern does not deviate far from the initial pattern found by AP clustering.

5 Experimental Results

5.1 Experimental Setting

All the experiments are conducted on the MIT Traffic dataset [33] and CUHK
Square dataset [32]. The MIT Traffic dataset is a 90-minutes long video at 30
fps. 420 frames are uniformly sampled from the first 45 minutes video to train
the scene-specific detector. 100 frames are uniformly sampled from the last 45
minutes video for test. The CUHK Square dataset is a 60-minutes long video.
350 frames are uniformly sampled from the first 30 minutes video for training.
100 frames uniformly sampled from the last 30 minutes video for testing. The
INRIA training dataset [5] is used as the source dataset. The PASCAL criterion,
i.e. the ratio of the overlap region compared to the union should be larger than
0.5, is adopted. The evaluation metric is recall rate versus false positive per
image (FPPI). The same experimental setting has been used in [33,34,32].

We obtain 4262 confident positive samples, 3788 confident negative samples
and their confident scores from the MIT Traffic training frames with the ap-
proach in [34]. For CUHK Square, we get 1506 positive samples and 37392 neg-
ative samples for training. They are used to train the scene-specific detector
together with the source dataset. During test, for the sake of saving computa-
tion, we use a linear SVM trained on both source dataset and confident target
samples to pre-scan all windows and prune candidate samples in the test images
with conservative thresholds, and then apply our deep learning scene-specific
detector to the remaining candidates. Compared with using SVM alone, about
50 % additional computation time is introduced. When we talk about detection
rates, it is assumed that FPPI = 1.
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Table 1. Comparison of detection rates with state-of-the-art generic detectors
on the MIT Traffic dataset and the CUHK Square dataset. The training data for
‘HOG+SVM’, ‘ChnFtrs’, ‘MultiSDP’ and ‘JointDeep’ is the INRIA dataset.

.

HOG+SVM [5] ChnFtrs [7] MultiSDP [39] JointDeep [26] ours

MIT Traffic 21% 23% 23% 17% 65%

CUHK Square 15% 32% 42% 22% 62%
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Fig. 6. Experimental results on the MIT Traffic dataset (left column) and the CUHK
Square dataset (right column). (a) and (b): Comparison with methods requiring no
manual labels from the target scene, i.e. Wang PAMI14 [34], Wang CVPR11 [33] and
Nair CVPR04[23]. (c) and (d): Comparison with methods requiring manual labels on
50 frames from the target scene, i.e. Transfer Boosting [28], EasyAdapt [6], AdaptSVM
[37] and CDSVM [17].

5.2 Overall Performance

We have compared our model with several state-of-the-art generic detectors
[7,39,26]. The detection rates are shown in Table. 1. The training data for
‘HOG+SVM’, ‘ChnFtrs’, ‘MultiSDP’ and ‘JointDeep’ is the INRIA dataset. It
is observed that the performance of the generic detectors on the MIT Traffic and
CUHK Square datasets are quite poor due to the mismatch between the training
data and the target scenes. They are far below the performance of our detector.

In Fig. 6(a)-(b), we compare our method with three other scene-specific ap-
proaches [23,33,34] on the two datasets. In addition to the source dataset, these
approaches and ours do not require manually labeled samples from the target
scene for training. ‘Nair CVPR 04’ in Fig. 6 represents the method in [23] which
uses background subtraction to select target training samples. ‘Wang CVPR11’
[33] in Fig. 6 selects confident samples from the target scene by integrating
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multiple context cues, such as locations, sizes, appearance and motions, and
train an HOG-SVM detector. ‘Wang PAMI14’ [34] in Fig. 6 selects target train-
ing samples in the same way as [33] and uses a proposed Confidence-Encode
SVM, which better incorporates the confidence scores, to train the scene-specific
detector. Our approach obtains the target training samples in the same way as
[33] and [34]. As shown in Fig. 6(a)-(b), our approach performs better than the
other three methods. The detection rate of our method reaches 65% while the
second best method ‘Wang PAMI14’ [34] is 52% on the MIT Traffic dataset. On
the CUHK Square dataset, the detection rate of our method is 62% while the
detection rate for the second best method in [34] is 52%.

Fig. 6(c)-(d) shows the performance of other domain adaptation approaches,
including ‘Transfer Boosting’ [28], ‘EasyAdapt’ [6], ‘AdaptSVM’ [37], ‘CDSVM’
[17]. These methods all use HOG features. They make use of the source dataset
and require some manually labeled target samples for training. 50 frames from
the target scene are manually labeled when implementing these approaches. As
shown in Fig. 6(c)-(d) , our method does not use manually labeled target samples
but outperforms the second best approach (‘Transfer Boosting’) by 12% on MIT
Traffic dataset and 16% on CUHK Square dataset.

5.3 Investigation on the Depth of CNN

In this section, we investigate the influence of the depth of the deep model on
detection accuracy. All the approaches evaluated in Fig. 7 are trained on the
same source and target datasets.

According to Fig. 7, ‘HOG+SVM’ and the deep model with one single CNN
layer, named ‘1-layer-CNN’, has similar detection performance. The ‘2-layer-
CNN’ provides 4% improvement over the ‘1-layer-CNN’. The ‘3-layer-CNN’ pro-
vides 2% improvement over the ‘2-layer-CNN’. Therefore, the detection accuracy
increases as the number of CNN layers increases from one to three. We did not
observe obvious improvement by adding the fourth CNN layer. The performance
increases by 2% and reaches 59% when the ‘3-layer-CNN’ is added by two fully
connected hidden layers, which is denoted by ‘CNN-DBN’ in Fig. 7 .

5.4 Investigation on Deep Model Design

In this section, we investiage the influence of our deep model design, i.e. the
auto-encoder and the cluster layer, on the MIT Traffic dataset.

As shown in Fig. 7, the ‘CNN-DBN’ trained with our auto-encoder, denoted
as ‘CNN-DBN-AutoEncoder’ in Fig. 7 , improves the detection rate by 3% com-
pared with the ‘CNN-DBN’ without auto-encoder. Our final deep model with the
cluster layer (‘CNN-DBN-AutoEncocder-ClusterLayer’) reaches detection rate
65%, which has 3% detection rate improvement compared with the deep model
without the cluster layer (‘CNN-DBN-AutoEncocder’).

Different reweigting methods are also compared in Fig. 7. The ‘CNN-DBN-
Indegree’ denotes the method in [34] which reweights source samples according to
their indegrees from target samples. The ‘CNN-DBN-AutoEncoder’ denotes our
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Fig. 7. Detection rates at FPPI =1 for the deep model with different number of layers
and different deep model design on the MIT Traffic dataset. All the approaches, includ-
ing ‘HOG+SVM’, are trained on the same INRIA data and the same confident target
data. ‘1-layer-CNN’ means network with only one CNN layer. ‘2-layer-CNN’ means
network with two CNN layers. ‘3-layer-CNN’ means network with three CNN layers.
‘CNN-DBN’ means the model with three CNN layers and two fully connected layers.
‘CNN-DBN-Indegree’ means that the ‘CNN-DBN’ is retrained using the indegree-based
reweighting method in [34]. ‘CNN-DBN-AutoEncoder’ is the ‘CNN-DBN’ retrained us-
ing our auto-encoder for reweighting samples. ‘CNN-DBN-AutoEncoder-ClusterLayer’
means the ‘CNN-DBN-AutoEncoder’ with the cluster layer. Best viewed in color.

reweighting method using the auto-encoder. Both methods are used for training
the same network ‘CNN-DBN’. Our reweighting method has 2% detection rate
improvement compared with the indegree-based reweighting method in [34].

6 Conclusion

We propose a new deep model and a new objective function to learn scene-
specific features, low dimensional representation of features and scene-specific
visual patterns in static video surveillance without any manual labeling from
the target scene. The new model and objective function guide learning both
representative and discriminative feature representations from the target scene.
Our approach is very flexible in incorporating with existing approaches that aim
to obtain confident samples from the target scene.
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