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ABSTRACT

The three-dimensional (3D) organization of the human genome is of crucial importance for
gene regulation, and the CCCTC-binding factor (CTCF) plays an important role in chro-
matin interactions. However, it is still unclear what sequence patterns in addition to CTCF
motif pairs determine chromatin loop formation. To discover the underlying sequence pat-
terns, we have developed a deep learning model, called DeepCTCFLoop, to predict whether
a chromatin loop can be formed between a pair of convergent or tandem CTCF motifs using
only the DNA sequences of the motifs and their flanking regions. Our results suggest that
DeepCTCFLoop can accurately distinguish the CTCF motif pairs forming chromatin loops
from the ones not forming loops. It significantly outperforms CTCF-MP, a machine learning
model based on word2vec and boosted trees, when using DNA sequences only. Furthermore,
we show that DNA motifs binding to several transcription factors, including ZNF384,
ZNF263, ASCL1, SP1, and ZEB1, may constitute the complex sequence patterns for CTCF-
mediated chromatin loop formation. DeepCTCFLoop has also been applied to disease-
associated sequence variants to identify candidates that may disrupt chromatin loop
formation. Therefore, our results provide useful information for understanding the mech-
anism of 3D genome organization and may also help annotate and prioritize the noncoding
sequence variants associated with human diseases.

Keywords: 3D genome, chromatin loops, CTCF, deep learning, sequence motifs.

1. INTRODUCTION

The human genome is packaged into highly complex structures in the nucleus with multiple levels of

organization, such as chromatin loops and topologically associating domains (TADs) at the intermediate

scale (Rao et al., 2014; Tang et al., 2015). The three-dimensional (3D) genome organization is critical for

many cellular processes, including the transcriptional control of gene expression via enhancer–promoter

interactions (Bonev and Cavalli, 2016). To characterize the 3D genome architecture, several high-throughput

methods have been developed, including chromosome conformation capture (Hi-C) for detecting global

chromatin interactions (Lieberman-Aiden et al., 2009) and chromatin interaction analysis by paired-end tag

sequencing (ChIA-PET) for capturing genome-wide chromatin interactions mediated by specific protein
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factors (Fullwood et al., 2009). Results from recent studies indicate that 3D genome organization involves the

architectural protein, CCCTC-binding factor (CTCF), and the structural maintenance of chromosomes

complex, cohesin (Rao et al., 2014; Tang et al., 2015). The key roles of CTCF and cohesin are suggested by

their colocalization on chromatin and enrichment at the anchors of chromatin loops and TAD boundaries

(Wendt et al., 2008; Rao et al., 2014). Moreover, depletion of CTCF or cohesin results in the loss of loop

structures (Nora et al., 2017; Rao et al., 2017).

Interestingly, CTCF-binding sites at loop anchors are mostly in the convergent orientation (Rao et al.,

2014; Tang et al., 2015). The functional significance of the convergent orientation has been demonstrated

by the topological change of chromatin loops and the alteration of gene expression if the CTCF-binding

sites are inverted using CRISPR/Cas9 (Guo et al., 2015). The preferential orientation of CTCF motifs as

well as the enrichment of CTCF and cohesin in the loop anchor regions may be explained by the loop

extrusion model, which proposes that cohesin complex loads on the DNA and extrudes a progressively

larger loop until reaching two convergent CTCF-binding sites (Sanborn et al., 2015; Fudenberg et al., 2016,

2017). However, the model cannot explain why many pairs of convergent CTCF-binding sites do not form

chromatin loops. In addition, although the majority of chromatin loops have convergent CTCF-binding

sites, some loops are formed between CTCF-binding sites in the tandem orientation (Rao et al., 2014).

Recent studies suggest that, besides CTCF and cohesin, some other proteins such as BRD2, PDS5, and

WAPL may also play important roles in establishing chromatin loop boundaries (Hsu et al., 2017; Wutz

et al., 2017). It is thus interesting to examine what sequence patterns in addition to the presence of CTCF-

binding sites are important for chromatin loop formation.

To unravel the sequence patterns for the formation of CTCF-mediated chromatin loops, CTCF-MP, a

machine learning model based on word2vec and boosted trees, has been developed (Zhang et al., 2018).

Word2vec is a computationally efficient method to learn word embedding using neural networks. It can

encode each word in a text corpus as a vector in a continuous vector space where semantically similar

words are located near each other (Mikolov et al., 2013). For CTCF-MP, words (k-mers) in DNA sequences

are encoded as vectors using word2vec to learn sequence features and reduce input dimensionality. The

relatively high performance of CTCF-MP with word2vec features suggests the existence of additional

sequence patterns besides CTCF motifs in DNA sequences. However, the features learned by word2vec are

hard to interpret. More recently, a deep learning model, called DeepMILO, has been developed to predict

the impact of noncoding variants on insulator loops using DNA sequence as input (Trieu et al., 2020).

Nevertheless, the sequence patterns learned by DeepMILO have not been fully examined.

Convolutional neural networks (CNNs) have attracted much attention in the field of biology because of

the capability to discover informative motifs directly from the input sequences (Alipanahi et al., 2015;

Kelley et al., 2016; Quang and Xie, 2016). Long short-term memory (LSTM) network can be used to learn

long-range dependencies between sequence motifs (Hochreiter and Schmidhuber, 1997a; Quang and Xie,

2016; Angermueller et al., 2017). Moreover, attention mechanisms may be applied to biological problems

to capture and emphasize the most important features within sequential input (Zhou et al., 2016; Chen et al.,

2019; Li et al., 2019). However, these advanced deep learning techniques have not been fully utilized to

model the sequence patterns for CTCF-mediated chromatin loop formation.

Genetic studies suggest that disruption of 3D genome organization can cause gene dysregulation and may

be associated with the onset and progression of human disease (Norton and Phillips-Cremins, 2017; Anania

and Lupiáñez, 2020). For instance, the deletion of CTCF anchor sites has been shown to cause the acti-

vation of genes outside the CTCF-CTCF loop ( Ji et al., 2016). Mutations that can affect the boundaries of

insulated neighborhoods are found in many types of cancer (Hnisz et al., 2016). Notably, most of the

disease-associated single nucleotide polymorphisms (SNPs) from genome-wide association studies (GWAS)

or high-throughput whole-genome sequencing are located in the noncoding regions, and how these sequence

variants contribute to the pathogenesis of disease is still poorly understood. Thus, it is helpful to examine the

effects of disease-associated variants on the formation of CTCF-mediated chromatin loops.

In this study, we have developed a new deep learning model, called DeepCTCFLoop, to predict whether

a chromatin loop can be formed for a pair of CTCF motifs, either convergent or tandem, and learn the

sequence patterns hidden in the adjacent sequences of CTCF motifs. DeepCTCFLoop utilizes a two-layer

CNN and an attention-based bidirectional LSTM (BLSTM) network to learn and emphasize the rele-

vant features, including the sequence motifs, the interactions between sequence motifs, and the long-

range dependencies between high-level features. We show that DeepCTCFLoop can accurately predict

CTCF-mediated chromatin loop formation. By examining the features learned by the first convolution
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layer, we have identified several additional DNA-binding proteins, which may also be involved in the

formation of CTCF-mediated chromatin loops. Furthermore, our results suggest that DeepCTCFLoop can

be used to analyze disease-associated sequence variants for their effects on CTCF-mediated chromatin loop

formation.

The source code and data sets used in this study for model construction are freely available at https://

github.com/BioDataLearning/DeepCTCFLoop.

2. MATERIALS AND METHODS

2.1. Data collection and preprocessing

Data sets for model construction were downloaded for three different cell types, GM12878, HeLa, and

K562. As previously described for CTCF-MP (Zhang et al., 2018), a positive instance was collected as a

pair of convergent or tandem CTCF motifs in a chromatin loop region plus 250 nucleotides (nt) on each

side of a motif, giving rise to a 1038-nt genomic sequence (Fig. 1). The locations of CTCF motifs were

determined by scanning the human genome sequence (hg19, https://hgdownload.soe.ucsc.edu/goldenPath/

hg19/chromosomes) using FIMO (Grant et al., 2011) with the known position weight matrix (PWM) of

CTCF in JASPAR (MA0139.1) (Khan et al., 2018). The chromatin loop regions for the cell lines GM12878

and HeLa were downloaded from NCBIs Gene Expression Omnibus (Edgar, 2002) (GEO accession:

GSE72816), and the regions of the cell line K562 were obtained from ENCODE (Feingold et al., 2004).

The chromatin loop regions were detected by ChIA-PET for CTCF (Fullwood et al., 2009). The negative

instances were compiled by randomly selecting the convergent or tandem CTCF motif pairs that were not

in the chromatin loop regions, under the constraint that the distribution of the distances between CTCF

motif pairs of negative instances was similar as for the positive instances (Fig. 1). The positive and negative

instances for each cell line (30,627 positive and 30,624 negative instances for GM12878; 12,656 positive

and 12,650 negative instances for HeLa; and 9900 positive and 9898 negative instances for K562) were

randomly divided into training, validation, and test data with the ratio of 80%:10%:10%.

2.2. DeepCTCFLoop model construction

The architecture of DeepCTCFLoop is shown in Figure 2. The input of the model is the DNA sequence

of convergent or tandem CTCF motif pairs and flanking regions. The DNA sequence is one-hot-encoded

into a 4 · 1038 binary matrix with A = [1, 0, 0, 0], T = [0, 1, 0, 0], G = [0, 0, 1, 0], and C = [0, 0, 0, 1] and

then used by DeepCTCFLoop to predict whether a chromatin loop can be formed between a pair of CTCF

motifs. The predicted probability is expected to be close to 1 for a true chromatin loop and close to 0 for a

negative instance.

FIG. 1. Schematic diagram of convergent or tandem CTCF motif pairs used to compile the positive and negative

instances. The positive instances are defined as the DNA sequences of CTCF motif pairs in the chromatin loop regions

and their flanking regions. The negative instances are the DNA sequences of randomly selected CTCF motif pairs not in

the chromatin loop regions but with the same orientations as the positive motif pairs, under the constraint that the

distribution of the distances between the CTCF motif pairs of negative instances is similar as for the positive instances.

CTCF, CCCTC-binding factor.
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The one-hot-encoded matrix of the DNA input is first fed into a 1D convolution layer. The N filters of the

convolution layer with dimension 4 · L, where L is the length of a filter, convolve over the input matrix,

resulting in N activation maps. The activation value as
fi for the filter f at the position i of an input sequence s

is computed as:

as
fi = max 0‚

XL

l = 1

X4

d = 1

w
f
ldsi + l‚ d

 !
‚ (1)

FIG. 2. Diagram of DeepCTCFLoop architecture. The DNA sequence of the CTCF motifs and their surrounding

genomic sequences (250 nt) were taken as input by encoding into a binary matrix. Then, a two-layer convolutional

neural network was used to learn the sequence motifs and high-level features. The bidirectional LSTM layer was used

to learn the long-range dependencies between the high-level features. Next, an attention layer was used to capture the

most important features for high model performance. Finally, two fully connected layers were used to combine the

output from the attention layer and make the binary prediction. LSTM, long short-term memory.
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where wf is the weight matrix for the filter f. The convolution filters function as motif detectors to discover

the patterns within the input sequences. The parameters of the filters can be interpreted as PWMs. High

activation values indicate the existence of a motif represented by a PWM at the corresponding positions in

the input sequence.

After the first convolution layer, a max pooling layer is used to get the maximum activation value

of spatially adjacent subregions. As a downsampling strategy, the max pooling layer can reduce input

dimensionality and thus avoid model overfitting. Then, a second convolution layer followed by another

max pooling layer is employed to learn the high-level interactions between sequence motifs. The model

with the two-layer CNN was selected after comparison with one-layer CNN and three-layer CNN models.

Next, a layer of BLSTM is used to learn the long-range dependencies among the high-level features

learned by the two-layer CNN. Compared with vanilla recurrent neural networks, LSTM is able to over-

come the vanishing gradient problem (Hochreiter and Schmidhuber, 1997b). Each LSTM unit consists of

an input gate, a forget gate and an output gate. These gates decide what information should be thrown away,

be stored, or go to the output. LSTM is thus able to remember the information for a long period and learn

the long-range dependencies. Here, BLSTM is used to scan the input both forward and backward.

Following the BLSTM layer, an attention layer is used to pay more attention on the most important

features by assigning more weights to them (Zhou et al., 2016). The output is then fed into a fully connected

layer, and the sigmoid function is used to calculate the probability of forming a chromatin loop.

In this study, the binary cross-entropy loss function was minimized using the Adam optimization al-

gorithm with minibatches (Kingma and Ba, 2015). Dropout and L2 regularization were used to regularize

the model. The early stopping procedure was also employed to avoid model overfitting. The model was

implemented in Python using Keras 2.2.4 (https://github.com/fchollet/keras) with TensorFlow 1.5.0 as the

backend. The hyperparameters for model training were tuned using Bayesian optimization via Hyperopt

(Bergstra et al., 2013) with the data from GM12878, resulting in the number of CNN filters (N) as 208, the

length of filters (L) as 13, the size of pooling layer as 4, the LSTM units as 64, the learning rate as 1e-4, the

L2 regularization as 5e-5, the dropout rate after CNN as 0.43, and the dropout rate after the attention layer

as 0.05. The average time used for model training and evaluation was about 2 hours with the data from the

three cell lines.

2.3. Motif visualization and analysis

The filters of the first convolution layer were converted into PWMs as previously described (Kelley et al.,

2016). Given a filter f with length L, it scanned all the positive sequences and calculated an activation value

for each position i of a sequence s. If an activation value was greater than half of the maximum activation m

of filter f over all positions of the positive sequences (Equation 2), the subsequence corresponding to that

activation value was collected. The collected subsequences were aligned and converted into PWMs, which

were then visualized using WebLogo (Crooks et al., 2004).

m = max
s‚ i

as
fi: (2)

The PWMs were analyzed using hypergeometric and Kolmogorov–Smirnov (KS) tests to identify PWMs

overrepresented in positive instances and the ones with different position distributions between positive and

negative instances. The identified PWMs may represent the functional motifs in positive instances. The

analyses were conducted separately for convergent or tandem CTCF motif pairs to explore the possible

differences of sequence patterns.

The PWMs learned by DeepCTCFLoop were compared with the known motifs in the JASPAR database

(Mathelier et al., 2014) using TomTom program from the MEME Suite (Bailey et al., 2009). Two motifs

with E-value £0.05 were considered to be significantly matched.

2.4. Prioritization of candidate sequence variants

The candidate sequence variants associated with human diseases were obtained from the GWAS

catalog database (ftp://ftp.ebi.ac.uk/pub/databases/gwas/releases/2020/05/04/gwas-catalog-associations.tsv)

(Welter et al., 2014). The variants with p-values £1e-6 were collected for further analysis as suggested by

GWAS to reduce the false-positive rate for disease association. The variants located in the chromatin loop

regions were analyzed using DeepCTCFLoop to estimate their impacts on the formation of CTCF-mediated
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chromatin loops. If a variant was predicted as negative and the predicted probability reduced more than

0.25 (compared with the wild type), it was selected as a candidate sequence variant that may disrupt CTCF-

mediated chromatin loop formation.

2.5. Model performance evaluation

DeepCTCFLoop was evaluated using the test data set with the following performance metrics:

Accuracy =
TP + TN

TP + TN + FP + FN
‚ (3)

Sensitivity =
TP

TP + FN
‚ (4)

Specificity =
TN

TN + FP
‚ (5)

MCC =
TP · TN - FP · FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þ
p : (6)

Here, TP, TN, FP, and FN represent the number of true positives, true negatives, false positives, and false

negatives, respectively. Matthews correction coefficient (MCC) is often used as a robust metric of model

performance. Moreover, the receiver operating characteristic (ROC) curve and the area under the ROC

curve (AUC) are used for model evaluation.

3. RESULTS AND DISCUSSION

3.1. Accurate prediction of CTCF-mediated chromatin loop formation

DeepCTCFLoop has been developed to predict the chromatin loop formation mediated by a pair of

CTCF motifs in either convergent or tandem orientation and to discover the underlying sequence patterns

(Fig. 1). It takes CTCF motif pairs and their surrounding genomic sequences as inputs (Fig. 2). The

performance of DeepCTCFLoop was evaluated using the data sets derived from three different cell lines,

including GM12878, HeLa, and K562. Since neural network architecture may affect performance, mod-

els with one to three layers of CNN were tested using the GM12878 data set. As shown in Figure 3,

FIG. 3. Effect of neural network architecture

on model performance. The AUC value was used

to evaluate the model performance. The AUC

values from 10 repetitions on the test data sets

from GM12878 are shown. AUC, area under the

ROC curve; CNN, convolutional neural net-

works; ROC, receiver operating characteristic.
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DeepCTCFLoop with the two-layer CNN achieved the best performance. The hyperparameters for model

construction were also optimized using the GM12878 data set. Dropout, L2 regularization, and the early

stopping procedure were used to avoid model overfitting.

As shown in Figure 4 and Table 1, DeepCTCFLoop achieved the mean AUC of 0.931 for GM12878,

0.929 for HeLa, and 0.909 for K562 on the test data sets for 10 repetitions. The high model performance

suggests that DeepCTCFLoop has learned relevant features from the DNA sequences to distinguish the

loop-forming CTCF motif pairs (positive instances) from noninteracting ones (negative instances). By

comparison, CTCF-MP (Zhang et al., 2018) achieved relatively poor performance on the same data sets

with the mean AUC of 0.753 for GM12878, 0.754 for HeLa, and 0.702 for K562, when only using the DNA

sequence features from word2vec (Fig. 4 and Table 1). The superior performance of DeepCTCFLoop over

CTCF-MP was also suggested by the significantly higher accuracy, sensitivity, specificity, and MCC values

(Table 1). Although word2vec may capture the contextual information between k-mers (DNA words) by

learning their semantical similarity, our results suggest that DeepCTCFLoop can capture more rele-

vant information, such as sequence motifs and their relationships, from the input DNA sequences. This is

consistent with the poor performance of word2vec on detecting informative motifs in a previous study

(Trabelsi et al., 2019). Taken together, our results demonstrate the capability of DeepCTCFLoop to ac-

curately predict the formation of chromatin loops mediated by convergent or tandem CTCF motif pairs.

FIG. 4. ROC curves of DeepCTCFLoop and

CTCF-MP (word2vec features only) on the test

data sets of GM12878, Hela, and K562.

Table 1. Superior Performance of DeepCTCFLoop Over CTCF-MP When

Only Using DNA Sequences as the Input

Metrics

DeepCTCFLoop CTCF-MP (word2vec)

GM12878 HeLa K562 GM12878 HeLa K562

Accuracy 0.861 0.860 0.830 0.685 0.678 0.619

Sensitivity 0.899 0.891 0.901 0.759 0.804 0.874

Specificity 0.824 0.829 0.759 0.612 0.552 0.365

MCC 0.725 0.721 0.668 0.377 0.373 0.275

AUC 0.931 0.929 0.909 0.753 0.754 0.702

For CTCF-MP, DNA sequences were encoded into vector features by word2vec. The average accuracy, sensitivity, specificity,

MCC, and AUC for 10 repetitions on the test data sets from GM12878, HeLa, and K562 cells are shown.

AUC, area under the ROC curve; CTCF, CCCTC-binding factor; MCC, Matthews correction coefficient; ROC, receiver operating

characteristic.

PREDICTION OF CTCF-MEDIATED CHROMATIN LOOPS 139

D
ow

nl
oa

de
d 

by
 1

06
.5

1.
22

6.
7 

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
09

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



3.2. Discovery of interesting sequence motifs for CTCF-mediated loop formation

The superior performance of DeepCTCFLoop suggests that it may have learned the complex sequence

patterns to distinguish loop-forming CTCF motif pairs from noninteracting ones. To understand the se-

quence patterns, the filters of the first convolutional layer were converted into PWMs (see Section 2). For

the model trained with data from GM12878 cells (GM12878 model), 192 PWMs were derived and ana-

lyzed using hypergeometric and KS tests to identify the PWMs that might represent candidate motifs also

involved in the chromatin loop formation mediated by convergent or tandem CTCF motif pairs. Among the

192 PWMs, 22 and 20 PWMs showed their significant enrichment (hypergeometric FDR £0.01) in chro-

matin loops with convergent and tandem motif pairs, respectively, and had significantly different sequence

FIG. 5. Selected PWMs significantly matched with the DNA motifs of CTCF, ZNF384, and ZNF263. (A) Sequence

logos of the selected PWMs. (B) Significant enrichment of some PWMs in the loop-forming convergent or tandem

motif pairs and different sequence position distributions between positive and negative instances. The enrichment in

positive instances was measured using the FDR value from hypergeometric test. The difference between posi-

tion distributions was evaluated using the KS test. The PWMs learned from the GM12878, HeLa, and K562 data sets

were compared with the known motifs in the JASPAR database using TomTom. FDR, false discovery rate; KS,

Kolmogorov–Smirnov; PWM, position weight matrix.
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position distributions between the positive and negative instances (KS p-value £0.01). Interestingly, 11 of

these enriched PWMs were shared between the loop-forming convergent and tandem CTCF motif pairs.

When compared with the known transcription factor (TF) motifs in the JASPAR database (Mathelier et al.,

2014) using TomTom (Bailey et al., 2009), 7 of the 11 PWMs were matched with the CTCF motif, and the

PWM M138 was significantly matched with the DNA-binding motif of TF ZNF384 (Fig. 5 and Table 2).

Besides the shared PWMs, six and nine specific PWMs were enriched for the convergent and tandem CTCF

motif pairs, respectively, suggesting possible differences in the underlying sequence patterns for chromatin

loop formation. Moreover, besides M138, 10 additional PWMs were significantly matched with other TF

motifs (Table 2). The results suggest that these DNA-binding TF proteins, especially ZNF384, are involved

in the CTCF-mediated chromatin loop formation.

To identify the common motifs underlying chromatin loop formation in different cell types, we per-

formed the same analysis for the HeLa and K562 models. For the HeLa model, 41 and 14 PWMs were

found to show significant enrichment for the loop-forming convergent and tandem CTCF motif pairs,

respectively, and different sequence position distributions between the positive and negative instances; for

the K562 model, 29 and 8 such PWMs were identified. Notably, the DNA motif of ZNF384 was also

matched by the PWM M37 of the HeLa model and M88 of the K562 model (Fig. 5 and Table 2). While

M37 was found to be shared by the loop-forming convergent and tandem CTCF motif pairs in HeLa cells,

M88 was only enriched for the convergent motif pairs in K562 cells. Besides ZNF384, the motif of ZNF263

was also matched by the PWMs from all three models (GM12878, HeLa, and K562), and several other TFs,

including ASCL1, SP1, and ZEB1, were identified by two different models (Table 2).

Our results strongly suggest the involvement of ZNF384 in CTCF-mediated chromatin loop formation.

ZNF384, a C2H2-type zinc finger protein, has been experimentally shown to be involved in chromatin

looping and may contribute to the sequence specificity of loop formation by interacting with CTCF

(Whalen et al., 2016). As for the other candidate TFs, ZNF263 is also a C2H2-type zinc finger protein, and

its motif has been shown to be enriched in the conserved sequence of lncRNAs that are positioned at the

loop end points and chromatin boundaries with significantly higher mutation levels in cancer (Amaral et al.,

2018). ASCL1 is an evolutionarily conserved basic-helix-loop-helix TF, which has been shown to promote

local chromatin accessibility at its target regions during neurogenesis and activate transcription by mostly

Table 2. List of Some Interesting Position Weight Matrices Learned by DeepCTCFLoop

DeepCTCFLoop PWM ID Consensus sequence of DeepCTCFLoop PWM Consensus

sequence

of the known

motif in JASPAR

Protein

associated

with the

known motifGM12878 HeLa K562 GM12878 HeLa K562

M138 M37 M88 AAAAAAA

AAAAAT

AAAAAAAA

AAAAA

GTTTAAAA

AGAAA

TTTAAAAA

AAAA

ZNF384

M130 TTTAAGA

GAAAAC

M151 TTTTTAAA

AAAAA

M107 M15 M111 AGGGGGA

GGGGGG

GGAGGGA

GGGGGG

GGGAGGG

CAGGGG

GGAGGAGG

AGGGGGA

GGAGGA

ZNF263

— M22 M77 — TCCGCCG

CTGGCG

CCACCAG

GTGGCG

GCAGCAGC

TGGCG

ASCL1

— M152 M120 — GCGCCCT

GACCCC

TGCCCCT

CCCCCC

GCCCCGC

CCCC

SP1

M57 CAGCCC

TGCCTCC

M14 M108 — CCCCTCT

GCCCAC

CGCGCCTG

CGCCG

— CCCACCT

GCGC

ZEB1

The PWMs were learned from data of three cell types (GM12878, HeLa, and K562) and were significantly matched with the known

DNA motifs of ZNF384, ZNF263, ASCL1, SP1, and ZEB1 using TomTom. The consensus sequences of the learned PWMs and the

known DNA motifs, and the proteins associated with the known DNA motifs are shown.

PWM, position weight matrix.
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binding to distal enhancers (Raposo et al., 2015; Park et al., 2017; Aydin et al., 2019). The binding

of ASCL1 to distal enhancers may facilitate chromatin loop formation via CTCF-mediated enhancer–

promoter interactions (Ren et al., 2017). SP1 and ZEB1 have also been reported to be associated with

chromatin regulation (Deshane et al., 2010; Aghdassi et al., 2012). Taken together, the results suggest that

the binding of these TF proteins to specific DNA motifs may provide additional information for CTCF-

mediated chromatin loop formation.

3.3. Application of DeepCTCFLoop to disease-associated sequence variants

Previous studies have shown that genetic mutations can cause human diseases by disrupting 3D genome

organization (Zhang et al., 2012; Hnisz et al., 2016). As the majority of disease-associated SNPs are located

in the noncoding regions with unknown mechanisms, we thus utilized DeepCTCFLoop to predict whether

these sequence variants can affect CTCF-mediated chromatin loop formation. Particularly, when the

GM12878 model was applied to the 524 disease-associated SNPs, 9 were predicted with high confidence to

disrupt chromatin loop formation (Fig. 6A). One of the high-confident candidate variants was rs45577137,

located within the second CTCF motif of a convergent motif pair for a chromatin loop on chromosome 8,

and the nucleotide change T->A was predicted to significantly reduce the probability of chromatin loop

formation (Fig. 6B). As rs45577137 resides in the regulatory region of CCCAT/enhancer-binding protein

delta (CEBPD), which is activated in many inflammation-related diseases, such as Alzheimer’s disease

and cancer (Ko et al., 2015), we speculate that the disruption of insulated chromatin loops caused by

rs45577137 may provide a possible mechanism for CEBPD activation in disease conditions. Taken to-

gether, DeepCTCFLoop provides a useful tool to analyze noncoding sequence variants for investigating

potential chromatin loop disruption and pathogenic mechanisms.

4. CONCLUSIONS

In this study, we have developed a deep learning model, called DeepCTCFLoop, to predict whether a

chromatin loop can be formed with a pair of convergent or tandem CTCF motifs and to discover the

underlying sequence patterns in addition to the CTCF motif pair. The CTCF motifs and their flanking

genomic sequences were taken as model input. When evaluated on three different cell types (GM12878,

HeLa, and K562), DeepCTCFLoop showed superior performance and significantly outperformed a pre-

vious machine learning model, CTCF-MP, for sequence-based prediction of CTCF-mediated chromatin

FIG. 6. Candidate sequence variants predicted by DeepCTCFLoop to affect chromatin loop formation. (A) Reduced

probabilities of chromatin loop formation for nine disease-associated variants. (B) Effect of rs45577137 on CTCF-

mediated chromatin loop formation. This variant is located within the second CTCF motif of a convergent motif pair for

a chromatin loop on chromosome 8.
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loop formation. Interestingly, the DNA motifs of several TF proteins, including ZNF384, ZNF263, ASCL1,

SP1, and ZEB1, were significantly matched with the PWMs learned by DeepCTCFLoop from data of

GM12878, HeLa, and K562 cells, suggesting the potential roles of these DNA-binding proteins in CTCF-

mediated chromatin loop formation. Notably, this role of ZNF384 was independently demonstrated by an

experimental study (Whalen et al., 2016). We also utilized DeepCTCFLoop to analyze disease-associated

sequence variants and identified some candidate variants predicted to disrupt CTCF-mediated chromatin

loop formation. Therefore, the findings from this study not only provide useful information for under-

standing the mechanism of 3D genome organization but also help annotate and prioritize the noncoding

sequence variants associated with human diseases.
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