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Our ability to predict protein expression from DNA sequence alone remains poor, reflecting our limited understanding of

cis-regulatory grammar and hampering the design of engineered genes for synthetic biology applications. Here, we generate

a model that predicts the protein expression of the 5′ untranslated region (UTR) of mRNAs in the yeast Saccharomyces

cerevisiae. We constructed a library of half a million 50-nucleotide-long random 5′ UTRs and assayed their activity in a

massively parallel growth selection experiment. The resulting data allow us to quantify the impact on protein expression

of Kozak sequence composition, upstream open reading frames (uORFs), and secondary structure. We trained a convolu-

tional neural network (CNN) on the random library and showed that it performs well at predicting the protein expression of

both a held-out set of the random 5′ UTRs as well as native S. cerevisiae 5′ UTRs. The model additionally was used to com-

putationally evolve highly active 5′ UTRs. We confirmed experimentally that the great majority of the evolved sequences

led to higher protein expression rates than the starting sequences, demonstrating the predictive power of this model.

[Supplemental material is available for this article.]

Precise control of protein expression is critical for cellular homeo-

stasis and growth. One major layer of this control is exerted via

the activity of the 5′ untranslated region (UTR). In Saccharomyces

cerevisiae, the effects of 5′ UTRs on protein expression, and in

particular on translation, have been characterized in detail for a

few genes, pointing to the role of such features as upstream open

reading frames (uORFs) (Thireos et al. 1984; Werner et al. 1987),

hairpins and other secondary structures (Yoon et al. 1992; Linz

et al. 1997; Ringnér et al. 2005), and the Kozak sequence, i.e.,

the nucleotides (nt) immediately surrounding the AUG start co-

don (Hamilton et al. 1987). More recent studies have analyzed

the functional consequences of polymorphisms and short se-

quence motifs (≤10 nt) in thousands or even tens of thousands

of yeast (Dvir et al. 2013) and mammalian (Noderer et al. 2014)

5′ UTRs. However, this variation was targeted to nucleotides near

the start codon, such that we are still unable to predict from se-

quence alone how the many distinct sequence and structural fea-

tures of an entire 5′ UTR combine to regulate protein production.

A predictive model relating 5′ UTR sequence to protein pro-

duction would not only provide novel insights into the grammar

of biological cis-regulation, but it would also enable forward

engineering of 5′ UTRs with tailor-made properties. Designing se-

quences with quantitatively predictable properties is a long-stand-

ing goal of synthetic biology and a prerequisite for accelerating the

design-build-test cycle in metabolic engineering. Models have

been designed, for example, to predict for Escherichia coli the im-

pact of a ribosome binding site on translation (Salis et al. 2009)

or to understand how combinations of promoters and ribosome

binding sites affect RNA and protein expression (Kosuri et al.

2013). However, so far, no generally applicable model has been

generated that captures the effect of 5′ UTR sequence variation

on protein production, primarily due to the lack of a data set large

and diverse enough to train such a model. Here, we overcome this

limitation by using a library with 489,348 5′ UTR variants to gen-

erate a predictive model using a convolutional neural network

(CNN). While many different types of machine learning models

have been applied successfully to biological data, CNNs in partic-

ular offer a combination of model power and interpretability, as

evidenced by their recent use to predict and visualize transcription

factor binding, DNase I hypersensitivity sites, enhancers, and

sites of DNA methylation (Alipanahi et al. 2015; Kleftogiannis

et al. 2015; Zhou and Troyanskaya 2015; Kelley et al. 2016;

Lanchantin et al. 2016; Liu et al. 2016; Quang and Xie 2016;

Wang et al. 2016). However, with yeast possessing only about

5000 genes, measurement of the protein expression of this num-

ber of 5′ UTRs yields far too limited a data set for accurate model

building using CNNs.

To generate data on a vastly larger scale, we designed a 5′ UTR

library composed of completely random 50-nt-long sequences.
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With 450 possible 5′ UTR sequences, the size of a resulting data set

of protein expression levels is limited only by experimental consid-

erations andmeasurement capacity. By quantifying our library us-

ing a growth assay dependent upon the expression of a functional

protein, we capture the effect of variation in the sequence adjacent

to the coding region at every step of protein production, including

transcription, mRNA processing and stability, translation, and

protein stability. The small number of nucleotides typically in-

volved in the binding of proteins to DNA and RNA (4–8 nt) or in

forming secondary structures (Weirauch et al. 2013) suggests

that functional biological motifs will occur often and in a wide

range of contexts within these random 5′ UTRs. Our study of alter-

native splicing corroborates the idea that highly predictive biolog-

ical models can be learned from fully degenerate sequences

(Rosenberg et al. 2015).

Results

5′ UTR library and assay

Previous analyses of protein expression resulting fromvariants in a

large library employed fluorescence-activated cell sorting (FACS)

for measurement (Kinney et al. 2010; Sharon et al. 2012; Dvir

et al. 2013; Kosuri et al. 2013; Noderer et al. 2014; Oikonomou

et al. 2014; Lubliner et al. 2015; Shalem et al. 2015), wherein cells

are separated into bins of differing fluorescence and the variants

within each bin are sequenced. However, the FACS step limits

the number of cells that can be assayed, thus also limiting the

number of sequence variants that can

be tested. To increase the number of 5′

UTRs that we could test simultaneously

and to improve the resolution in mea-

suring activity, we instead used a com-

petitive growth assay based on the

accumulation of the yeast His3 protein;

the growth rate of cells inmedia lacking

histidine is proportional to the level of

their expressed His3 protein, a selection

on continuous fitness values that is not

reliant on arbitrary bins. In this selec-

tion, yeast are transformed with a li-

brary of plasmids carrying a HIS3

reporter gene, each containing one of

the random variants of the 5′ UTR sited

immediately upstream of the start co-

don. The number of cells harboring

each variant before and after growth

in selection media is determined

through sequencing, with the relative

enrichment or depletion of a variant

over time correlating with its HIS3 ex-

pression. Since the number of cells in

a selection is not limiting, a single cul-

ture can, in principle, be used to assay

up to millions of variants. Similar

growth-based selections have proven

to be accurate in measuring activity dif-

ferences (Hietpas et al. 2011; Starita

et al. 2015; Rich et al. 2016).

We constructed a library of more

than half a million 5′ UTR variants (of

which 489,348 were detected) (Fig. 1A;

Methods). With transcriptional regulation under the well-charac-

terized low expression CYC1 promoter and the CYC1 terminator

(Chen et al. 1994; Guo et al. 1995; Yagil et al. 1998; Martens

et al. 2001;Watanabe et al. 2015) and the use of a lowcopynumber

plasmid, the growth of each cell should reflect His3 protein accu-

mulation. We performed a large-batch selection in media lacking

histidine and supplemented with 1.5 mM 3-Amino-1,2,4 triazole

(3-AT) (Supplemental Fig. S1A; see Methods), a competitive

inhibitor of His3, collecting cells after ∼6.2 doublings. Using mas-

sively parallel sequencing, we quantified the relative change in

abundance of each variant before and after selection. These rela-

tive changes in abundance are presented as log2 enrichments.

Because enrichment scores are not normalized to any specific

sequence, they can differ between experiments for a single 5′

UTR depending on the size of the library undergoing selection

and the strength of selection (Supplemental Table S1).

To determine the accuracy of these pooled, competitive

enrichment measurements, we chose 13 individual variants

from the library with a range of enrichments and individually

tested them. The relative growth rates of these 13 were similar to

those measured in the bulk assay (R2 = 0.84) (Supplemental Fig.

S1B,C). To further test the validity of our approach, we individual-

ly cloned 12 5′ UTRs from the library into a yellow fluorescent pro-

tein reporter andmeasured fluorescence levels for these constructs

using flow cytometry. We found good correlation between the

data from the growth selection and flow cytometry (R2 = 0.61)

(Supplemental Fig. S1D), suggesting that results from the HIS3

assay generalize to other gene contexts.

Figure 1. Experimental design and biological discovery. (A) Experimental design of a liquid-based
growth assay of 489,348 5′ UTR variants. Random 50 nt were introduced directly upstream of the HIS3
coding sequence, replacing the 56 nt of the 5′ UTR of the CYC1 promoter. These constructs were intro-
duced into a low copy number plasmid, transformed into yeast without a native copy of HIS3, and com-
peted in media lacking histidine. The enrichment of each UTR after growth was measured by using
massively parallel sequencing before and after selection. (B) 5′ UTR enrichment scores per nucleotide
were averaged at each position. (C) The Kozak sequences (−5 to −1 position) leading to the highest
His3 protein expression compared to the most abundant yeast Kozak sequence (AAAAA). (D) The enrich-
ment of 5′ UTRs based on the predicted minimum free energy of the −50 to +70 sequences. (E) The en-
richment of 5′ UTRs based on the presence of an upstream AUG (uAUG) and a stop codon within the UTR.
Upstream open reading frames (uORFs) are characterized by an in-frame uAUG followed by a termination
codon before the primary ORF start codon, or an out-of-frame uAUG followed by a stop codon before or
after the primary ORF start codon.
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Effects of 5′ UTR features

The size of our library allowed us to observe particular subsequenc-

es many more times than would be possible using genomic

sequences alone. By simply comparing the enrichment of 5′

UTRs with the subsequence to those without, we could determine

whether a feature was, on average, favorable or detrimental

(Methods). With this approach, we analyzed the effects of nucleo-

tide identity at each position, focusing in particular on the Kozak

sequence—defined here as positions −5 to −1 relative to the start

codon. Consistent with prior work (Baim and Sherman 1988;

Looman and Kuivenhoven 1993; Dvir et al. 2013), the single nu-

cleotide effects at positions −3 to −1 relative to the start codon

were the most important, with an adenine in the −3 position the

most beneficial to protein expression (Fig. 1B). This −3 preference

for adenine is shared across many eukaryotes, including fungi,

mammals, and plants (Nakagawa et al. 2008). We examined the

effect on protein expression of all possible Kozak sequences, as

the library encompassed the 1024 possible 5-mers at positions

−5 to −1, with each 5-mer occurring, on average, in 478 different

5′ UTR contexts (Supplemental Table S2). Although themost com-

mon Kozak sequence for yeast is all adenine (Hamilton et al. 1987;

Cavener and Ray 1991), we found that this sequence did not lead

to the highest protein expression. In fact, 5′ UTRs containing 154

other Kozak sequences (122 of which contain an adenine at posi-

tion −3) led to higher average protein expression than all adenine

(the top five are plotted in Fig. 1C), contrary to the widely held

belief that the most efficient Kozak is all adenine (Supplemental

Table S2). These highly efficient Kozak sequences are also present

in the yeast genome in substantial numbers. Each of these top

five Kozak sequences from our assay led to higher average protein

expression than an all adenine sequence when assessed by ribo-

some profiling of native yeast genes (Supplemental Fig. S2A; Pop

et al. 2014). Of note, genes associated with cytoplasmic translation

were enriched for the top five −5 to−1 Kozak sequences (P-value =

9.48 × 10−4).

We assessed the effect of secondary structure, which can in-

fluence ribosome initiation, scanning, and elongation (Rouskin

et al. 2013; Pop et al. 2014). We first examined the correlation be-

tween the predicted minimum free energy (MFE) of the 5′ UTRs

and protein expression. To calculate the predicted MFE, we used

RNAfold (Gruber et al. 2008, 2015; Lorenz et al. 2011) to fold

each 5′ UTR sequence along with the first 70 nt of the HIS3 coding

region. Binning the 5′ UTRs by their predictedMFE score, we found

that lower MFE bins corresponded to decreased protein expression

(Fig. 1D). Since the MFE provides only an aggregate measure of

structure, we next looked at the effect of structure at each position

in the 5′ UTR. We found that secondary structure had the largest

effect on His3 expression when it occurs either near the 5′ end of

the UTR or near the start codon (Supplemental Fig. S2B). Access

to the 5′ cap by the 5′ cap binding complex may be reduced by

5′ secondary structure, although only highly stable 5′ UTR second-

ary structures (<30 kcal/mol)markedly decrease eukaryotic transla-

tion rates (Babendure et al. 2006). Finally, as an alternative, simpler

measure of secondary structure, we looked at the presence of hair-

pinswith varying stem (5, 6, or 7 base pairs [bp]) and loop (0–25nt)

lengths within the UTRs. We found that hairpins with longer

stems and relatively short loops had the most negative impact

on protein expression, perhaps because hairpins with longer loops

form more slowly and are therefore scanned more readily by the

translation machinery (Supplemental Fig. S2C). In spite of these

correlations, secondary structure alone can explain only a small

fraction of overall protein expression (MFE; enrichment correla-

tion of R2 = 0.078) (Supplemental Fig. S2D).

We analyzed the effects of upstream open reading frames,

characterized by an in-frame uAUG followed by a termination

codon before the primary ORF start codon, or an out-of-frame up-

stream AUG (uAUG) followed by a stop codon before or after the

primary ORF start codon (Morris and Geballe 2000; Wang and

Rothnagel 2004; Dvir et al. 2013). uORFs compete with the prima-

ry ORF, often producing nonsensical polypeptides and requiring

translation to restart at the primary ORF start codon. Consistent

with this competition, we found that the presence of a uORF led

to greatly reduced protein expression (Fig. 1E; Supplemental Fig.

S2E). On the other hand, a uAUG in-frame with the primary ORF

—which results only in additional amino acids at the N terminus

of the translated protein—caused aminor reduction in expression.

The effects of these in-frame uAUGs became more severe as the

uAUG was located further toward the 5′ end of the UTR (Fig. 1E;

Supplemental Fig. S2E), consistent with other reports (Wang and

Rothnagel 2004; Dvir et al. 2013; Rich et al. 2016). The additional

amino acids might cause a cumulative effect on translation, pro-

tein function, or protein stability. Enrichment of 5′ UTRs with

in-frame uAUGs correlated with the frequency with which the

codons added upstream of the true AUG are used in S. cerevisiae

(R2 = 0.75) (Supplemental Fig. S2F), generally considered a mea-

sure of translational efficiency (Sharp and Cowe 1991; Akashi

2003; Pop et al. 2014).

Predicting protein expression with a convolutional neural

network

To better understand and engineer UTR sequences, we sought

to create a predictive model of protein expression from 5′ UTR

sequence alone. A comparison between different modeling ap-

proaches revealed several trade-offs. For example, a linear regression

model with position-dependent 3-mer features (43 × 48 = 3072 dis-

tinct features; R2 = 0.42) outperformedmodels withmore complex

but position-independent features (e.g., 6-mer model; 46 = 4096

features; R2 = 0.33) (Supplemental Fig. S3A,B). Given that many

key features of protein expression in yeast have a position depen-

dence—e.g., the identity of the nucleotide at position −3 or the

frame of an upstream start codon—it is not surprising that amodel

that captures such position dependence can outperform a model

that does not, even at the expense of using relatively simple fea-

tures. However, the position-sensitive linear regression model

was still unable to capture more complex features, such as uORFs

or secondary structure. When features capturing this information

were added to the model, the performance was further improved

(R2 = 0.52) (Supplemental Fig. S3C; Methods; Dvir et al. 2013).

On the other hand, CNNs can capture not only position depen-

dence but also nonlinear interactions between features. Since

they do so in an unsupervised fashion, they can also potentially

draw attention to unappreciated elements.

CNNs typically consist of several layers of convolution that

eventually feed into a classic feed-forwardneural network. The first

convolutional layer consists of many “filters” that essentially each

learn a positional weight matrix (PWM). The output of this layer

then feeds into further convolutional layers that can learn interac-

tions between the different motifs recognized by each filter in the

first layer. To choose the architecture of themodel (such as the size

of filters, number of filters, and number of layers), we performed a

hyperparameter search using cross-validation on our training set.

This search led us to choose a model with three layers of
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convolution, each with 128 filters of length 13. The convolutional

layers then feed into a fully connected layer and finally a linear

output layer. The output of ourmodel is the predicted fitness score

for each 5′ UTR, which should be proportional to protein

expression.

Our model accounted for 62% of the observed variability in a

held-out test set (R2 = 0.62) (Fig. 2A), outperforming any of the

other models that we tested. When determining the accuracy of

the models above, we sought to minimize the impact of experi-

mental noise due to sequencing depth. To do so, we chose those

5′ UTRs with the top 5% of input read counts as our test set and

used the remaining 95% (464,880 sequences) to train the CNN.

Choosing a test set by input read counts allowed us to focus on

the higher quality data, while retaining the same distribution of

growth rates as the training set (Supplemental Fig. S4A). As expect-

ed, a similarly trained CNN model tested on a held-out 5% that

was randomly chosen, and presumably having greater noise due

to its lower sequencing depth, had reduced accuracy (R2 = 0.47)

(Supplemental Fig. S4B).

We also wanted to understand whether our approach was

making use of the size and other characteristics of our library. To

determinewhether the scale of our library was an important factor

in improving the accuracy of the model, we made learning curves

frommodels trained on different sized subsets of the data. We saw

a corresponding decrease in the predictive power of our models as

the training size decreased (Supplemental Fig. S4C).We also found

that inclusion of the entire 50 nt of sequence was necessary for

the high predictive capacity of the model, since a CNN trained

Figure 2. A convolutional neural network (CNN) approach to model random 5′ UTR sequences. (A) A three-layer convolutional neural network model
trained on random 5′ UTRs was tested on a held-out test set of the top 5% based on input read depth. Tested 5′ UTRs are specified by color for those
with or without an upstream open reading frame. (B) Four hundred eighty-eight thousand random 13-mers were scored for each filter in layer 1 of the
CNN. The top 1000 13-mers were used to create a positional weight matrix (PWM) for each filter. These PWMs include motifs of start codons, stop codons,
and guanine quadruplexes. Positive Pearson correlations indicate a positive effect on enrichment, while negative correlations indicate a negative effect on
enrichment. (C) The effect of eachmotif per positionwasmeasured by assessing the Pearson correlation ofmotif score and enrichment at each position. Heat
maps of all 5′ UTRs (left) and those lacking upstreamAUGs (right), including specific examples highlighting filters with different positional patterns are shown.
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using only the 10 nt adjacent to the start codon performed poorly

(R2 = 0.097) (Supplemental Fig. S4D).

To understand the filters presented in the first layer,we scored

488,000 random 13-mers and created a PWM out of the top 1000

scoring sequences for each filter (Methods). Twelve of the 128 fil-

ters in the first layer of the model learned uAUG motif variants,

while eight learned motifs with stop codons (UAG/UGA/UAA)

(Fig. 2B; Supplemental Fig. S5). Additional filters resemble motifs

involved in aG-quadruplex, an importantmotif in RNA secondary

structure (Capra et al. 2010). Several other filters have no obvious

biological significance at the first layer of convolution as expected;

however, in combination, these may correspond to meaningful

motifs. Some of these filters might explain the binding sites of

RNA-binding proteins, as few binding sites for such proteins

have been characterized in S. cerevisiae (Ray et al. 2013). Because

the model should be learning not just translational efficiency

but also features like RNA stability and changes in the transcrip-

tional start site, filters could include several types of potential

motifs (Fig. 2B; Supplemental Fig. S5).

Visualizing the positional dependencies of the first-layer mo-

tifs resulted in interpretablemaps of the 5′ UTR sequence-function

relationship. Some motifs had positional effects (Fig. 2C), such

that they influenced protein expression differentially depending

on their location within the 5′ UTR. Others showed a striking 3-

nt periodicity, reflecting their position relative to the reading

frame of uAUGs. This periodicity was not present when 5′ UTRs

lacking uAUGs were analyzed alone.

The second and third layer of the CNN can learn information

about the interplay of lower-level filters. For example, some of

the higher layers combine uAUG and stop codon filters to learn

the concept of a uORF, as evidenced by the model predicting

much lower protein expression for 5′ UTR sequences containing a

uORF (see Fig. 2A). The model predicts that a 5′ UTR with only an

in-frame upstream AUG will have a higher enrichment than one

with an in-frame uAUG as well as an in-frame stop codon

(Supplemental Fig. S3D). The model also predicts that a 5′ UTR

with an in-frame uAUG as well as an out-of-frame stop codon will

have only a small effect on expression (Supplemental Fig. S3D).

Native 5′ UTRs may contain a higher density of motifs or

higher ordermotifs not captured using a random library.We there-

fore asked whether the model could predict protein expression

from native S. cerevisiae 5′ UTRs (Park et al. 2014). We constructed

a library composed of 50-nt segments from all known native 5′

UTR sequences in the context of the HIS3 reporter (Fig. 3A). Our

model performed well on the task of predicting the impact of

the native sequences (R2 = 0.60) (Fig. 3B; Supplemental Table S3),

giving us confidence that it captured the sequence information

important for 5′ UTR function. On the other hand, a CNN trained

only on this native library performedworse on both the native and

random library data sets, most likely due to the limited size of the

training set (training set = 9492 sequences; R2 = 0.47 native test set;

R2 = 0.30 random test set) (Supplemental Fig. S6). As in the case

of our model trained on random sequences, a CNN trained on

the native sequences using only the 10 nt proximal to the start

codon also performed poorly (R2 = 0.14) (Supplemental Fig. S6).

In silico evolution of 5′ UTRs

The design of functional sequences with user-defined properties is

a compelling demonstration of the predictive power of amodel. As

a goal, we sought to use our model to improve the expression

of a sample of random and native 5′ UTRs. We performed a

model-guided in silico evolution of 200 5′ UTR sequences, half

chosen from our random library and half from the native library,

representing UTRs over the entire range of activity. During each

step of the evolution, wemade all possible mutations and selected

the single nucleotide substitutionpredicted to result in the greatest

increase in protein expression. By making sequential single base

changes, we were able to track how sequence features changed

over the course of evolution. We continued making changes

until the predicted expression of each 5′ UTR plateaued (Fig. 4A;

Supplemental Fig. S7A).

For 98 of the sequences derived from the random library and

93 from the native library, we were able to construct HIS3 con-

structs for the starting, midpoint, and endpoint of the evolutions.

We then tested these 573 sequences in our growth assay. Our

approach yielded improved expression for ∼94% and ∼84% of

the sequences selected from the random and native libraries,

respectively (Fig. 4B; Supplemental Fig. S7B; Supplemental Table

S4). The relative expression of these 5′ UTRs held in different 3-

AT conditions (R2 > 0.93) (Supplemental Fig. S8A). For themajority

of sequences fromboth libraries, the largest increases in expression

occurred between the starting andmidpoint sequences, consistent

with prediction from the evolutions. In both data sets, we also

found that the degree to which the ex-

pression improved negatively correlated

with the starting value, suggesting that

it is easier to improve upon low expres-

sion 5′ UTRs than on high expression

ones (random: R2 = 0.54; native: R2 =

0.86) (Supplemental Fig. S8B). We also

found that the majority of the endpoint

sequences from the evolutions (88 out

of 98 of the random library and 75 out

of 93 of the native library) performed bet-

ter than 90% of their corresponding larg-

er library after normalization (Fig. 4C;

Methods). Even with this technically

simple approach, we found thatwe could

increase protein production starting

from almost any native or random start-

ing sequence.

To analyzewhere and how the CNN

made changes, we expanded the number

Figure 3. Validation of the CNN model on native 5′ UTRs. (A) Native 5′ UTR sequences were synthe-
sized in 50-nt fragments and introduced into the HIS3-based selection system. (B) Correlation of a native
library with the predictions from our convolutional neural network built from random sequences.
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of random sequences that we computationally evolved to 5000,

with each proceeding through 40 steps (Supplemental Tables S7,

S8). We looked at the prevalence of simple characteristics, includ-

ing uORFs, in-frame uAUGs, an A in the −3 position, favorable

Kozak sequences, and nucleotide bias (Fig. 4D; Supplemental Fig.

S9A). The model selected against uORFs and structure (Fig. 4D;

Supplemental Fig. S9B) and selected for an in-frame uAUG, A at

the−3 position, and overall A-rich composition except at positions

−1 and −49, where Gs predominated (Supplemental Fig. S7A).

Although one Kozak sequence (ACAAG) was the most prevalent,

no single 5-nt sequence dominated. During in silico evolutions,

the CNN did not collapse sequences to the same sequence.

Rather, it maintained a similar and large Hamming distance (∼34

at the beginning,∼32 at the end), suggesting thatmany of themo-

tifs added are position-independent.

These more predictable changes were accompanied by more

complex ones, revealed by analyzing the increase and decrease of

the PWMs that we derived from the filters from the first convolu-

tional layer of ourmodel (and the addition and removal of specific

4-mers) (Fig. 4E; Supplemental Fig. S9). Consistent with our initial

characterizationof themodel, the “top performing” filters (Fig. 2B)

were selected for enrichment over the course of the rounds of evo-

lution.Moreover, except at either end of the 5′ UTR, the spatial dis-

tribution of enrichment and depletion of most of the PWMs was

largely uniform across the UTRs. Notable exceptions included

the negative selection of out-of-frame positions for filters contain-

ing strong AUG signals (Supplemental Fig. S10). We also note that

the 4-mersmost enriched in the evolved sequences often appeared

multiple times in a single 5′ UTR (Supplemental Fig. S11A). We re-

analyzed the experimental data collected from the full random

and native libraries and found that additional copies of the

enriched 4-mers correlated with continued increases in enrich-

ment (Supplemental Fig. S11B,C, respectively). Similarly, each

additional copy of the depleted 4-mers correlated with reduced ex-

pression (Supplemental Fig. S11B,C, right side). Themost enriched

4-mers and the most enriched Kozak sequence partially overlap

with the reverse complement of part of the consensus motif for

Nab3 (UCUUGU), a component of the transcription termination

Nrd1 complex (Creamer et al. 2011). The three 4-mers (CAAG,

ACAA, and AAGA) that match the reverse complement of the

consensus site were highly enriched at the end of the evolutions

compared to other motifs with the same nucleotide composition

(P = 4.6 × 10−7, t-test; 42,906 occurrences in total for the three mo-

tifs), while 4-mers found within the motif itself (UCUU, CUUG,

and UUGU) occurred only 48 times at step 40.

Discussion

Here, we built and analyzed a library of approximately 500,000

random 5′ UTRs. We used the resulting data to train a CNNmodel

that can predict the effect that any 5′ UTR in yeastwill have onpro-

tein expression. Although the model was trained only on data

from the random library, it performed equally well at predicting

the behavior of native 5′ UTRs. The high quality of the predictions

is a direct result of the large training data set, compared tomethods

that consider only the limited set of approximately 5000 native

yeast 5′ UTRs.

Even though the sequences in our library were randomly gen-

erated, the size of the library allowedus to confidently quantify the

effect of naturally occurring sequence features on protein expres-

sion. For example, we identified 154 variants of the−5 to−1 region

that outperformed the consensus Kozak sequence of five adenines.

While functional roles for these motifs are supported by ribosome

profiling data (Supplemental Fig. S2), the vast majority appear in

the yeast genome in such low frequency that they could not be

uncovered using native genes.

Analysis and visualization of themodel features allowed us to

identify cis-regulatory motifs. These include motifs such as G-

quadruplex sequences known to influence expression, as well as

several novel motifs with unknown mechanisms. Some of these

motifs may represent target sites for RNA-binding proteins, for

which only a limited number of recognition sites have been iden-

tified to date in yeast 5′ UTRs. Similarly, other motifs likely corre-

spond to regulators that act at other levels of protein expression.

For example, a handful of themotifs appear to contain the binding

Figure 4. Model-guided optimization of 5000 random sequences. (A)
Using our convolutional neural network, we iteratively predicted the opti-
mal single nucleotide change in 100 random5′ UTR sequences until no ad-
ditional increase in enrichment was predicted. An example of these
changes can be seen in the inset. (B) The start, midpoint, and endpoints
from evolutions in A were tested experimentally. The predicted and ob-
served enrichments are plotted. (C ) Experimental data from endpoints
of the optimized 5′ UTR sequences derived from both the random and na-
tive sets of sequence are compared to the enrichment distribution from the
original randomand native libraries. (D) Five thousand sequences from our
random library were evolved over 40 steps and assayed for enrichment and
depletion of common nucleotide features. (E) Analysis of the enrichment
(left) and depletion (right) of motifs identified from the first convolutional
layer of our model—the same as described in Figure 2.
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site of components of the Nrd1 antisense transcriptional regulato-

ry complex (Creamer et al. 2011). Since these motifs are enriched

in noncoding RNAs and lead to early transcription termination,

they may potentially reduce the amount of antisense transcrip-

tion, which is known to control expression in a subset of yeast

genes (Schulz et al. 2013; Huber et al. 2016). Since the genomic

CYC1 gene—whose elements we use in our assay—has an anti-

sense transcript that initiates within its terminator, the plasmid

carrying our reporter gene likely shares this same source of anti-

sense transcription.

We also generated a comprehensive spatialmap of the impact

of cis-regulatory motifs on protein production. In doing so, we ob-

served that themajority of position-dependent effects are observed

at either end of the 5′ UTR, while alongmuch of the length the po-

sitional effects are largely uniform. A notable exception is for mo-

tifs containing start or stop codons, where themodel is sensitive to

the reading frame with respect to the primary HIS3 start codon.

We demonstrated that our model can be used for the forward

engineering of sequences with improved properties. Using a sim-

ple model-driven evolution approach, we selected for sequences

that were enriched for characteristics correlated with higher

protein expression (Fig. 4; Supplemental Figs. S9–S11). Such com-

putationally performed evolutions can dramatically reduce exper-

imental overhead in the design of regulatory elements for

synthetic pathways.

Any approach that uses protein expression as its readout is

potentially limited by its inability to distinguish among transcrip-

tion, RNA processing and stability, translation, and protein

stability. Transcription and posttranscriptional effects could be

disentangled by direct measurement of RNA levels, for which

RNA-seq-based approaches are well established (Kwasnieski et al.

2012; Melnikov et al. 2012; Patwardhan et al. 2012). Moreover,

because our experimental approach relies upon growth selection,

it is inherently less sensitive in detecting sequence variants that

lead to poor protein expression. This lack of sensitivity is apparent

when we compare the individual R2 that includes only UTRs con-

taining uORFs (R2 = 0.245) to UTRs without uORFs (R2 = 0.478).

Because most UTRs with uORFs do poorly in the growth assay,

they are sequenced less frequently and are therefore subject to

less accuratemeasurement. However, such variants that drastically

reduce protein expression have been of limited interest, at least for

engineering applications.

Yeast have been the source of much of our knowledge of the

highly conserved process of translation. Thus, we expect that our

approach developedherewill be similarly useful for understanding

aspects of the biology of other organisms, for example, allowing

predictions about the impact of human genetic variation on tran-

scription and translation (Dunham and Fowler 2013).

Methods

Library construction

Synthetic 5 ′ UTR library

We replaced a 56-bp CYC1 5′ UTR fragment upstream of the HIS3

ATGon a p415-CYC1 plasmid (Mumberg et al. 1995) with a library

of 50-bp synthetic 5′ UTR fragments. The CYC1 promoter is short

(298 nt), with well-established TATA-binding protein sites, up-

stream activating sequences (UASs) for HAP1 (Pfeifer et al. 1987)

and MIG1 (Olesen et al. 1987; Treitel and Carlson 1995), and

transcriptional start sites, and is regularly used as a consistent

low-expression promoter. The synthetic 5′ UTR fragments were

constructed by annealing primers 126 and 127 containing an over-

lap region (ggacctttgcagca) and making the sequence double-

stranded using the Klenow fragment of DNA polymerase I (NEB).

The resulting fragment had a 50-bp random region and 60-bp

and 33-bp 5′ and 3′ overlaps with the CYC1 promoter and the

HIS3 coding sequence, respectively, including the ATG start co-

don.We inverse-PCR-amplified the p415-CYC1 plasmid backbone

with primers 132 and 133 using KAPA HiFi polymerase (Kapa

Biosystems), excluding the ATG start codon. Including the start

codon in the library fragment served to prevent background plas-

mids not containing a library fragment from resulting in growth in

media lacking histidine. The final library (YTLR200) was assem-

bled using Gibson assembly (Gibson et al. 2009) and electropo-

rated into 40 µL of DH5α electrocompetent E. coli (NEB), to yield

approximately 500,000 colonies.

Native 5 ′ UTR library

For the native library, we constructed 11,962 sequences represent-

ing native 5′ UTRs from the yeast genome (Park et al. 2014) in

50-bp fragments with 25-bp overlap if the UTR exceeded 50 bp

in length, and in smaller fragments for UTRs shorter than 50 bp.

Twenty–base-pair overhangs were added to both 5′ (acattaggacc

tttgcagca) and 3′ (ATGacagagcagaaagccct) ends of these sequences,

again overlapping the CYC1 promoter andHIS3 gene on the p415-

pCYC1 plasmid. The library sequences were purchased from

CustomArray Inc. as a mixed oligo pool and amplified by qPCR

using primers 126 and 142 in 15 cycles. The resulting fragment

was assembled with the plasmid backbone via Gibson reaction

and electroporated as described above, resulting in about 200,000

colonies (YTLN200).

Yeast transformation

For the library transformation into yeast, we followed the electro-

poration protocol described (Benatuil et al. 2010). For the large

synthetic 5′ UTR library (YTLR200), we used an overnight culture

of BY4741 (Baker Brachmann et al. 1998) diluted 1:50 into 50

mL of YPAD media (Amberg et al. 2005) and grown to OD 1.6.

We prepared 400 µL of electroporation-competent cells as de-

scribed and transformed with a mixture of 3.66 µg library plasmid

YTLR200 linearized with EcoRI and 11.2 µg of DNA fragment PCR-

amplified from YTLR200 with primers 134 and 135 to contain re-

gions of overlap both upstream of and downstream from the EcoRI

restriction site (Supplemental Table S5). We grew the transformed

library in 500mL of synthetic dextrose media (Amberg et al. 2005)

without leucine (SD-Leu) overnight and used colony counts from

serial dilutions plated on SD-Leu to estimate library size. Using a

longer region of homology (2.3 kb) led to improved transforma-

tion, resulting in∼2 × 106 colonies. For the generationof thenative

5′ UTR library (YTLN), the same protocol was followed; 6.7 µg of

EcoRI-digested library plasmid YTLN200 and 15.55 µg of PCR-

amplified fragment (primers 134 and 135) were transformed into

800 µL of electrocompetent BY4741 yeast cells with similar effi-

ciency as the YTLR library described above. For the transformation

of individual plasmids into yeast strains, we followed a lithium

acetatemethod (Gietz and Schiestl 2007). Althoughyeast canexpe-

rience relatively high cotransformation rates, there is usually only

one CEN-containing plasmid per cell after 36 h of outgrowth

(Scanlon et al. 2009). Posttransformation, cells in our experiments

were grownwell beyond 36 h before growth selections were begun.

Growth rates measurements

Yeast cultures were grown overnight at 30°C in 5 mL until saturat-

ed. In 96-well plates, cultures were diluted 1:20 in 200 µL volume
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of minimal selective media. The plates were shaken at 30°C in

media lacking histidine and leucine and with 3-Amino-1,2,4

triazole (3-AT, Sigma) (Brennan and Struhl 1980) in a Synergy

H1 hybrid reader (Biotek). Mean (n = 6) maximum doubling rate

was determined by measuring the maximum slope of O.D. 660

measurements over six points of measurement ± standard error

and compared to the calculated enrichment from the competition

assay (Supplemental Table S6).

Oligonucleotides and DNA sequencing

Oligonucleotides were obtained from Integrated DNATechnologies

with standard desalting purification.

Sanger sequence and analysis was performed as described

(Sanger et al. 1977). Deep sequencing of plasmid DNA was per-

formed on an IlluminaNextSeq after purifying plasmidDNAusing

the Zymoprep yeast plasmid prep II (Zymo Research) and PCR am-

plification for 12 to 20 cycles.

Library selection

Cells from the input population were collected for sequencing

and for back dilution into the selection medium (SD–His–Leu +

1.5 mM 3-AT) in triplicate, adding 1 × 108 cells to 1 L medium.

Each replicate was cultured for 20 h to logarithmic phase (O.D.

A660 = 1.0, 6 × 109 cells), after which 3 × 108 cells were collected

for sequencing.

Optimization of the dynamic range of the selection assay

To optimize the dynamic range of our selection assay, we com-

pared the growth of two yeast strains, one harboring the HIS3

construct with the native CYC1 5′ UTR and the other with a 5′

UTR containing a strong hairpin known to impair translation

(Dvir et al. 2013; Lamping et al. 2013). In the presence of various

concentrations of 3-AT, we found a maximal separation of growth

rate between the two strains at 1.5mM3-AT (Supplemental Fig. S1A).

Strains and media

Yeast experiments used the BY4741 strain. pCYC1-HIS3 was

cloned into the pRS series10 of yeast vectors with the LEU2nutrient

marker (pRS415). To construct the plasmids harboring the individ-

ual synthetic and native 5′ UTRs, we designed a set of one forward

and two reverse primers, each 30 bases long with a 10-base overlap

in the middle of the sequence for each sequence listed above.

We added a 5′ acattaggacctttgcagca overhang to the forward

primer (overlapping CYC1 promoter) and either agggctttctgctctg

tcat 3′ overhang (overlapping HIS3 gene) or attcttcacctttagacat 3′

overhang (overlapping Venus gene) to the reverse primers. We

obtained the oligos in a 96-well array (IDT), annealed them, filled

them in with the Klenow fragment, and cloned them into either

the p415-pCYC1 backbone or p415-pCYC1-Venus backbone as

described. The p415-pCYC1-Venus plasmidwas constructed by re-

placing theHIS3 sequence in the p415-pCYC1 plasmid used in our

library construction with Venus via Gibson assembly.

Enrichment analysis

For the random libraries, we first listed all identifiedUTRs.We then

collapsed any sequences with a Hamming distance of less than 3

and removed any with length less than 3. We used STAR (Dobin

et al. 2013) to align reads from both our input libraries and selec-

tion libraries to this complete list of UTRs. Next, we counted the

number of alignments to each UTR. To calculate the enrichment

scores, we first added a “pseudocount” of one to the counts of

eachUTR in both inputs and selections and normalized the adjust-

ed counts of each UTR by the total counts in each time point (in-

put or selection), calculating the log enrichment of each sequence

in the selection relative to the input. Native sequences were quan-

tified similarly; however, because we started with known sequenc-

es, we were able to simply count the occurrences of each UTR in

both the input and selection libraries as described above.

Identifying features of 5′ UTRs

Using the enrichment scores derived fromdeep sequencing, we de-

termined the average per-position score for each base, resulting in

the plot in Figure 2B. Ribosome profiling scores of native genes

were calculated as the log-ratio of ribosome footprint counts over

mRNA fragment counts. To isolate the effect of the −5 to −1 posi-

tions comprising the Kozak sequence, we considered each possible

5-mer separately. We first generated a subset of all 5′ UTR sequenc-

es containing a specific 5-mer in the −5 to −1 positions. We calcu-

lated an average enrichment score for this subset and compared

it to the enrichment score calculated for all other 5′ UTRs. This pro-

cess averaged out effects of all sequence elements other than the

Kozak sequence. We then repeated this process to get scores for

all possible Kozak sequences (Supplemental Table S2). Minimum

free energy was calculated using a window of −56 (the predicted

transcriptional start site) and +70 using RNAfold (Gruber et al.

2015), then binned based on this MFE in increments of 5. Free

base probabilities were also calculated using RNAfold.We searched

for potential hairpins comprising combinations of hairpin length

(5–7 nt) and loop length (0–24 nt), and then searched for perfect

complementary pairs of 5–7 nt contained in a UTR. For each

type of hairpin, we calculated the average enrichment scores of

the subset of UTRs containing that type of hairpin. Plots were gen-

erated using Matplotlib (Hunter 2007) or ggplot2 (Wickham 2009).

Convolutional neural network training

All models were trained using the Python package Keras (https

://keras.io/). The test set was made from the 5′ UTRs with the

most reads before selection (top 5%), using the rest of the data as

a training set. One hot encoding was used to convert the DNA se-

quence into a binary matrix; each column in the matrix is associ-

ated with a position in the DNA sequence and each row with one

of the 4 nt. In each column, a single entry is set to a logical “1” (in

the row corresponding to the nucleotide at that position), while

the other three entries are “0.” All of our models were trained

with the Adam optimizer (Kingma and Ba 2014), and early stop-

pingwas used to prevent overfitting to the training data. Cross-val-

idation was performed on the training set to choose the model

architecture. We tested combinations of the following hyperpara-

meters: convolutional filter width: [9, 13, 17, 25], number of

convolutional filters per layer: [32, 64, 128, 256], number of con-

volutional layers: [2, 3, 4], number of dense layers: [1, 2], dropout

probability in convolutional layers: [0, 0.15], dropout probability

in dense layers: [0, 0.1, 0.25, 0.5], number of units in each dense

layer: [32, 64,128, 256]. The best combination of hyperparameters

proved to be the following model architecture:

Layer 1: Convolutional, 128 filters (4 × 13), relu activation, 0.15

dropout probability

Layer 2: Convolutional, 128 filters (1 × 13), relu activation, 0.15

dropout probability

Layer 3: Convolutional, 128 filters (1 × 13), relu activation, 0.15

dropout probability

Layer 4: Fully connected layer, 64 hidden units, relu activation, no

dropout

Layer 5: Linear output layer, 1 output unit
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Hyperparameter searches for the CNN models presented in

Supplemental Figures S4 and S6 were performed in the same fash-

ion as described above and with the same parameters—with the

exception of the CNN trained using only the 10 nt adjacent to

the start codon, which tested convolution filter widths of [2, 3,

5, 10]. All CNN models were trained as described above. Code for

the hyperparameter search and model training are available in

the Supplemental Code file and on GitHub at https://github.

com/Seeliglab/2017---Deep-learning-yeast-UTRs.

k-mer models

The same training and test data were used to train linear regression

models based on k-mer features. We trained models that simply

used k-mer counts in each 5′ UTR as features as well as training

models using k-mers at each position as features (e.g., for a 3-mer

model, there are 64 possible 3-mer sequences and 48 positions,

leading to 3072model weights; 3072 = 43 × 48). We also added ad-

ditional features used in previous work (Dvir et al. 2013): presence

of a uORF, MFE (positions −56 to +70) by RNAfold (Gruber et al.

2015), a purine at position −3, adenine at position −1, number

of GG-dinucleotide occurrences, and number of CACC pattern

occurrences. We cross-validated to choose the optimal L2 regular-

ization parameter for all k-mer models.

Visualization and analysis of convolutional filters

To visualize each filter in the first layer of convolution, we scored

488,000 newly created random 13-mers with each filter. We

then used the top 1000 (0.2%) scoring 13-mers as input into the

WebLogo 3 (Crooks et al. 2004) program to generate motifs.

However, this visualization does not inform us as to whether the

given filter/motif has a positive or negative influence on protein

expression. To assess which motifs might increase or decrease pro-

tein expression, we calculated the correlation between each filter

score and the observed enrichment scores by first calculating the

maximum score for each filter in each UTR sequence (across all

positions). A high filter score simply indicates a strong match to

the givenmotif within a UTR.We then calculated the Pearson cor-

relation between these maximal filter scores and the enrichment

scores.

Forward engineering of sequences

Five thousand random sequences and 100 native sequences were

analyzed for the single nucleotide change that led to the largest pre-

dicted change from our CNN model. This was done iteratively for

40 steps. From these, the start, midpoint, and endpoint of 100 se-

quences from the random library and the 100 native sequences

were chosen for synthesis. Endpoints were chosen based on

the step at which no additional predicted enrichment was

attained. Sequences were synthesized by oligonucleotide array

(CustomArray Inc.), introduced using Gibson assembly, and trans-

formed into yeast. These yeast transformantswere grown, collected,

and sequenced as before. Deep-sequencing data were analyzed us-

ing the Enrich2 package to assess enrichment of sequences

(Rubin et al. 2016). To directly compare the evolved sequences

with our larger random and native libraries, we determined the

differences in enrichment scores of the starting point sequences

(present in both libraries). We then normalized the rest of the

larger libraries by the slope of these starting point scores to account

for the differences in the strength of selection due to the differences

in the sizes of the larger libraries compared to the evolutions. Code

for the forward engineering of the selected randomandnativeUTRs

is available in the Supplemental Code file and on GitHub at https

://github.com/Seeliglab/2017---Deep-learning-yeast-UTRs.

Data access

High-throughput reads of selections from this study have been

submitted to the Gene Expression Omnibus repository (GEO;

https://www.ncbi.nlm.nih.gov/geo/) under accession number

GSE104252. Individual Sanger sequencing reads from this study

have been submitted to the Sequence Read Archive (SRA; https

://www.ncbi.nlm.nih.gov/sra) under accessionnumber SRP120191.
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