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Abstract

Two things seem to be indisputable in the contemporary

deep learning discourse: 1. The categorical cross-entropy

loss after softmax activation is the method of choice for

classification. 2. Training a CNN classifier from scratch on

small datasets does not work well.

In contrast to this, we show that the cosine loss func-

tion provides substantially better performance than cross-

entropy on datasets with only a handful of samples per

class. For example, the accuracy achieved on the CUB-

200-2011 dataset without pre-training is by 30% higher

than with the cross-entropy loss. Further experiments on

other popular datasets confirm our findings. Moreover, we

demonstrate that integrating prior knowledge in the form of

class hierarchies is straightforward with the cosine loss and

improves classification performance further.

1. Introduction

Deep learning methods are well-known for their demand

after huge amounts of data [40]. It is even widely acknowl-

edged that the availability of large datasets is one of the

main reasons—besides more powerful hardware—for the

recent renaissance of deep learning approaches [20, 40].

However, there are plenty of domains and applications

where the amount of available training data is limited due

to high costs induced by the collection or annotation of suit-

able data. In such scenarios, pre-training on similar tasks

with large amounts of data such as the ImageNet dataset [9]

has become the de facto standard [51, 12], for example in

the domain of fine-grained recognition [23, 56, 8, 37].

While this so-called transfer learning often comes with-

out additional costs for research projects thanks to the avail-

ability of pre-trained models, it is rather problematic in at

least two important scenarios: On the one hand, the tar-

get domain might be highly specialized, e.g., in the field

of medical image analysis [24], inducing a large bias be-

tween the source and target domain in a transfer learning

scenario. The input data might have more than three chan-

nels provided by sensors different from cameras, e.g., depth

sensors, satellites, or MRI scans. In that case, pre-training

on RGB images is anything but straightforward. But even

in the convenient case that the input data consists of RGB

images, legal problems arise: Most large imagery datasets

consist of images collected from the web, whose licenses

are either unclear or prohibit commercial use [9, 19, 49].

Therefore, copyright regulations imposed by many coun-

tries make pre-training on ImageNet illegal for commercial

applications. Nevertheless, the majority of research apply-

ing deep learning to small datasets focuses on transfer learn-

ing. Given huge amounts of data, even simple models can

solve complex tasks by memorizing [43, 52]. Generalizing

well from limited data is hence the hallmark of true intel-

ligence. But still, works aiming at directly learning from

small datasets without external data are surprisingly scarce.

Certainly, the notion of a “small dataset” is highly sub-

jective and depends on the task at hand and the diversity of

the data, as expressed in, e.g., the number of classes. In

this work, we consider datasets with less than 100 training

images per class as small, such as the Caltech-UCSD Birds

(CUB) dataset [46], which comprises at most 30 images per

class. In contrast, the ImageNet Large Scale Visual Recog-

nition Challenge 2012 (ILSVRC’12) [34] contains between

700 and 1,300 images per class.

Since transfer learning works well in cases where suffi-

ciently large and licensable datasets are available for pre-

training, research on new methodologies for learning from

small data without external information has been very lim-

ited. For example, the choice of categorical cross-entropy

after a softmax activation as loss function has, to the best of

our knowledge, not been questioned. In this work, however,

we propose an extremely simple but surprisingly effective

loss function for learning from scratch on small datasets:

the cosine loss, which maximizes the cosine similarity be-

tween the output of the neural network and one-hot vec-

tors indicating the true class. Our experiments show that

this is superior to cross-entropy by a large margin on small
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datasets. We attribute this mainly to the L2 normalization

involved in the cosine loss, which seems to be a strong,

hyper-parameter free regularizer.

In detail, our contributions are the following:

1. We conduct a study on 5 small image datasets (CUB,

NAB, Stanford Cars, Oxford Flowers, MIT Indoor

Scenes) and one text classification dataset (AG News)

to assess the benefits of the cosine loss for learning from

small data.

2. We analyze the effect of the dataset size using differently

sized subsets of CUB, CIFAR-100, and AG News.

3. We investigate whether the integration of prior semantic

knowledge about the relationships between classes as re-

cently suggested by Barz and Denzler [5] improves the

performance further. To this end, we introduce a novel

class taxonomy for the CUB dataset and also evaluate

different variants to analyze the effect of the granularity

of the hierarchy.

The remainder of this paper is organized as follows: We

will first briefly discuss related work in Section 2. In Sec-

tion 3, we introduce the cosine loss function and briefly re-

view semantic embeddings [5]. Section 4 follows with an

introduction of the datasets used for our empirical study in

Section 5. A summary of our findings in Section 6 con-

cludes this work.

2. Related Work

Learning from Small Data The problem of learning

from limited data has been approached from various direc-

tions. First and foremost, there is a huge body of work in

the field of few-shot and one-shot learning. In this area, it

is often assumed to be given a set of classes with sufficient

training data that is used to improve the performance on

another set of classes with very few labeled examples. Met-

ric learning techniques are common in this scenario, which

aim at learning discriminative features from a large dataset

that generalize well to new classes [45, 38, 41, 47, 50], so

that classification in face of limited data can be performed

with a nearest neighbor search. Another approach to few-

shot learning is meta-learning: training a learner on large

datasets to learn from small ones [22, 30, 48].

Our work is different from these few-shot learning ap-

proaches due to two reasons: First, we aim at learning a

deep classifier entirely from scratch on small datasets, with-

out pre-training on any additional data. Secondly, our ap-

proach covers datasets with roughly between 20 and 100

samples per class, which is in the interstice between a typi-

cal few-shot scenario with even fewer samples and a classi-

cal deep learning setting with much more data.

Other approaches on learning from small datasets em-

ploy domain-specific prior knowledge to either artificially

enlarge the amount of training data or to guide the learning.

Regarding the former, Hu et al. [16], for instance, compos-

ite face parts from different images to create new face im-

ages and Shrivastava et al. [36] conduct training on both real

images and synthetic images using a GAN. As an example

for integrating prior knowledge, Lake et al. [21] represent

classes of handwritten characters as probabilistic programs

that compose characters out of individual strokes and can be

learned from a single example. However, generalizing this

technique to other types of data is not straightforward.

In contrast to all approaches mentioned above, our work

focuses on learning from limited amounts of data without

any external data or prior knowledge. This problem has re-

cently also been tackled by incorporating a GAN for data

augmentation into the learning process [53]. As opposed to

this, we approach the problem from the perspective of the

loss function, which has not been explored extensively so

far for direct fully-supervised classification.

Cosine Loss The cosine loss has already successfully

been used for applications other than classification. Qin

et al. [31], for example, use it for a list-wise learning to

rank approach, where a vector of predicted ranking scores

is compared to a vector of ground-truth scores using the co-

sine similarity. It furthermore enjoys popularity in the area

of cross-modal embeddings, where different representations

of the same entity, such as images and text, should be close

together in a joint embedding space [39, 35].

Various alternatives for the predominant cross-entropy

loss have furthermore recently been explored in the field

of deep metric learning, mainly in the context of face iden-

tification and verification. Liu et al. [25], for example, ex-

tend the cross-entropy loss by enforcing a pre-defined mar-

gin between the angle of features predicted for different

classes. Ranjan et al. [33], in contrast, L2-normalize the

predicted features before applying the softmax activation

and the cross-entropy loss. However, they found that doing

so requires scaling the normalized features by a carefully

tuned constant to achieve convergence. Wang et al. [47]

combine both approaches by normalizing both the features

and the weights of the classification layer, which realizes

a comparison between the predicted features and learned

class-prototypes by means of the cosine similarity. They

then enforce a margin between classes in angular space.

While such techniques are also sometimes referred to as

“cosine loss” in the face identification literature, the actual

classification is still performed using a softmax activation

and supervised by the cross-entropy loss, whereas we use

the cosine similarity directly as a loss function. Further-

more, the aforementioned methods focus rather on learning

image representations that generalize well to novel classes

(such as unseen persons) than on directly improving the

classification performance on the set of classes on which
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Figure 1: Heatmaps of three loss functions in a 2-D feature space with fixed target ϕ(y) =
[
1 0

]⊤
.

the network is trained. Moreover, they introduce new hyper-

parameters that must be tuned carefully.

In the context of image retrieval, Barz and Denzler [5]

recently used the cosine loss to map images onto seman-

tic class embeddings derived from a hierarchy of classes.

While the focus of their work was to improve the seman-

tic consistency of image retrieval results, they also reported

classification accuracies and achieved remarkable results on

the NAB dataset without pre-training. This led them to the

hypothesis that prior semantic knowledge would be partic-

ularly useful for fine-grained classification tasks. In this

work, we show that the main reason for this phenomenon

is the use of the cosine loss and that it can be applied to

any small dataset to achieve better classification accuracy

than with the standard cross-entropy loss, even with one-

hot vectors as class embeddings. The effect of semantic

class embeddings, in contrast, is only complementary.

3. Cosine Loss

In this section, we introduce the cosine loss and briefly re-

view the idea of hierarchy-based semantic embeddings [5]

for combining this loss function with prior knowledge.

3.1. Cosine Loss

The cosine similarity between two d-dimensional vectors

a, b ∈ R
d is based on the angle between these two vectors

and defined as

σcos(a, b) = cos(a∠b) =
〈a, b〉

‖a‖2 · ‖b‖2
, (1)

where 〈·, ·〉 denotes the dot product and ‖ · ‖p the Lp norm.

Let x ∈ X be an instance from some domain (images,

text etc.) and y ∈ C be the class label of x from the set of

classes C = {1, . . . , n}. Furthermore, fθ : X → R
d de-

notes a transformation with learned parameters θ from the

input space X into a d-dimensional Euclidean feature space

as realized, for instance, by a neural network. The trans-

formations ψ : Rd → P and ϕ : C → P embed features

and classes into a common prediction space P , respectively.

One of the simplest class embeddings, for example, consists

in mapping each class to a one-hot vector:

ϕonehot(y) =
[
0 · · · 0
︸ ︷︷ ︸

y−1 times

1 0 · · · 0
︸ ︷︷ ︸

n−y times

]⊤
. (2)

We consider the class embeddings ϕ as fixed and aim at

learning the parameters θ of a neural network fθ by maxi-

mizing the cosine similarity between the image features and

the embeddings of their classes. To this end, we define the

cosine loss function to be minimized by the neural network:

Lcos(x, y) = 1− σcos
(
fθ(x), ϕ(y)

)
. (3)

In practice, this is implemented as a sequence of two op-

erations. First, the features learned by the network (with

d = n) are L2-normalized: ψ(x) = x
‖x‖2

. This restricts the

prediction space to the unit hypersphere, where the cosine

similarity is equivalent to the dot product:

Lcos(x, y) = 1−
〈
ϕ(y), ψ(fθ(x))

〉
. (4)

The class embeddings ϕ(y) need to lie on the unit hyper-

sphere as well for this equation to hold. One-hot vectors,

for example, have unit-norm by definition and hence do not

need to be L2-normalized explicitly.

When working with batches of multiple samples, we

compute the average loss over all instances in the batch.

3.2. Comparison with Categorical Cross­Entropy
and Mean Squared Error

In the following, we discuss the differences between the co-

sine loss and two other well-known loss functions: the cat-

egorical cross-entropy and the mean squared error (MSE).

The main difference between these loss functions lies in the

type of the prediction space they assume, which determines

how the dissimilarity between predictions and ground-truth

labels is measured.

MSE is the simplest of these loss functions, since it does

not apply any transformation to the feature space and hence
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uses an Euclidean prediction space. Naturally, the dissimi-

larity between the samples and their classes in this space is

measured by the squared Euclidean distance:

LMSE(x, y) = ‖fθ(x)− ϕ(y)‖22 . (5)

The cosine loss introduced in the previous section re-

stricts the prediction space to the unit hypersphere through

L2 normalization applied to the feature space. In the result-

ing space, the squared Euclidean distance is equivalent to

Lcos as defined in (4), up to multiplication with a constant.

The categorical cross-entropy loss is the most commonly

used loss function for learning a neural classifier. As a

proxy for the Kullback-Leibler divergence, it can be seen

as a dissimilarity measure in the space of probability dis-

tributions, though it is not symmetric. The softmax activa-

tion is applied to transform the output of the network into

this prediction space, interpreting it as the log-odds of the

probability distribution over the classes. The cross-entropy

between the predicted and the true class distribution is then

employed as dissimilarity measure:

Lxent(x, y) = −

〈

ϕ(y), log

(
exp(fθ(x))

‖ exp(fθ(x))‖1

)〉

, (6)

where exp and log are applied element-wise.

A comparison of these loss functions in a 2-dimensional

feature space for a ground-truth class y = 1 is shown in

Fig. 1. Compared with cross-entropy and MSE, the cosine

loss exhibits some distinctive properties: First, it is bounded

in [0, 2], while cross-entropy and MSE can take arbitrarily

high values. Secondly, it is invariant against scaling of the

feature space, since it depends only on the direction of the

feature vectors, not on their magnitude.

The cross-entropy loss function, in contrast, exhibits an

area of steep descent and two widespread areas of compar-

atively small variations. Note that the bright and dark re-

gions in Fig. 1a are not constant but the differences are just

too small for being visible. This makes the choice of a suit-

able initialization and learning rate schedule nontrivial. In

contrast, we expect the cosine loss to behave more robustly

across different datasets with varying numbers of classes.

Furthermore, the optimum value of the cross-entropy

loss function is obtained when the feature value for the di-

mension corresponding to the true class is much larger than

that for any other class and approaches infinity [42, 15].

This is suspected to result in overfitting, which is a particu-

larly important problem when learning from small datasets.

To mitigate this issue, label smoothing [42] adds noise to the

ground-truth distribution as regularization: Instead of pro-

jecting the class labels onto one-hot vectors, the true class

receives a probability of 1 − ε and all remaining classes

are assigned ε
n−1

, where ε is a small constant (e.g., 0.1).

This makes the optimal network outputs finite and has been

found to improve generalization slightly.

With respect to the cosine loss, on the other hand, the L2

normalization serves as a regularizer, without the need for

an additional hyper-parameter that would need to be tuned

for each dataset. Furthermore, there is not only one finite

optimal network output, but an entire sub-space of optimal

values. This allows the training procedure to focus solely

on the direction of feature vectors without being confused

by Euclidean distance measures, which are problematic in

high-dimensional spaces [6]. Especially in face of small

datasets, we assume that this invariance against scaling of

the network output is a useful regularizer.

3.3. Semantic Class Embeddings

So far, we have only considered one-hot vectors as class

embeddings, distributing the classes evenly across the fea-

ture space. However, this ignores semantic relationships

among classes, since some classes are more similar to each

other than to other classes. To overcome this, Barz and

Denzler [5] proposed to derive class embeddings ϕsem on

the unit hypersphere whose dot products equal the seman-

tic similarity of the classes. The measure for this similarity

is derived from an ontology such as WordNet [11], encod-

ing prior knowledge about the relationships among classes.

They then train a CNN to map images into this semantic

feature space using the cosine loss.

They have shown that the integration of this semantic

information improves the semantic consistency of content-

based image retrieval results significantly. With regard to

classification accuracy, however, this method was only com-

petitive with categorical cross-entropy when this was added

as an additional loss function:

Lcos+xent(x, y) = 1−
〈
ψ(fθ(x)), ϕsem(y)

〉

−λ ·
〈
ϕonehot(y), log(gθ(ψ(fθ(x))))

〉
,

(7)

where λ ∈ R
+ is a hyper-parameter and the transformation

gθ : Rd → R
n is realized by an additional fully-connected

layer with softmax activation.

Besides two larger ones, Barz and Denzler [5] also ana-

lyzed one small dataset. This was the only case where their

method also provided superior classification accuracy than

categorical cross-entropy. In the following, we apply the co-

sine loss with and without semantic embeddings to several

small datasets and show that the largest part of this effect is

actually not due to the prior knowledge but the cosine loss.

4. Datasets

We conduct experiments on five small image datasets as

well as a larger one. Statistics for all datasets can be found

in Table 1. Moreover, we show results on a text classifica-

tion task to demonstrate that the benefit of the cosine loss is

not exclusive to the image domain.
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Dataset #Classes #Training #Test Samples/Class

CUB 200 5,994 5,794 29 – 30 (30)

NAB 555 23,929 24,633 4 – 60 (44)

Cars 196 8,144 8,041 24 – 68 (42)

Flowers-102 102 2,040 6,149 20

MIT Indoor 67 5,360 1,340 77 – 83 (80)

CIFAR-100 100 50,000 10,000 500

Table 1: Image dataset statistics. The number of samples

per class refers to training samples and numbers in paren-

theses specify the median.

4.1. CUB and NAB

The Caltech-UCSD Birds-200-2011 (CUB) [46] and the

North American Birds (NAB) [44] datasets are quite sim-

ilar. Both are fine-grained datasets of bird species, but

NAB comprises four times more images than CUB and al-

most three times more classes. It is also even more fine-

grained than CUB and distinguishes between male/female

and adult/juvenile birds of the same species.

In contrast to CUB, the NAB dataset already provides a

hierarchy of classes. To enable experiments with semantic

class embeddings on CUB as well, we created a hierarchy

for this dataset manually. We used information about the

scientific taxonomy of bird species that is available in the

Wikispecies project [3]. This resulted in a hierarchy where

the 200 bird species of CUB are identified by their scien-

tific names and organized by order, sub-order, super-family,

family, sub-family, and genus.

While order, family, and genus exist in all branches of

the hierarchy, sub-order, super-family, and sub-family are

only available for some of them. This leads to an unbal-

anced taxonomy tree where not all species are at the same

depth. To overcome this issue and analyze the effect of the

depth of the hierarchy on classification accuracy, we derived

two balanced variants: a flat one consisting only of the or-

der, family, genus, and species level, and a deeper one com-

prising 7 levels. For the latter one, we manually searched

for additional information about missing super-orders, sub-

orders, super-families, sub-families, and tribes in the En-

glish Wikipedia [2] and The Open Tree of Life [1].

Since CUB is a very popular dataset in the fine-grained

community and other projects could benefit from this class

hierarchy as well, we make it available at https://

github.com/cvjena/semantic-embeddings/

tree/v1.2.0/CUB-Hierarchy.

4.2. Cars, Flowers­102, and MIT Indoor Scenes

The Stanford Cars [18] and Oxford Flowers-102 [27]

datasets are two well-known fine-grained datasets of car

models and flowers, respectively. They are not particu-

larly challenging anymore nowadays, but we include them

in our experiments to avoid a bias towards bird recognition.

To furthermore also include a dataset from the pre-deep-

learning era that is not from the fine-grained recognition

domain, we also conduct experiments on the MIT 67 Indoor

Scenes dataset [32], which contains images of 67 different

indoor scenes. All three datasets do not provide a class hier-

archy and we will hence only conduct experiments on them

in combination with one-hot class embeddings.

4.3. CIFAR­100

With 500 training images per class, the CIFAR-100 [19]

dataset does not fit into our definition of a small dataset

from Section 1. However, we can sub-sample it to interpo-

late between small and large datasets for quantifying the ef-

fect of the number of samples per class on the performance

of categorical cross-entropy and the cosine loss.

A hierarchy for the classes of the CIFAR-100 dataset

derived from WordNet [11] has recently been provided in

[5]. We use this taxonomy in our experiments with seman-

tic class embeddings.

4.4. AG News

To demonstrate that the benefits of the cosine loss are not

exclusive to image datasets, we also conduct experiments

on the widely used variant of the AG News text classifica-

tion dataset introduced in [54]. This is a large-scale dataset

comprising the titles and descriptions of 120,000 training

and 7,600 validation news articles from 4 categories. For

our experiments, we will sub-sample the dataset to assess

the difference between the cosine loss and cross-entropy for

text datasets of different size.

5. Experiments

To demonstrate the performance of the cosine loss on the

aforementioned small datasets, we compare it with the cat-

egorical cross-entropy loss and MSE. Moreover, we analyze

the effect of the dataset size and prior semantic knowledge.

5.1. Setup

For CIFAR-100, we train a ResNet-110 [14] with an input

image size of 32 × 32 and twice the number of channels

per layer, as suggested by [5]. For all other image datasets,

we use a standard ResNet-50 architecture [14]. Images

from the four fine-grained datasets are resized so that their

smaller side is 512 pixels wide and randomly cropped to

448×448 pixels. For MIT Indoor Scenes, we resize images

to 256 pixels and use 224 × 224 crops. We furthermore

apply random horizontal flipping and random erasing [57].

For training the network, we follow the learning rate

schedule of [4]: 5 cycles of Stochastic Gradient Descent

with Warm Restarts (SGDR) [26] with a base cycle length

of 12 epochs. The number of epochs is doubled at the end
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CUB NAB Cars Flowers-102 MIT Indoor CIFAR-100

MSE 42.0 27.7 41.8 63.0 38.2 75.1

softmax + cross-entropy 51.9 59.4 78.2 67.3 44.3 77.0

softmax + cross-entropy + label smoothing 55.5 68.3 78.1 66.8 38.7 77.5

cosine loss (one-hot embeddings) 67.6 71.7 84.3 71.1 51.5 75.3

cosine loss + cross-entropy (one-hot embeddings) 68.0 71.9 85.0 70.6 52.7 76.4

cosine loss (semantic embeddings) 59.6 72.1 — — — 74.6

cosine loss + cross-entropy (semantic embeddings) 70.4 73.8 — — — 76.7

fine-tuned softmax + cross-entropy 82.5 80.1 91.2 97.2 79.9 —

fine-tuned cosine loss (one-hot embeddings) 82.7 78.6 89.6 96.2 74.3 —

fine-tuned cosine loss + cross-entropy (one-hot embeddings) 82.7 81.2 90.9 96.2 73.3 —

Table 2: Test-set classification accuracy in percent (%) achieved with different loss functions on various datasets. The best

value per column not using external data or information is set in bold font.

of each cycle, amounting to a total number of 372 epochs.

During each epoch, the learning rate is smoothly reduced

from a pre-defined maximum learning rate lrmax down to

10−6 using cosine annealing. To prevent divergence caused

by initially high learning rates, we employ gradient clipping

[28] to a maximum norm of 10. For CIFAR-100, we per-

form training on a single GPU with 100 images per batch.

For all other datasets, we distribute a batch of 96 samples

(256 samples for MIT Indoor Scenes) across 4 GPUs.

For text classification on AG News, we use GloVe word

embeddings [29] pre-trained on Wikipedia to represent each

word as 300-dimensional vector and train a GRU layer [7]

with 300 units and a dropout ratio of 0.5 for both input

and output, followed by batch-normalization and a fully-

connected layer for classification. The same learning rate

schedule as for the vision experiments is applied, but lim-

ited to 180 epochs using a batch size of 128 samples.

5.2. Performance Comparison

First, we examine the performance obtained by training

with the cosine loss and investigate the additional use of

prior semantic knowledge. Therefore, we report the classi-

fication accuracy of the cosine loss with semantic embed-

dings and with one-hot embeddings in Table 2 and compare

it with the performance of MSE and standard softmax with

cross-entropy. For the CUB dataset, we have used the deep

variant of the class hierarchy for this experiment. Other

variants will be analyzed in Section 5.3.

With regard to cross-entropy, we also examine the use

of label smoothing (cf. Section 3.2). We set its hyper-

parameter to ε = 0.1, as suggested by Szegedy et al. [42].

As an upper bound, we also report the classification ac-

curacy achieved by fine-tuning a network pre-trained on

ILSVRC’12 [34], using the weights from He et al. [14].

Regarding the cosine loss, we report the performance of

two variants: the cosine loss alone as in (4) and combined

with cross-entropy after an additional fully-connected layer

as in (7). In the latter case, we fixed the combination hyper-

parameter λ = 0.1, following Barz and Denzler [5].

To avoid any bias in favor of a certain method due to

the maximum learning rate lrmax, we fine-tuned it for each

method individually by reporting the best results from the

set lrmax ∈ {2.5, 1.0, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001}.

Since overfitting also began at different epochs for differ-

ent loss functions, we do not report the final performance

after all 372 epochs in Table 2, but the best performance

achieved after any epoch.

Results It can be seen that the classification accuracy ob-

tained with the cosine loss outperforms cross-entropy after

softmax considerably on all small datasets, with the largest

relative improvements being 30% and 21% on the CUB and

NAB dataset. On Cars and Flowers-102, the relative im-

provements are 8% and 6%, but these datasets are easier in

general. The label smoothing technique [42], on the other

hand, leads to an improvement on CUB and NAB only and

still falls behind the cosine loss by a large margin. When a

sufficiently large dataset such as CIFAR-100 is used, how-

ever, cross-entropy and the cosine loss perform similarly

well. MSE performs very poorly on most datasets and never

better than any of the other loss functions.

Before the rise of deep learning and pre-training, leading

methods for fine-grained recognition achieved an accuracy

of 57.8% on CUB by making use of the object part annota-

tions provided for the training set [13]. While this approach

performs better than training a CNN with cross-entropy on

this small dataset, it is outperformed by the cosine loss, even

without the use of additional information.

Still, there is a large gap between training from scratch

and fine-tuning a network pre-trained on a million of images

from ImageNet. Our results show, however, that this gap

can in fact be reduced.
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5.3. Effect of Semantic Information

Besides one-hot vectors as class embeddings, we also ex-

perimented with hierarchy-based semantic embeddings [5].

The results in Table 2 show a slight increase in performance

by one percent point on NAB and 3 percent points on CUB,

but this difference is rather small compared to the 17 percent

points improvement over cross-entropy on CUB achieved

by the cosine loss alone.

To analyze the influence of semantic information derived

from class taxonomies further, we experimented with three

hierarchy variants of different depth on the CUB dataset (cf.

Section 4.1). Table 3 shows the classification performance

obtained with the cosine loss for each of the hierarchies.

When using one-hot embeddings, the difference between

the cosine loss alone (Lcos) and the cosine loss combined

with cross-entropy (Lcos+xent) is smallest. When the class

hierarchy grows deeper, however, the performance of Lcos

decreases, while the classification accuracy achieved by

Lcos+xent improves.

We attribute this to the fact that semantic embeddings do

not enforce the separability of all classes to the same ex-

tent. With one-hot embeddings, all classes are equally far

apart. The aim of hierarchy-based semantic embeddings,

however, is to place semantically similar classes close to-

gether in the feature space and dissimilar classes far apart.

Since the cosine loss corresponds to the distance of sam-

ples from their class center in that semantic space, confus-

ing similar classes is not penalized as much as confusing

dissimilar classes. This is why the additional integration of

cross-entropy improves accuracy in such a scenario by en-

forcing the separation of all classes homogeneously.

5.4. Effect of Dataset Size

To examine the behavior of the cosine loss and the cross-

entropy loss depending on the size of the training dataset,

we conduct experiments on several sub-sampled versions of

CUB and CIFAR-100. We specify the size of a dataset in the

number of samples per class and vary this number from 1 to

30 for CUB, while we use 10, 25, 50, 100, 150, 200, and 250

samples per class for CIFAR-100. For each experiment, we

choose the respective number of samples from each class at

random and increase the number of iterations per epoch, so

that the total number of iterations is approximately constant.

The performance is always evaluated on the full test set. For

CIFAR-100, we report the mean over 3 runs. To facilitate

comparability between experiments with different dataset

sizes, we fixed lrmax to the best value identified for each

method individually in Section 5.2.

The results depicted in Fig. 2 emphasize the benefits

of the cosine loss for learning from small datasets. On

CUB, the cosine loss results in consistently better classifica-

tion accuracy than the cross-entropy loss and also improves

faster when more samples are added. Including semantic

Embedding Levels Lcos Lcos+xent

one-hot 1 67.6 68.0

flat 4 66.6 68.8

Wikispecies 4-6 61.6 69.9

deep 7 59.9 70.4

Table 3: Accuracy in % on the CUB test set obtained by

cosine loss with class embeddings derived from taxonomies

of varying depth. The best value per column is set in bold.

information about the relationships among classes seems to

be most helpful in scenarios with very few samples. The

same holds true for the combination of the cosine loss and

the cross-entropy loss, but since this performed slightly bet-

ter than the cosine loss alone in all cases, we would recom-

mend this variant for practical use in general.

Nevertheless, all methods are still largely outperformed

on CUB by pre-training on ILSVRC’12. This is barely a

surprise, since the network has seen 200 times more images

in this case. We have argued in Section 1 why this kind of

transfer learning can sometimes be problematic (e.g., do-

main shift, legal restrictions). In such a scenario, better

methods for learning from scratch on small datasets, such

as the cosine loss proposed here, are crucial.

The experiments on CIFAR-100 allow us to smoothly

transition from small to larger datasets. The gap between

the cosine loss and cross-entropy is smaller here, but still

noticeable and consistent. It can also be seen that cross-

entropy starts to take over from 150–200 samples per class.

5.5. Results for text classification

We conduct a similar analysis on the AG News text clas-

sification dataset by sub-sampling it and training on sub-sets

of 10, 25, 35, 50, 100, 200, 400, and 800 samples per class.

Each experiment is repeated ten times on different random

subsets of the data and we report the average of the maxi-

mum validation accuracy achieved during training in Fig. 3.

As an upper bound, we also show the accuracy that can be

obtained by fine-tuning a BERT model [10] pre-trained on

huge text corpora. Note that this is not a fair comparison,

since BERT uses a complex transformer architecture with

10 times more parameters than our simple GRU model.

It can be seen that the cosine loss achieves substantially

better performance than cross-entropy for datasets with up

to 100 documents per class. This is in accordance with our

findings on the CUB dataset. For the smallest test cases with

only 10 and 25 samples per class, the relative improvement

of cosine loss over cross-entropy is 17% and 26%, respec-

tively. To assess whether the difference of the means over

the ten runs are statistically significant, we have conducted

Welch’s t-test. For up to 100 samples per class, the dif-

ferences are highly significant with p-Values less than 1%,
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Figure 2: Classification performance depending on the dataset size.

Figure 3: Validation accuracy achieved using the cross-

entropy and the cosine loss on sub-sampled versions of the

AG News dataset, averaged over 10 runs.

while there is no significant difference between categorical

cross-entropy and cosine loss for larger datasets.

6. Conclusions

We have found the cosine loss to be useful for training deep

neural classifiers from scratch on limited data. Experiments

on five well-known small image datasets and one text classi-

fication task have shown that this loss function outperforms

the traditionally used cross-entropy loss after softmax acti-

vation by a large margin. On the other hand, both loss func-

tions perform similarly if a sufficient amount of training

data is available or the network is initialized with weights

pre-trained on a large dataset.

This leads to the hypothesis, that the L2 normalization

involved in the cosine loss is a strong regularizer. Evidence

for this hypothesis is provided by the poor performance of

the MSE loss, which mainly differs from the cosine loss by

not applying L2 normalization. Previous works have found

that direction bears substantially more information in high-

dimensional feature spaces than magnitude [17, 55]. The

magnitude of feature vectors can hence mainly be consid-

ered as noise, which is eliminated by L2 normalization.

Moreover, the cosine loss is bounded between 0 and 2,

which facilitates a dataset-independent choice of a learning

rate schedule and limits the impact of misclassified samples,

e.g., difficult examples or label noise.

We have furthermore analyzed the effect of the dataset

size by performing experiments on sub-sampled variants of

two image and one text classification dataset and found the

cosine loss to perform better than cross entropy for datasets

with less than 200 samples per class.

Moreover, we investigated the benefit of using semantic

class embeddings instead of one-hot vectors as target val-

ues. While doing so did result in a higher classification ac-

curacy, the improvement was rather small compared to the

large gain caused by the cosine loss itself.

While some problems can in fact be solved satisfactorily

by simply collecting more and more data, we hope that ap-

plications that have to deal with limited amounts of data and

cannot apply pre-training can benefit from using the cosine

loss. Moreover, we hope to motivate future research on dif-

ferent loss functions for classification, since there obviously

are viable alternatives to categorical cross-entropy.
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