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Abstract—The cloudUPDRS app is a Class I medical device,
namely an active transient non-invasive instrument, certified by
the Medicines and Healthcare products Regulatory Agency in
the UK for the clinical assessment of the motor symptoms of
Parkinson’s Disease. The app follows closely the Unified Parkin-
son’s Disease Rating Scale which is the most commonly used
protocol in the clinical study of PD; can be used by patients and
their carers at home or in the community; and, requires the user
to perform a sequence of iterated movements which are recorded
by the phone sensors. This paper discusses how the cloudUPDRS
system addresses two key challenges towards meeting essential
consistency and efficiency requirements, namely: (i) How to
ensure high-quality data collection especially considering the
unsupervised nature of the test, in particular, how to achieve
firm user adherence to the prescribed movements; and (ii) How
to reduce test duration from approximately 25 minutes typically
required by an experienced patient, to below 4 minutes, a
threshold identified as critical to obtain significant improvements
in clinical compliance. To address the former, we combine a
bespoke design of the user experience tailored so as to constrain
context, with a deep learning approach used to identify failures
to follow the movement protocol while at the same time limiting
false positives to avoid unnecessary repetition. We address the
latter by developing a machine learning approach to personalise
assessments by selecting those elements of the UPDRS protocol
that most closely match individual symptom profiles and thus
offer the highest inferential power hence closely estimating the
patent’s overall UPRDS score.

I. INTRODUCTION

Parkinson’s Disease (PD) is a degenerative neurological

condition associated with a wide spectrum of symptoms in-

cluding tremor, slowness of movement and freezing, swal-

lowing difficulty, sleep-related difficulties and psychosis [17].

Care for patients with PD involves the management of both

motor and non-motor symptoms as well as palliative care.

Since there is no cure, symptom management is a life-long

process that affects not only the patients but also their families

and carers. Clinical care pathways include pharmacological

treatment corresponding to the exact stage of the disease,

physiotherapy, and surgery [35]. As a result of medication with

L-Dopa, a key element of the typical pharmacological regime

for PD, patients are expected to develop side effects such as

dyskinesias [43]. Since symptoms vary greatly independently

of treatment and PD progresses at different rates in different

individuals, treatment requires regular clinical monitoring and

medication adjustment.

There are over 130,000 people with Parkinson’s in the UK,

each individual seen by a specialist doctor or nurse only once

or twice a year, allowing only brief and intermittent assessment

of the wide range of their motor and non-motor symptoms

[37]. This in turn limits opportunities to precisely quantify PD

progression and the effectiveness of patient stratification: the

restricted availability of data concerning individual variability

and actual symptom trends limits opportunities to adapt care

to the needs of a particular individual at a specific time. To

address this challenge we developed cloudUPDRS, the first

smartphone app to achieve certification as a Class I medical

device by the Medicines & Healthcare products Regulatory

Agency in the UK for the clinical assessment of the motor

symptoms of Parkinson’s.

cloudUPDRS augments standard clinical care pathways by

enabling daily assessments which lead to (i) more consistent

and reliable care, (ii) early identification of problems such

as medication side-effects, thus enabling earlier intervention,

(iii) monitoring of individualised patient trends leading to

more effective patient stratification, and (v) enable patients to

take ownership of their own care through non-pharmacological

measures such as improved nutrition and physical therapy.

The cloudUPDRS system is based on the Universal Parkin-

son’s Disease Rating Scale [14] and the PDQ39 questionnaire

[18], and incorporates a cloud-based Big Data management

and analytics service to generate objective and reliable assess-

ments of motor performance. Patients use the app at home

to record sensor measurements while performing a series of

simple actions with each limb, such as tapping the screen to

assess bradykinesia and holding the phone on their knee to

assess tremor. The data captured by the phone is then used to

calculate the clinical UPDRS score through the application of a

biomedical signal processing pipeline. Additional longitudinal

analytics are performed subsequently to enable trend analysis

and patient stratification.

This paper presents two recent developments within

cloudUPDRS, specifically:

• A deep learning technique applied to sensor observations

so as to assess compliance with the actions dictated by

the UPDRS protocol. Combined with a bespoke user

experience this technique can replace expert supervision

while maintaining high-quality data collection.

• Personalised tests reducing the time required to carry out

an assessment to less than 4 minutes. These so-called

quick tests are created using machine learning to select a

subset of UPDRS observations that closely estimate the

motor performance of a particular patient.



In the following section we review research related to this

work and then proceed to report on key factors for patient

compliance identified through user research in Section III. We

present the cloudUPDRS system in Section IV and in Section

V we report on certification. We then proceed to discuss the

details of the two techniques identified above in Sections VI

and VII correspondingly.

II. RELATED WORK

In [20], we demonstrate the feasibility of using smartphones

as a means to assess commonly occurring motor symptoms

of PD in a clinical setting. Specifically, we design, develop

and validate in a clinical study a prototype app on Android

implementing Part III of the MDS-UPDRS[14]. Using the

accelerometer and touch screen sensors commonly available

in modern smartphones, we are able to carry out hand and

leg tremor measurements, as well as gait and bradykinesia

assessments using finger tapping tasks to replicate the majority

of these tests (cf. Table I and Section IV-A). Other research

groups have followed a similar approach focusing on specific

symptoms. Most commonly tremor measurements are consid-

ered for example [9], [22], [25] and [26] all provide proof-of-

concept implementations of upper limb tremor estimation.

Two major projects by the M. J. Fox Foundation in the

US currently explore the diversity of PD motor symptoms

with a large population sample. The first employs the mPower

app (http://parkinsonmpower.org/) by Sage Bionetworks [41]

implemented using the open source researchkit framework

developed by Apple on iOS (http://researchkit.org/). The focus

of this work is to develop a large data set of motor per-

formance observations, which can be used as a benchmark

for the experimental evaluation of algorithms providing PD

diagnosis. The second project is in collaboration with Intel

and The Grove Foundation and employs wearables to provide

24×7 monitoring of PD patients—specifically a Pebble watch

(https://www.pebble.com/) to measure wrist tremor relayed via

an Android app to a Cloudera-based back end for storage and

analysis. The focus of this study is the development of a deep

longitudinal data set capturing in minute detail the second-by-

second variations of motor symptoms from a population of

tenths of thousands of volunteers. However, battery longevity

and data transmission issues have limited opportunities to

capture complete traces and the project is currently considering

alternative strategies.

Recently, the suitability of machine learning has been

investigated for the assessment of PD. Voice samples are

processed using standard machine learning algorithms in [2]

to correlate individual performance and MDS-UPDRS score. A

deep learning approach is adopted in [15] to identify patients

in ON and OFF states using Restricted Boltzmann Machines to

analyse accelerometer data. Both projects report encouraging

results which merit further investigation but current perfor-

mance limitations prevent these techniques from becoming an

effective clinical tool.

III. UNDERSTANDING PATIENTS WITH PD

The wider adoption of cloudUPDRS by patient communities

necessitates that tests are incorporated as part of their daily

routine. To understand how to best facilitate this we carried out

extensive interviews with clinicians, technologists, patients,

carers and patient advocates (22 individuals in total); a web

survey with participants from the research volunteer pool of

Parkinson’s UK receiving 166 unique submissions; and, three

audience panels (16 participants in total). Across all studies we

recruited participants with a confirmed diagnosis of PD and

excluded individuals with generic symptoms of Parkinsonism.

Patient participants represent all Hoehn & Yahr levels except

for the audience panels in which participation was limited to

Level 3, due to the practicalities of access to the venue.1

The potentially transformative role of smartphone apps

for PD was widely acknowledged in interviews. The ex-

pectation of positive outcomes was closely related to recent

trends enabling the direct involvement of patients in estab-

lishing research priorities, the use of patient expertise in

research, and towards greater transparency. This perspective

was often related to opportunities for patient empowerment

as expressed for example in online communities such as

PatientsLikeMe [8], suggesting that evidence-based care must

cater for the translation of evidence into practice in a manner

directly accessible to and understandable by patients.

We employed the web survey to explore current phone usage

patterns specifically among patients and to identify potential

constraints that may place barriers for the adoption of the

cloudUPDRS app. Responses received were primarily from

mobile phone users (96%) with 77% coming from those with

a smartphone. The majority of smartphone owners (87%) use

it daily with only 14% reporting significant difficulties. A

relative small proportion of those with smartphones (20%)

use apps to track their symptoms or manage medication.

The vast majority (86%) expects to make regular use of the

cloudUPDRS app with 64% expressing a preference for the

test session lasting a maximum of 5 minutes, 27% accepting a

test duration of 10 minutes, and 5% even longer. The majority

(68%) expect to make use of the app at least once per day to

assess their symptoms.

Audience panels combined elements of user experience

evaluation and a wider exploration of perceived costs and

benefits of the cloudUPDRS app, which was demonstrated

during the sessions. Panelists identified specific problems with

the version presented, for example the potential effects of

involuntary movements common to specific patient profiles

and suggested improvements. As relates to the utility of the

app and their motivation for regular use, the opportunity

to manage symptoms was an unequivocal benefit for the

majority of participants and strongly motivated their involve-

ment. However, access to detailed performance data was less

important compared to the sense of understanding afforded

1Hoehn & Yahr is a clinical rating scale that defines categories of motor
function in PD, ranging from minimal or no functional disability at level 1
to confinement to bed unless aided at Level 5.



Fig. 1. Views of the user interface of the cloudUPDRS app showing session management, tremor recording and finger tapping activities..

by the experience of using the app and thus of control over

the disease. All participants identified with the strong desire

to make a contribution towards combating the disease, and

considered their donation of personal data and their open

availability for research was seen as a means to achieve this

goal. As a consequence, no privacy concerns were expressed.

IV. THE CLOUDUPDRS SYSTEM AND APP

The complete cloudUPDRS system consists of:

1) A smartphone app for Android that enables patients

to carry out motor performance tests and complete a

wellness self-assessment; conduct session management;

and securely submit data to the cloudUPDRS service.

2) Cloud-based scalable data collection service that ingests

data from patients’ smartphones; ensures secure data

management; and applies the signal processing pipeline.

3) Data-mining toolkit for medical intelligence incorporat-

ing quantitative and semi-structured data, and longitudi-

nal analyses, clustering and classification; and a clinical

user interface incorporating visualisation.

The cloudUPDRS app implements a comprehensive work-

flow (partially depicted in Figure 1) that provides audio, video

and textual media to guide patients and their carers to conduct

the tests at home and in the community unsupervised by a

trained clinician or specialist nurse. The app implements a

bespoke user interaction design to ensure that the data recorded

capture the actual motor performance features as required

for the successful application of MDS-UPDRS. Specifically,

patients are guided through a carefully orchestrated sequence

of actions while the app records sensor measurements. By

requiring the execution of specific action sequences the app

restricts the degrees of freedom of individual movement and

thus imposes structure and disambiguates user context by

limiting the range of observed behaviours.2 As a result, the

2The action sequences can be seen in video demonstrations available at
http://www.updrs.net/help.

recorded signal can be interpreted accurately using a small set

of heuristics rather than require the use of a full context model

and reasoning approach [3]. Finally, the app automatically

adapts to match the specifications of its host device and

incorporates a delay tolerant service to manage data upload.

The full test administered by the cloudUPDRS app consists

of 17 individual observations, specifically kinetic, postural and

resting tremor for the left and right hand; left and right leg

agility and resting tremor; single and double target finger

tapping on both sides; and, gait. During each observation

period lasting 60 seconds, the patient is required to assume

a specific position and perform the prescribed movement as

described in the previous paragraph. Following the recording

of these observations the patient is presented with a question-

naire incorporating selected questions from the Parkinson’s

Disease Questionnaire (PDQ-39) [18] and recording the time

of the most recent medication intake.

The cloudUPDRS service is engineered to facilitate scalable

performance by adopting the microservices architecture [34].

This approach is set in contrast to traditional monolithic web

applications and aims to maximise opportunities for vertical

decomposition and scaling-out, which are critical for high

performance and service resilience in data intensive situations.

cloudUPDRS microservices are implemented as composite

Docker containers, are loosely coupled and employ lightweight

communication and coordination mechanisms such as the

Consumer-Driven Contract pattern. System componentization

is enforced via versioning of published RESTful interfaces and

sandboxed instances of the service can be deployed automat-

ically to cater for data isolation between distinct regulatory

domains. The overall service architecture has been designed

for scalability so that real-time streams captured for exam-

ple during concurrent patient consultations can be integrated

on the fly with archival information from the longitudinal

datastore service. To facilitate this modus operandi, we pro-

vide structured workflows implemented through microservices



TABLE I
ANALYTICS TOOLBOX SIGNAL PROCESSING FUNCTIONS AND

CORRESPONDENCE TO THE SECTIONS OF THE MDS-UPDRS.

Analytic Function MDS-UPDRS Section

Rest Tremor 3.17 (rest tremor amplitude)

Postural Tremor 3.15 (postural tremor of the hands)

Action Tremor 3.16 (kinetic tremor of the hands)

Pronation—supination

Movements

3.6 (pronation—supination

movements of the hands)

Leg agility 3.8 (leg agility)

Finger tapping 3.3 (rigidity) & 3.4 (finger tapping)

Gait 3.10 (gait) & 3.11 (freezing of gait)

following the lambda architecture [30], which facilitates the

efficient fusion of real-time and archival data on the fly.

A. Bio-signal Processing

Precise assessment of tremor, bradykinesia and gait is

typically carried out using laboratory equipment for example

tailor-made biomedical data acquisition systems incorporating

transducers such as high-frequency/high-accuracy accelerom-

eters and gyroscopes, signal amplifiers and filters and high-

performance analog-to-digital converters. The captured signal

is analysed subsequently by specialist commercial software

such as Spike 2 by Cambridge Electronic Design Ltd with the

total cost of a complete system rising to tenths of thousands.

Laboratory based clinical rating however is constrained by

the requirement that the patient is present in the clinic, and in

practice can only be carried out as a “snap-shot” assessment. In

[20] we show that the sensor, clock and data acquisition hard-

ware of a low-end smartphone captures data with sufficient

accuracy to precisely quantify the magnitude of PD motor

symptoms across the majority of the tests included in Part

III of the MDS-UPDRS by comparing its performance against

results obtained using a biomedical analytics system by CED.

In cloudUPDRS we automate the methodology presented in

[20] as a bespoke cloud-based data analytics service [11]. For

completeness of presentation, we briefly summarise the main

features of this system here.

1) Tremor: Tremor measurements are recorded for both

hands at rest, at posture and in action as listed in Table I.

For rest tremor measurements, users are asked to relax their

hands on their lap in a supine position while the phone is lying

in their palm. For the postural tremor measurements patients

are guided to keep their arm outstretched directly on their

front while holding the smartphone. Finally, for action tremor

measurements they are required to hold the phone and move

it between the chest and the fully outstretched position on

their front. In all cases, acceleration is recorded along three

axes in m/s2 at the maximum supported sampling rate (at

least 50Hz) and timestamped at maximum resolution (typi-

cally microseconds). Tremor is calculated as the cumulative

magnitude of the scalar sum acceleration across three axes for

all frequencies between 2Hz and 10Hz. To obtain this power

spectrum the signal is first filtered with a Butterworth high-

pass second order filter at 2Hz and the Fast Fourier Transform

(FFT) is subsequently applied to the filtered waveform data.

2) Bradykinesia : MDS-UPDRS assess bradykinesia, or else

the slowness of movement, through three different factors: (i)

pronation-supination movements, (ii) leg agility, and (iii) fin-

ger tapping. In the first test patients are asked to hold the phone

and perform alternating pronation-supination movements, that

is rotating the palm of the hand toward the inside so that it is

facing downward and then toward the outside so that the palm

is facing upward, as fast and as fully as possible. Leg agility

measurements require the phone to be placed on the thigh of

the patient while seated, holding the phone lightly with the

ipsilateral hand, while raising and stomping the foot on the

ground as high and as fast as possible. During both tests the

phone is recording acceleration data in a manner similar to

the tremor tests. The assessment of the pronation-supination

movements and leg agility tests requires the estimation of the

frequency and power of movement. To obtain these, the toolkit

first removes DC and applies a Butterworth low-pass second

order filter at 4Hz in order to exclude most of the tremor.

Subsequently, the power of the movement is calculated as

the total amplitude between 0Hz and 4Hz and the frequency

derived from the power spectrum.

Finger tapping performance is assessed in two tests using

single and dual targets presented on the screen of the phone at

set locations with patients attempting to tap them as fast and

as accurately as possible (alternating between targets in the

dual-target case). When tapping accidentally occurs outside

the screen area the test is repeated. The touch-sensitive screen

of the smartphone is used to collect the information used for

performance calculations, specifically the timing of each touch

event, its duration, the direction of movement (upwards or

downwards), the coordinates on the phone screen, and the

amount of pressure applied are recorded. For the two-target

variant it is necessary that the distance between targets be

at a specific distance irrespective of the size of the screen

or of the device. To estimate finger tapping performance the

analytical functions first identify all touch events and employ

the associated timestamps to estimate tap frequency (taps

per second), the mean hand movement time between taps

(in milliseconds), and the actual movement distance between

alternative tapings in the dual-target case (in centimetres).

3) Gait: MDS-UPDRS assesses gait by considering multiple

behaviours including stride amplitude and speed, height of

foot lift and heel strike, and turning and arm swing [48].

The cloudUPDRS variant of this test requires the patient to

walk along a straight line for five meters, turn around and

return to the point of departure, while the smartphone is

positioned either in their belt or trousers pocket. Since it is

only possible to measure acceleration data from a single point

at the waistline we employ the techniques in [27], [28] to

estimate stride frequency and length, velocity and turning time.

V. CERTIFICATION

There are numerous wellness and self-tracking apps readily

available on all major platforms and many more that have been



developed for research. The vast majority of these apps do

not conform to the safety, quality, performance and regulatory

requirements set for medical devices and as such can only

be employed either to encourage a healthy lifestyle or for

research purposes correspondingly — but are not tools that

can be used to support medical diagnosis. This fact is often

explicitly reflected in their terms and conditions of use for

example, quoting from a popular Parkinson’s Disease app “we

cannot, and thus we do not, guarantee or promise that you will

personally receive any direct benefits.”

Medical devices are regulated and must conform to rules

enforced by regional legislation. Within the European Union,

harmonisation of regulations across member countries is facili-

tated by the Medical Devices Directive (MDD), which provide

the blueprint for country–specific legislation. Although the

MDD considers situations when software would be treated as

a medical device it does not explicitly examine smartphone

apps and so its provisions are open to interpretation, an issue

that we address in this section. Further, the MDD requires

that each member state establishes a Competent Authority to

provide guidance and enforce regulation of medical devices

and in the UK this responsibility lies with the Medicines and

Healthcare products Regulatory Agency (MHRA).

Under Article 1 Clause 2(a) of the MDD a medical device

is defined as “any instrument, apparatus, appliance, software,

material or other article, whether used alone or in combination,

including the software intended by its manufacturer to be

used specifically for diagnostic and/or therapeutic purposes.”

The current interpretation of this definition by the MHRA as

relating to apps implies that “if the [mobile] application is

intended to carry out further calculations, enhancements or

interpretations of entered/captured patient data, [· · · ] it will

be a Medical Device. If it carries out complex calculations,

which replaces the clinician’s own calculation and which will

therefore be relied upon, then it will certainly be considered

a Medical Device.” Hence, the features of the cloudUPDRS

app clearly place it within the provisions of the MDD. For

certification purposes, the named publisher of the app on

the selected platform store is considered its manufacturer as

defined by the MDD, and thus the party obliged to ensure

conformity with the provisions of the directive.

According to the MDD, the cloudUPDRS app is considered

a Class 1 medical device that is, an active transient non-

invasive instrument. Class 1 devices are considered lower risk

and as such as less closely regulated. In this case, certification

requires that the app meets the Essential Requirements defined

in Annex I of the MDD including evidence of software de-

velopment in compliance with ISO IEC 62304:2006. The app

must be supported by comprehensive documentation ensuring

that it can be used safely and appropriately by patients and its

publisher must “implement and maintain corrective action and

vigilance procedures” to ensure safe operation. These require-

ments add considerable complexity to the development process

and in particular require regular review especially when a new

version of the app becomes available. cloudUPDRS received

medical device status in the UK in May 2016.

VI. LEARNING TEST MOVEMENTS

In Section IV-A we show how to extend standard lab-

based practice for the precise measurement of motor symptoms

in PD using a smartphone. In this setting, assessments are

supervised by a qualified practitioner who, in addition to

helping operate the equipment, can ensure that patients follow

closely the actions dictated by Part III of the MDS-UPDRS

protocol. However, in the case of self-assessment at home

using cloudUPDRS supervision by an expert is unavailable. To

address this lack of expert supervision we have designed the

guided user experience presented in Section IV, which aims to

educate the patient and steer them through the process. While

this approach has produced positive results, full compliance

with the prescribed actions still cannot be guaranteed or

confirmed. Hence, it is necessary that cloudUPDRS provides

a mechanism though which data quality can be verified. In

particular, it is imperative to introduce a means by which it

becomes possible to confirm that the recordings submitted

have been captured while the patient performs the required

actions correctly3. Failure to do so would produce bio-signal

measurements that are not representative of the intended

tremor type and are likely to result in erroneous scoring.

To achieve this goal, we augment the user experience

presented by the app with a deep learning methodology [44].

This approach enables the cloudUPDRS system to learn tremor

features associated with a high quality signal and alert the user

when an observation has not been captured under satisfactory

circumstances. Enabled by recent advances in general-purpose

computing using graphics processing units and related algo-

rithmic developments, this methodological approach employs

multiple hidden layers to obtain notable results permitting

neural networks to identify preferred features directly from

the data. This feature of the selected methodology appears es-

pecially pertinent to the data quality issue under consideration.

The data set used to investigate the performance of this

approach is taken from the first cohort of patients enrolled in

the cloudUPDRS trials (8 male and 4 female). Specifically, we

consider 227 distinct test sessions conducted over a period of

three months (June to August 2016). Data was collected from

9 different phone models providing acceleration measurements

at least with a minimum sampling rate of 50Hz, implemented

using the data collection code base of the cloudUPDRS app

(other source code elements not affecting data collection were

modified during this period). Results are reported specifically

for pronation-supination observations of the right hand, with-

out loss of generality for the purposes of this paper. Data

captured by the app are normalised but no other pre-processing

is performed at this stage.

A. Rationale and Overview

To formulate an algorithmic solution, we reframe the prob-

lem of captured data verification as one of binary classification.

3In the case of the one- and two-finger tapping tests it is relatively
straightforward to identify when the process has been followed accurately
directly from the output of the bio-signal processing of Section IV-A.



Specifically, the goal of the verification task is to discriminate

between high-quality observations and lower-quality sensor

recordings captured during movements that do not closely

adhere to the guidance of the MDS-UPDRS protocol. To this

end, we employ a training data set of observations representing

both acceptable and unsuitable cases with known data quality

characteristics, guaranteed by the fact that they are collected

by the app under controlled conditions or inspected manually.

From this data set, features that are distinct within each

class are identified algorithmically. Subsequently, the obtained

representations are employed to test new observation data

submitted by patients via the app: Submissions classified as

offering adequate quality are forwarded to the appropriate mi-

croservices for data ingestion and signal processing, otherwise

they are rejected and excluded from further consideration.

This methodology can be applied asynchronously as part

of the data pre-processing and quality assurance phase or

interactively, incorporated in the cloudUPDRS app. The latter

is possible due to the fact that the classification process has

two distinct stages: an initial model training phase representing

the most computationally intensive task followed by a sample

assessment phase which is relatively lightweight for modern

smartphone hardware. As such, the model can be constructed

off-line using archival observation data for training and later

incorporated in the app, which can conduct real-time quality

assessments at the time of data recording and interactively

request the repeat of specific individual observations as ap-

propriate to ensure that all submitted tests are usable.

B. Data Segmentation and Pre-processing

Because the duration of each individual observation in

cloudUPDRS is 60 seconds and depending on the actual sam-

pling rate supported by the phone used for measurement, the

number of samples captured can be relatively very high. For

example, sampling at 50Hz results to data traces consisting

of over 3, 000 records. Rather than incurring the prohibitively

excessive computational cost of processing the full sample as

a single input we opt to segment the raw signal and consider

individual sections separately. For the current investigation and

to facilitate manual labelling of the samples we opt to extract

the mid-section of the signal. Considering sample sizes of

length 256 and 512 respectively, we generate two data sets

which we refer to in the following paragaphs as mid-256 and

mid-512. As part of this pre-processign step, measurements

along the three axes of acceleration expressed in the device

coordinate system are supplemented with an extra feature

recording the magnitude of acceleration m in Euclidean space.

C. Neural Network Architecture

The core ingredient of our approach is provided by Feed

Forward Artificial Neural Networks (FFANN) trained in su-

pervised mode [52]. FFANNs use layers of interconnected

neurons represented as matrices of real valued numbers cor-

responding to connection strengths between the neurons. At

each layer neurons perform simple computations, integrating

inputs received from neurons at the preceding layer and

transforming the signal through activation functions that help

regularize data. A geometric interpretation of this process is

that activation functions enable FFANNs to partition the high-

dimensional data space on which they operate.

This computational model is referred to as the Multilayer

Perceptron (MLP) and we will use the term Deep Multilayer

Perceptron (DMLP) to refer to the proposed architecture from

this point onwards, as it employs five hidden layers whilst

the maximum number typically used by simple MLPs is two.

In addition, MLPs traditionally employ the sigmoid and tanh
activation functions because they offer good performance with

smaller to medium sized networks. For the DMLP model

developed for cloudUPDRS, ReLU or softplus are preferred

instead. This is due to the fact that the latter activation

functions can mitigate the vanishing gradient problem which

affects deep networks. The function enables them to obtain

sparse representations by hard-limiting the input of negative

hidden nodes to zero [33].

For learning to happen, the output ŷ of the constructed

network must be compared against the desired output y, which

in the cloudUPDRS case represents the appropriate quality

class label that the network should produce, that is, accept or

reject the sample. This information is used with a so-called

cost or objective function which the DMLP aims to minimise.

Here we adopt categorical cross-entropy L as the objective

function, defined as L(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ).
The final step in the process is the application of the

backpropagation algorithm [47] which enables the network to

learn the distribution that generated the training data. Back-

propagation employs the chain rule to calculate the derivatives

of the error produced by the objective function with respect

to each connection strength between neurons, which are then

used to update it. Different versions of the algorithm have been

proposed in the literature and in this case we adopt Adam [21],

a stochastic optimisation variant.

The standard approach for training MLPs is to feed a

single pattern at each step in a stochastic fashion, a process

known as Stochastic Gradient Descent (SGD) in the case of

the backpropagation algorithm. Although very popular and

effective, standard SGD is not preferred with DMLPs mainly

due to the prolonged calcualtions required to update the DMLP

weights for each pattern in the data set. In cloudUPDRS we

adopt instead the mini-batch SGD alternative, where data is

fed in small batches and the error averaged out so that only

one error signal is propagated for each batch.

To validate the effectiveness of the cloudUPDRS approach

we compare its performance against several well-established

alternatives selected for their recent success in industrial

systems or in highly-regarded competitions such as Kaggle.

Full details are provided in Section VI-E below.

D. Classifier Training

Training is carried out separately for each acceleration axis

and for the magnitude of acceleration as described in Sec-

tion VI-B and for each of the mid-256 and mid-512 data sets.

Separate training is preferable in this case because it ensures



Fig. 2. Average classification success rate for the mid-256 data set.

that each feature is captured accurately and its predictive

power can be evaluated independently. Further, the so-called

leave-one-out method [1] is combined with early stopping to

facilitate the full exploitation of the data set available during

training and to reduce the risk of overfitting. The choice of this

approach reflects the fact that the data set under investigation

has 227 data points which is relatively low in this context.

Each iteration of leave-one-out process involves the exclu-

sion of a single pattern from the full data set, training the

classifier on the remaining patterns and testing on the pattern

omitted. Consequently the DMLP of Section VI-C is trained

as many times as the points available in the data set, in this

case 227 times. One limitation of this technique is that it can

become biased on the weight initialisation. To address this the

process is repeated ten times using different initial random

weights and the mean is used as the overall performance met-

ric. Thus, the experiments summarised below are conducted

using ten cycles of leave-one-out cross-validation per feature,

so that 2, 270 classifiers have been trained and averaged for

each of the four features and for each of the data sets.

The early stopping heuristic applied ensures that the learn-

ing process is terminated when it reaches a certain predefined

threshold. Specifically, we employ three criteria: (i) the cate-

gorical cross-entropy or else training error falls below 0.001;

(ii) training classification success reaches 100%; or, (iii) the

learning process has executed 500 iterations. The benefit of

using early stopping is that it prevents the DMLP classifier

from memorising counter-productive characteristics discov-

ered in certain samples, especially when these are spurious

or irrelevant for the accurate determination of high versus low

quality observations. This technique works well when used in

conjunction to leave-one-out as it ensures that the DMLP is

not over trained [32] on any part of the data set.

E. Results

The deep learning approach described in Sections VI-C and

VI-D is implemented using Keras (cf. https://keras.io) to

provide the description of the DMLP model, on top of the

computational graph engine theano (cf. http://deeplearning.

net/software/theano/). Training was carried out on an array

of NVIDIA K40 GPUs achieving a 20-fold speedup against a

standard multicore CPU. To provide a baseline against which

to evaluate our approach we compare its performance with the

following classifiers implemented using the scikit-learn

Fig. 3. Average classification success rate for the mid-512 data set.

TABLE II
CONFUSION MATRIX FOR DMLP CLASSIFICATION FOR THE MID-256 AND

MID-512 DATA SETS (AVERAGED PERFORMANCE). LABELS: T/F
TRUE/FALSE AND P/N POSITIVE/NEGATIVE. A REPRESENTS THE

AVERAGE OF ALL FEATURES.

mid-256 data set

TP (%) FN (%) TN (%) FP (%)

M 124.9 88.0 17.1 12.0 56.7 66.7 28.3 33.3
X 142.6 92.6 11.4 7.4 45.5 62.3 27.5 37.7
Y 165.1 95.4 7.9 4.6 32.1 59.4 21.9 40.6
Z 168.2 94.0 10.8 6.0 27.1 56.5 20.9 43.5

A 150.2 92.5 11.8 7.5 40.4 61.2 24.6 38.8

mid-512 data set

TP (%) FN (%) TN (%) FP (%)

M 122.4 86.2 19.6 13.8 50.1 58.9 34.9 41.1
X 138.1 89.7 15.9 10.3 37.6 51.5 35.4 48.5
Y 164.3 95.0 8.7 5.0 24.5 45.4 29.5 54.6
Z 165.5 92.5 13.5 7.5 21.0 43.8 27.0 56.2

A 147.6 90.8 14.4 9.2 33.3 49.9 31.7 50.1

[38] machine learning library: (i) Gaussian Naive Bayes [36];

(ii) Bernoulli Naive Bayes [36]; (iii) Random Forest Classifier

[7] which employs an ensemble of random decision trees

each selected from a sample drawn with replacement; (iv)

Extra Trees Classifier [13] is a variation of random forest

with thresholds randomly drawn for each candidate feature;

(v) AdaBoost Classifier [53] is a meta-estimator which adjusts

classifier weights so as to improve learning from difficult

classes; (vi) Bagging Classifier [6] is also a meta-estimator

which operates on random subsets of the training data to

reach a final prediction by aggregating their results; and (vii)

Gradient Boosting Classifier [12] which performs optimization

of arbitrary differentiable loss functions.

Classification results calculated for all features of the mid-

256 data set following the methodology outlined in Section

VI-C after training as detailed in Section VI-D are compared

to the baseline classifiers in Figure 2. Our methodology

employing the DMLP classifier, denoted as Neural Net in the

figure, provides the best performance across all features. Note

in particular that the magnitude of the standard deviation is

very low indicating that initialisation bias has been avoided.

Results for the mid-512 data set are calculated following the

same approach and summarised in Figure 3. Also in this case,

the DMLP approach outperforms all alternative classifiers

across all features, often by a significant margin.

Further, the confusion matrix for the DMLP classifier is

computed and presented in Table II. Note that the percentage



of false negatives (FN) for the mid-256 data set when all

features have been considered is approximately 7% which

represents good performance, while false positives (FP) re-

main below 39%. Hence, the DMLP approach developed for

cloudUPDRS identifies correctly the vast majority of low

quality samples and causes relatively limited unnecessary

repetition of recordings.

VII. DEVELOPING THE CLOUDUPDRS QUICK TEST

In this section, we turn our attention to the development

of methods that achieve significant reductions in test duration

so as to enable patients to use cloudUPDRS on a daily basis.

As suggested by the user studies summarised in Section III,

the majority of patients identified a maximum of 5 minutes as

the desirable duration for the test. However, even after the

initial familiarisation period the full implementation of the

procedure typically requires 25 minutes, an estimate that has

been confirmed from system logs and independently through

user feedback. The critical influence of test duration on user

adoption rates was further confirmed during the initial three

months of field testing. While the majority of participants

carried out tests regularly during the first week following

the commission of the app, compliance rates dropped sharply

by the end of the third week, and only one out of the 12
participants continued to carry out tests at the end of the three-

month testing period.

A. Test Duration and Characteristics

Recall from Section IV, that according to the MDS-UPDRS

protocol each individual observation requires 60 seconds of

recording and the full test consists of 17 observations, in ad-

dition to the medication and well-being questionnaire. Clearly,

to reduce the overall duration of the test there are two main

options namely to shorten the recording time for individual

observations or to reduce the number of observations carried

out by selecting a subgroup of the full 17-item set. The final

questionnaire requires approximately 30 seconds and is always

required because it is used to track medication.

First, consider the option to reduce the length of individual

observations without loss of precision in the estimation of

motor performance. Specifically, we investigate whether the

60 second observation period set by the MDS-UPDRS protocol

is necessary or instead consistent scoring can be still main-

tained after significantly reducing its duration. To this end,

we conduct observations of motor performance for alternative

recording periods of 20 and 40 seconds and compare these

against measurements carried out for the the full 60 seconds.

Tremor and bradykinesia performance metrics were calculated

for all observation types in our test data set consisting of

133 full tests carried out by 35 different individuals. In the

remainder of this section we report scores calculated for tremor

power at rest for the right hand, without loss of generality and

so as to specifically quantify our findings.

Figure 4 summarises the results of this analysis and demon-

strates that for the majority of patients a shorter observation

Fig. 4. Change in recorded tremor power between tests of 60 and 20 seconds.

period results in a significant change of their reported mo-

tor performance. Specifically, Figure 4 shows that when the

recording period is reduced from 60 to 20 seconds the power

of the tremor for 60% of the patients is reduced by more

than 10%. Similar results are obtained when the observation

length is reduced to 40 seconds with the same magnitude of

change observed for 35% of the participants in this case. These

changes in motor performance for shorter recording periods

correspond to significant changes in the estimated MDS-UPDRS

score for a single observation ranging between 1 and 2.5
points on the MDS-UPDRS scale. This difference in the actual

clinical score corresponds to an average expected disease

progression over a six- and twelve-month period respectively,

thus representing a significant error in precisely assessing

motor performance.

These results clearly imply that that it is necessary to main-

tain the full 60 second recording period for each individual

observation. Relevant clinical literature considering the MDS-

UPDRS does not appear to offer explicit justification for this

performance. However, it seems that this is an observation

readily confirmed by experienced clinicians such as those

participating in focus groups conducted by cloudUPDRS (cf.

Section III). In particular, it was suggested that the longer

duration is required in most cases to cause mild fatigue that

reveals the true characteristics of motor performance. In any

case, the option to develop the quick test by reducing the

duration of individual observations does not appear viable and

alternatives must be considered.

B. Identifying Clinically Distinct Factors

Clinical investigations of the MDS-UPDRS scale reported

in the medical literature have identified a smaller group of

clinically distinct factors, typically five to six, that provide

high correlation to the overall score of the motor examination

of Part III of the MDS-UPDRS [45], [46]. This observation

corroborates the possibility to develop the quick test by

reducing the number of individual observations to a much

restricted group, which correlates well with the overall patient

score. Furthermore, note that the MDS-UPDRS protocol was

designed to explore exhaustively the full range of possible

motor symptoms caused by PD, but a specific individual would

typically present a smaller number of symptoms (especially



in earlier stages of PD) that dominate their MDS-UPDRS

score and that remain relatively stable over a time frame

of a few months. Indeed, a common observation is that PD

motor symptoms are asymmetric [5], [40] for example, for

a particular patient one side can be significantly affected by

tremor while the opposite side may not be affected at all thus

contributing zero units towards their MDS-UPDRS score.

Motivated by this observation, we develop a methodology

using standard machine learning methods that successfully

identify the appropriate subgroup of observations for a specific

patient which offer the highest predictive power of their overall

motor performance. Upon enrolment in cloudUPDRS, patients

are required to carry out the full test at least five times during

the first week of monitoring. At the end of this calibration

period we use the data of the full test to conduct a feature

importance analysis. Specifically, following [13] we apply

an ensemble of randomized decision trees on multiple sub-

samples of the test data improving its predictive accuracy

through averaging and over-fitting control. We then rank

individual observations according to the relative importance

of their corresponding features (two and three features per

tremor and bradykinesia test respectively). Finally, we select

the subgroup of top performing observations which account

for at least 80% of the variance in the overall UPDRS score.

At the end of this process, the cloudUPDRS system is con-

figured with an individual user profile detailing the subgroup

of observations identifed for inclusion in the quick test. This

profile is automatically communicated to the app at the next

start up so that it is reconfigured to enable the quick test feature

in its home screen (cf. Figure 1). The selected settings remain

active for a period of six months after which a new set of

full tests is required due to the likelihood of changes in motor

symptoms over this time frame.

C. Results

To evaluate the effectiveness of this approach we employed

the data set described in Section VII-A selecting only patients

for which at least five full test results are available. For

each patient we apply the above methodology to create a

personalised quick test profile. We discover that in all cases

we are able to account for the target variance using features

associated with only three or less observations. This result is

consistent across all patients examined representing medium

and progressed stages of the disease.

Figure 5 shows the results of this analysis for a typical

patient from this cohort suggesting in this case that just three

observations (from which seven features are calculated) are

adequate to account for approximately 90% of the varia-

tion. Specifically, this patient’s quick test profile consists of

observations of left leg agility, right arm rest tremor and

single tapping of the left hand which provide the adequate

information to track their overall motor performance. System

logs confirm that this patient was able to complete the quick

tests consistently in less than 4 minutes over 50 times in the

two months following the availability of their profile. Note that

Fig. 5. Predictive power of features associated with individual UPDRS
observations.

this patient is at an advanced stage of PD presenting significant

mobility impairments.

VIII. CONCLUSION

According to the World Health Organization [51], ageing

populations generate considerable economic effects, notably

intensifying pressures on health-care systems which for many

of the more economically developed countries already repre-

sent the largest area of expenditure. In the UK, the cost of

caring for PD patients exceeds 1.25 billion British pounds

annually and is rapidly increasing. In this socioeconomic

situation, mobile health apps present a unique opportunity for

the provision of cost effective care at population scale. Yet, to

reach their full potential such apps must offer safety guarantees

and facilitate a seamless user experience.

In this paper, we introduced two novel techniques developed

for cloudUPDRS, a medical device app for the assessment of

motor symptoms of PD at home, addressing these require-

ments. First, a bespoke deep learning approach was employed

to replace expert human supervision of the administration

of the common motor performance assessment protocol for

PD; and second, a personalised quick test was developed to

accurately trace overall motor performance while considerably

improving patient compliance. In our experiments both ap-

proaches performed reliably and produced promising results.

We anticipate both techniques to be useful for a wider class

of mobile health-care apps with similar requirements. Further

experimentation with a larger patient population is of course

necessary to fully assess the potential of the two techniques

developed and we are currently working towards this within

the CUSSP clinical study.
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