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Machine learning techniques are being increasingly used in the analysis of clinical and

omics data. This increase is primarily due to the advancements in Artificial intelligence (AI)

and the build-up of health-related big data. In this paper we have aimed at estimating the

likelihood of adverse drug reactions or events (ADRs) in the course of drug discovery using

various machine learning methods. We have also described a novel machine learning-

based framework for predicting the likelihood of ADRs. Our framework combines two

distinct datasets, drug-induced gene expression profiles from Open TG–GATEs

(Toxicogenomics Project–Genomics Assisted Toxicity Evaluation Systems) and ADR

occurrence information from FAERS (FDA [Food and Drug Administration] Adverse

Events Reporting System) database, and can be applied to many different ADRs. It

incorporates data filtering and cleaning as well as feature selection and hyperparameters

fine tuning. Using this framework with Deep Neural Networks (DNN), we built a total of 14

predictive models with a mean validation accuracy of 89.4%, indicating that our approach

successfully and consistently predicted ADRs for a wide range of drugs. As case studies,

we have investigated the performances of our prediction models in the context of

Duodenal ulcer and Hepatitis fulminant, highlighting mechanistic insights into those

ADRs. We have generated predictive models to help to assess the likelihood of ADRs

in testing novel pharmaceutical compounds. We believe that our findings offer a promising

approach for ADR prediction and will be useful for researchers in drug discovery.
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1 INTRODUCTION

An adverse drug reaction (ADR) or event is defined as any unintended or undesired effect of a drug
(Katzung et al., 2012; Coleman and Pontefract, 2016). ADRs are responsible for a high number of
visits to emergency departments and in-hospital admissions. For instance, The Japan Adverse Drug
Events (JADE) study reported around 17 adverse drug events per 1,000 patient days; 1.6% were fatal,
4.9% were life-threatening, and 33% were serious (Morimoto et al., 2010). These observations
underscore the importance of toxicity assessment of any medication, especially in the early stages of
drug discovery.
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Machine learning methods can play a significant role in the
interpretation of various data types to predict ADRs. These
methods utilize multiple kinds of input data, such as chemical
structures, gene expressions as well as text mining. These data

types are then processed algorithmically with random forest
(machine learning) or by an artificial neural network (deep
learning) to generate prediction models. (Ho et al., 2016; Mayr
et al., 2016; Gao et al., 2017; Zhang et al., 2017; Dana et al., 2018;
Dey et al., 2018; Vamathevan et al., 2019).

Deep learning (Wang et al., 2020), a type of machine learning
in Artificial intelligence (AI), has emerged as a promising and
highly effective approach that can combine and interrogate
diverse biological data types to generate new hypotheses. Deep
learning is used extensively in the field of drug discovery and drug
repurposing; however, its application in ADR prediction using

gene expression data are rather limited.
Open TG–GATEs (Igarashi et al., 2014) is a large–scale

toxicogenomics database that collects gene expression profiles
of in vivo as well as in vitro samples that have been treated with
various drugs. These expression profiles are an outcome of the
Japanese Toxicogenomics Project (Uehara et al., 2009), which
aimed to build an extensive database of drug toxicities for drug
discovery. It also collects physiological, biochemical, and
pathological measurements of the treated animals. Similar
databases that aim to profile compound toxicities have also
been developed (Chen et al., 2012; Alexander-Dann et al., 2018).

In contrast with other databases, such as (LINCS)
(Subramanian et al., 2017), which have been used to predict
multiple ADRs in a single study (Wang et al., 2016), Open
TG–GATEs has been used to investigate individual/specific
toxicities (Rueda-Zárate et al., 2017). To the best of our
knowledge, no attempts have been made to provide a general
framework for predicting multiple ADRs by using Open
TG–GATEs.

The design of Open TG-Gates has several advantages over the
LINCS database, chiefly the inclusion of in vivo samples with
different doses and durations of administration. Therefore, we

designed our analysis to encompass multiple samples with
different dosages and duration for each compound,
necessitating additional noise-removal steps in the data
processing. This study describes our approach to generating
deep learning-based, systematic ADR prediction models. This
approach combines ADR occurrence data, including frequency
details, from the FAERS (FDA Adverse Event Reporting System)
database, with the gene expression profiles from Open TG-
GATEs. We show how to improve the models’ performance
by applying feature selection and hyperparameter optimization
algorithms. The methodologies and models described in our

study offer valuable tools for assessing the likelihood of ADRs
in the course of drug discovery.

2 MATERIALS AND METHODS

2.1 Overview
An overview of this study’s methodology is illustrated in
Supplementary Figures S1, S2. First, we retrieved the relevant

data from the above-described two databases (open TG–GATEs
and FAERS). Next, we pre-processed the gene expression data to
filter out noisy profiles by using a simple classification model, and
retained only the significant ADR-drug associations (p < 0.05;

Fisher’s exact test). Next, gene expression profile datasets were
created by assigning positive and negative compounds for each
ADR. We then split the datasets into training and validation sets
three times. Subsequently, we used the training set data to
perform feature selection and built deep neural network
models with hyperparameter tuning using the Optuna package
(see below). Finally, we evaluated the performances of the
individual models on the validation set. We discuss these steps
in detail below:

2.2 Data Retrieval and Processing
2.2.1 Open TG–GATEs Database
We extracted the in–vivo gene expression profiles of rat liver
samples from the Open TG–GATEs database (Uehara et al., 2009;
Igarashi et al., 2014). We selected the rat in–vivo data for our
analysis chiefly because the in–vivo dataset included more
compounds and a greater number of time points as compared
with the in–vitro data (rat and human). However, our
methodology can be easily extended to the other datasets.

This dataset was comprised of single-dose experiments and
repeated-dose experiments. Single-dose experiments included
administration-to-sacrifice periods of 3, 6, 9, or 24 h, whereas,

in the repeated dose experiments, drugs were administered to rats
once daily for 4, 8, 15, or 29 days. In the repeated-dose
experiments, all rats were sacrificed 24 h after the last dose
(Igarashi et al., 2014). In Open TG–GATEs, gene expression
profiles were measured using Microarray technology (Affymetrix
GeneChip).

The Affymetrix CEL files were downloaded from http://toxico.
nibiohn.go.jp, and were preprocessed using the affy package
(Gautier et al., 2004) from R Bioconductor (https://
bioconductor.org/); Affymetrix Microarray Suite algorithm
version 5 (mas5) was applied with the default parameters

provided in affy, wherein normalization � TRUE. The
resulting normalized dataset–hereafter referred to as “the raw
dataset”–was used for all the subsequent analyses. Next, the fold
change values were calculated for each probe set by dividing the
raw dataset by the mean intensities of corresponding control
samples; these values were then log2 transformed, hereafter
referred to as the “log2FC dataset.”

Since the experimental design included multiple dosages and
durations of exposure, the drugs had varied effects on the gene
expression profiles. To reduce the noise, we predicted all the
samples to be either treated or control using a generalized linear

model with Lasso regularization [GLMNET package from R
(Friedman et al., 2010)]. We used the whole raw dataset as the
training set with a binary classification (treated and control). We
fed through all the microarray data of the same duration to a
single model, creating one model for each exposure set duration.
Next, we estimated the probability of being classified as a treated
sample for all the training sets. Only those samples with a
probability of higher than 92% were included in our analysis.
The remaining samples were considered to fall within the gray
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zone between treated and control, and they were discarded. We
chose a cut-off of 92% because, at this threshold, no control
samples were misclassified as treated.

2.2.2 Standardized FAERS Data
FAERS (FDA Adverse Event Reporting System) is “a database
that collects adverse event reports, medication error reports, and
product quality complaints resulting in adverse events that were
submitted to FDA” (https://open.fda.gov/data/faers/). However,
since the terms used in the FAERS database are left to the reporter
to decide, inaccurate descriptions may often be incorporated,
such as using general, vague terms to describe adverse events or
treatments (Wong et al., 2015). To surmount this issue, we used
the portion of the FAERS dataset standardized by Banda et al.
(2016). They had curated and standardized the entries of the

FAERS database for 11 years (2004–2015) following Medical
Dictionary for Regulatory Activities (MedDRA) preferred
terms (PT) (Wood, 1994).

We extracted all the compound-ADR combinations
(70,553,900) from the total number of reports (4.8 million).
Among the difficulties of using the FAERS database in ADRs
prediction models is the presence of reports with multiple drugs
used (Multipharma), which is expected in patients with chronic
diseases. Such cases introduce unreliable associations added to
the data noise. To solve this issue, we used only the associations in
which the drug was assigned as the primary suspect (PS)

(15,377,900). We calculated the number of reports for each
compound-adverse drug event combination and calculated the
total number of reports of the compound in question and also the
total number of reports of the adverse event.

We assessed the significance of the compound-ADR
associations by one-sided Fisher test (Ghosh, 1988) using
“fisher.test” function from R with the parameter (alternative �

“greater”). This option returns a significant p–value only in the
event of a positive association, in contrast to “two.sides” test,
which assesses both positive and negative associations Table 1.

2.3 Model Building and Training
For a given ADR, we first designated the compounds with the
most significant associations as positive compounds,
(p–value threshold <0.05) and the least significantly
associated compounds as negative compounds. In building
a predictive model, we evenly balanced the number of
positive and negative compounds, and retrieved the
associated gene expression profiles (treated samples only
as described above).

We then defined the training and validation sets by imposing
two criteria: 1) the data-sets were balanced, i.e., the number of
positive and negative samples were equal in both the sets, and; 2)
no compounds were commonly shared between training and

validation. The number of samples associated with individual
compounds was highly variable, making it difficult to apply the
standard cross-validation approach. To overcome this limitation,
we shuffled the compounds between training and validation and
sampled various training and validation set configurations. We
then selected the most balanced configurations with training:
validation ratios close to 80:20.

To prevent information leakage between the validation set and
the training set, feature selection was performed using the
training set only. Consequently, the validation set was used
solely to identify the best performing models.

For feature selection, we used Boruta (Kursa and Rudnicki, 2010)
implementation in Python https://github.com/scikit-learn-contrib/
boruta_py, that is based on the random forest classifier from scikit-
learn (Pedregosa et al., 2011) python package with default
parameters. Important features (Huynh-Thu et al., 2012) are the
variables (genes in this instance) that are essential to classify the
samples as either positive or negative. Utilizing such key features for
classification helps minimize data dimensionality. Moreover, these
important features (genes) can offer deep insights into the biological
phenomenon under study (the pathophysiology of the ADR in this
study). To remove the effect of randomness and improve the

accuracy of feature selection, Boruta generates additional shadow
variables by shuffling the values of the original features, these
additional shadow variables are added to the training set before
assessing feature importance. Subsequently the importance of all the
features is evaluated following the random forest algorithm, and the
features with significantly higher significance than the shadow
variables are considered important, while those with less
importance are ignored. This procedure was repeated 100 times
to detect the important features more accurately (Kursa and
Rudnicki, 2010). Then, we used TensorFlow 2 (Abadi et al.,
2016) to construct deep learning models. The input of the deep

learning model is constructed of two-dimensional matrix with
samples in rows and genes in columns.

Each model consists of three groups of layers, input, output, and
hidden layers (Supplementary Figures S1, S2). We applied Optuna
(Akiba et al., 2019) for hyperparameters tuning. Optuna uses the trial
and error method for optimization, by randomly assigning values to
themodel hyperparameters from a range of values or choices offered
by the user for a pre-determined number of trials. Subsequently,
the results of all the trials can be examined to determine the
optimal parameters. The parameters that were optimized
included (Table 2): “depth”: corresponds to the number of

TABLE 1 | Fisher exact test: a: the number of reports of that the compound cause

the ADE, b: the number of reports of the compound that does not report the

cause of ADE, c: the number of all positive reports of the ADE for all compounds

other than the specific compound, e: the number of all negative reports of all

compound other than the specific compound.

Positive Negative Row total

Compound a b a + b

All other compounds c d c + d

Column total a + c b + d All reports

TABLE 2 | Optuna hyperparameter choices.

Parameter Choices

Depth 1, 2, 5, 10, 30

Width 100, 250, 500, 700

Drop percentage 0.2, 0.3, 0.4, 0.7

Gaussian noise 0.2, 0.3, 0.4, 0.5

Activation Sigmoid, linear

Learning rate 0.001, 0.0005, 0.00001
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densely connected layers (number of hidden layers akaDNNdepth);
the possible values are (1, 2, 5, 10, and 30). “width”: corresponds to
the number of nodes per layer, the possible values were (100, 250,
500, and 700). To reduce the likelihood of over fitting, we used two

measures. The first measure “drop” is to drop some nodes before
going to the next layer. It took one of these values (0.2, 0.3, 0.4, and
0.5), (0.2 means 20% of nodes are dropped). The second measure is
the introduction of noise: the value of introduced Gaussian noise
(0.2, 0.3, 0.4, and 0.5). Other hyperparameters included: “activation”:
corresponds to the activation function of the final layer (output
layer); possible values: (“sigmoid,” “linear”), “learning rate” for
Adam optimizer (Kingma and Ba, 2014) was selected among
(0.001, 0.0005, and 0.00001). The models with the highest
validation set accuracies were chosen.

The maximum number of epochs was set at 800; however, we

applied the “early stopping” strategy if the accuracy did not improve
for 75 epochs. The bestmodels were saved for eachOptuna trial. The
best parameters are shown in the Supplementary Table S1.

We opted not to employ the leave-p-out or k-fold cross-
validation protocols to the gene expression samples because: 1)
the training and validation sets should be assigned based on
compound segregation, i.e., the same compound should not span
training and validation sets, and 2) the number of samples differed
from compound to compound and thus, creating balanced sets was
impossible. We instead adopted the approach of creating three
different training and validation sets. We also performed feature

selection for each of the set combinations.
Overfitting is a significant issue in machine learning, especially if

the amount of data is small.We attempted tominimize overfitting by
combining multiple approaches; one such approach is early
stopping, which stops the training when the model becomes
more specific to the training set. We also used functions in
TensorFlow and Keras that help generalize the models by
dropping some nodes in the hidden layers by using the drop
function and adding Gaussian noise in the deep layers. Table 2

2.4 Evaluation and Enrichment Analysis
Model performances were evaluated by testing the performance
of the validation set prediction. We estimated the accuracy of the
validation set and the area under the ROC (Receiver operating
characteristic) curve using the scikit-learn (Pedregosa et al., 2011)
package from Python.

TargetMine data analysis platform was used for enrichment
analysis and gene annotation (Chen et al., 2019). Databases used
for enrichment analysis were KEGG, Reactome, and NCI.
p–values were calculated in TargetMine using one-tailed
Fisher’s exact test. Multiple test correction was set to
Benjamini Hochberg, with p-value significance threshold of 0.05.

3 RESULTS

3.1 Data Processing
To reduce the data dispersion caused by multiple dose
levels and administration durations (sacrifice period) in
Open TG-GATEs, we filtered out low quality/unsuitable

samples. To do that, we used Lasso to classify the samples
to either treated or control classes. A total of 6,619 of
10,573 treated samples, chiefly belonging to the “Low”

dose level category, were classified as controls and
eventually excluded. Samples that were correctly classified
as treated (3,953 samples) remained for subsequent analysis.
(Table 3).

3.2 Model Building and Training
We created a total of 14 models (Table 4). The number of
compounds used to create each model ranged from 10 to 18.
We equalized the number of positive compounds and negative
compounds to generate balanced models.

3.3 Model Evaluation
The Average accuracy for all models was 89.94% (minimum �

71.42%, and maximum � 100%). The validation accuracies of the
models are shown in Figure 1. The area under the Receiver
Operating Characteristic (ROC) curve is shown in Figure 2.
Matthews correlation coefficient (Matthews, 1975) of the

TABLE 3 | The number of Open TG-GATEs samples included in the analysis after

clustering using Lasso, dose level and sacrifice period details are shown.

Original Included

Dose level Low 3,540 421

Middle 3,537 1,212

High 3,496 2,320

Sacrifice period 24 h 1,408 762

9 h 1,371 556

6 h 1,371 533

3 h 1,368 518

4 days 1,275 254

8 days 1,275 472

15 days 1,266 500

29 days 1,239 358

TABLE 4 | The number of compounds, and samples used to create ADRs

prediction models. (AGEP: Acute generalized exanthematous pustulosis,

ECG: Electrocardiogram). (+): Positive, (−): Negative.

ADR Drugs Samples

+ − + −

AGEP 5 5 203 87

Bone marrow failure 5 5 125 178

Catatonia 5 5 169 130

Duodenal ulcer 6 6 122 178

ECG qt prolonged 5 5 105 152

Febrile neutropenia 5 5 62 141

Gastric haemorrhage 5 5 124 161

Hepatitis fulminant 5 5 193 126

Liver transplant 9 9 297 244

Lymphocytosis 5 5 196 128

Neutropenic sepsis 6 6 89 165

Optic atrophy 6 6 122 139

Torsade de pointes 7 7 144 219

Toxic epidermal necrolysis 5 5 136 99
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predicted classes and the real classes for the modules are shown in
Figure 3.

3.4 Case Study 1: Duodenal Ulcer
To highlight the effectiveness of our approach, we describe
below our observations on the development of the duodenal
ulcer ADR prediction model. Duodenal ulcer is a type of peptic
ulcer disease characterized by the emergence of open sores on
the duodenum’s inner lining of the duodenum (Kuna et al.,
2019). It is mainly caused by the failure of gastrointestinal
system inner coating protection, and the most common causing
agents are Helicobacter Pylori infection and NSAIDs (Non-
steroidal anti-inflammatory drugs). It can lead to serious

bleeding or perforation.

3.4.1 Duodenal Ulcer Model Description
Using the FAERS database, the six most significantly
associated drugs with duodenal ulcer were identified using
Fisher test (positive drugs: Aspirin, Diclofenac, Ibuprofen,
Indomethacin, Meloxicam, Naproxen) and the least associated
drugs were also identified (negative drugs: Acetaminophen,
Amiodarone, Bortezomib, Carbamazepine, Ciprofloxacin,
Cyclophosphamide). Subsequently, the open TG–Gates samples
of these drugs were used to build the prediction models. Details
of the compounds used, the number of the gene expression samples
associated with these compounds, and the results of the Fisher test
(see Methods) are shown in Table 5. The ROC curves and the area

under them for the threemodels of duodenal ulcer (each trained on a
different training set) are shown in Figure 4 and the training curves
are shown in Figure 5. The performance of these models showed

FIGURE 1 | Validation accuracy of the created models, red diamonds

represent the mean.

FIGURE 2 | Area under ROC curves for the created models, red

diamonds represent the mean.

FIGURE 3 | Matthews correlation coefficient, red diamonds represent

the mean.

TABLE 5 | Details of the data set for the duodenal ulcer model (compounds, the

number of the samples, the p-value of the Fisher test and the class in the

training or test sets). Positive class compounds are those that can cause doudenal

ulcer, while Negative class compounds are controls. Entries were ordered

alphabetically.

Fisher (p) No Class

Acetaminophen 4.88 × 10−1 50 Negative

Amiodarone 9.35 × 10−1 31 Negative

Aspirin 4.67 × 10−233 45 Positive

Bortezomib 3.57 × 10−1 24 Negative

Carbamazepine 9.99 × 10−1 45 Negative

Ciprofloxacin 9.67 × 10−1 7 Negative

Cyclophosphamide 8.29 × 10−1 21 Negative

Diclofenac 1.3 × 10−66 9 Positive

Ibuprofen 1.22 × 10−112 24 Positive

Indomethacin 5.40 × 10−15 12 Positive

Meloxicam 2.15 × 10−35 10 Positive

Naproxen 2.02 × 10−78 22 Positive
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that the area under the curve ranges from 0.94 to 0.99. The number
of the features (genes) commonly selected among the three duodenal
ulcer models were 108.

3.4.2 Enrichment Analysis
Pathway enrichment analysis (see Methods) using the duodenal
ulcer-selected features (Supplementary Table S2) clearly
highlighted the involvement of bleeding cascade and
complement function (Table 6).

The manifestation of a duodenal ulcer activates the
complement cascade, which is probably due to the
inflammation caused by the acid effect on the intestinal
mucosa. Bleeding is also linked with the duodenal ulcer

disease. The enrichment of the Fatty acid degradation
pathway is consistent with the fact that the majority of the
compounds that cause duodenal ulcers are NSAIDs that inhibit
Arachidonic acid metabolism, which is a part of the Fatty acid
metabolism pathway.

3.5 Case Study 2: Hepatitis Fulminant
From FAERS database, the five most significantly associated
drugs with hepatitis fulminant (Morabito and Adebayo, 2014;
Bernal and Wendon, 2013) were identified using Fisher test

(positive drugs: danazol, famotidine, flutamide, mexiletine,
ticlopidine) and the least associated drugs were also
identified (negative drugs: carbamazepine, ciprofloxacine,
ibuprofen, naproxen, simvastatin). Subsequently, the open
TG–Gates samples of these drugs were used to build the
prediction models. Details of the compounds used, the
number of the gene expression samples associated with these
compounds, and the results of the Fisher test (see Methods) are
shown in Table 7. The ROC curves and the area under them for
the three models of hepatitis fulminant (each trained on a

TABLE 6 | The enrichment analysis results of duodenal ulcer model, showing the

involvement of both complement and coagulation functions.

Pathway P value

Complement and coagulation cascades (rno04610) 1.86 × 10−11

Regulation of Complement cascade (R-RNO-977606) 1.56 × 10−5

Complement cascade (R-RNO-166658) 9.16 × 10−5

Pertussis (rno05133) 3.84 × 10−3

Fatty acid degradation (rno00071) 4.83 × 10−3

TABLE 7 |Details of the data set for the hepatits fulminant model (compounds, the

number of the samples, the p-value of the Fisher test and the class in the

training or test sets). Positive class compounds are those that can cause hepatitis

fulminant, while Negative class compounds are controls. Entries were ordered

alphabetically.

Fisher (p) No Class

Carbamazepine 7.72 × 10−2 45 Negative

Ciprofloxacin 2.23 × 10−1 7 Negative

Danazol 5.92 × 10−4 51 Positive

Famotidine 6.63 × 10−16 11 Positive

Flutamide 1.02 × 10−5 45 Positive

Ibuprofen 6.66 × 10−1 24 Negative

Mexiletine 1.41 × 10−5 29 Positive

Naproxen 9.79 × 10−1 22 Negative

Simvastatin 2.42 × 10−1 28 Negative

Ticlopidine 1.78 × 10−6 57 Positive

FIGURE 5 | Training and validation loss plots for Duodenal ulcer models,

vertical line marks the early stopping.

FIGURE 4 | Area under ROC curves for duodenal ulcer models. Each

color corresponds to a different model.
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different training set) are shown in Figure 6 as well as training
curves in Figure 7. The performance of these models showed
that the area under the curve ranges from 0.76 to 0.96. The

number of the features (genes) commonly selected among the
three hepatitis fulminant models were 108. Pathway enrichment
analysis using the hepatitis fulminant-selected features
(Supplementary Table S2) clearly highlighted the
involvement of Activation of NF-kappaB in B cells and Ub-
specific processing proteases (Table 8), which coincides with the
previous publications that suggest NF-kappaB pathway is linked
to liver pathologies, including viral hepatitis, fibrosis and liver

necrosis (Sun and Karin, 2008).

4 DISCUSSION

We have described a novel approach that combined
toxicogenomics gene expression profiles extracted from Open
TG-GATEs and ADRs reports extracted from FAERS to predict
the likelihood of ADRs. This integration of two highly distinct

data types allowed us to predict ADRs successfully. Moreover, it
led to creating a novel dataset that associated drug-induced gene
expression profiles with ADRs.

To overcome the significant challenges in combining the two
datasets, we first sought to extract the individual drug-induced
gene expression signature from Open TG-GATEs. Next, we
extracted the ADR occurrence frequencies for these drugs and
estimated their statistical significance to eventually combine the
two datasets.

Moreover, due to multiple dose-levels and sacrifice periods
and the presence of repeated and single administration events, the

drug-induced gene expression profiles were fairly noisy. We
generated a simple model to classify all the samples as either
control or treated classes using Lasso to filter out this noise. We
performed a rigorous statistical assessment to narrow down
suitable samples for subsequent analyses (see Methods for
details).

Recently, deep learning has gathered an increasing usage in the
field of drug discovery (Eduati et al., 2015; Mayr et al., 2016;
Preuer et al., 2017; Zhang et al., 2017; Dey et al., 2018; Lee and
Chen, 2019). In this study we have used deep learning together
with feature selection to reduce the data dimensionality and avoid

overfitting due to limited samples.
Previously, Wang et al. (2016) utilized multiple cell lines to

develop predictive models for multiple ADRs. Another study
(Joseph et al., 2013) demonstrated that blood transcriptomics
could be used to examine other organ toxicities. Our results

TABLE 8 | The enrichment analysis results of hepatitis fulminant model (Top

pathways).

Pathway P value

Biological oxidations (computationally inferred) (R-RNO-211859) 0.0001398

Metabolism of xenobiotics by cytochrome P450 (rno00980) 0.0004514

Phase II - Conjugation of compounds (computationally inferred)

(R-RNO-156580)

0.0004669

Metabolism (computationally inferred) (R-RNO-1430728) 0.0058958

Activation of NF-kappaB in B cells (computationally inferred) (R-RNO-

1169091)

0.0078192

Ub-specific processing proteases (computationally inferred) (R-RNO-

5689880)

0.0089848

FIGURE 7 | Training and validation loss plots for hepatitis fulminant

models, vertical line marks the early stopping.

FIGURE 6 | Area under ROC curves for hepatitis fulminant models. Each

color corresponds to a different model.
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have supported this notion by exhibiting robust prediction
models with high accuracy using liver samples. Liver is a
vital organ for drug metabolism and receives a significant
amount of blood, and hence, it is widely used in drug

toxicity studies. Moreover, even in the absence of
pathological responses to the compound toxicity, cells still
display differences in gene expression profiles.

This study utilized in vivo gene expression data in contrast
with another study (Wang et al., 2016) that utilized the data
from the LINCS database (Subramanian et al., 2017), a
collection of in vitro gene expression profiles from human
cell lines. Our approach is easily applicable to other publicly
available collections of toxicogenomics data, such as those from
Drug Matrix (Svoboda et al., 2019). Another difference is that
Wang et al. (2016) combined chemical structure and Gene

Ontology (GO) term associations in their models. They also
selected only a single gene expression profile to represent the
compound effects; in contrast, our method analyzed multiple
samples with different doses and durations of each compound’s
exposure. Hence, our method is better equipped to account for
the biological variations that are inherent in drug-induced
physiological and phenotypic responses. Indeed, our models
performed better than Wang et al.’s gene expression data-only
models (Wang et al., 2016). This difference in performances
may be attributed to our utilization of multiple samples for each
compound.

Studies related to specific ADR or systems examined in this
study have been recently published. Liu et al. (2020)
investigated the prediction of drug-induced liver injury
utilizing data from different sources and showed comparable
accuracy to ours. The highest AUC of their created models was
around 0.86. However, their approach is specific to drug-
induced liver injury. They also utilized chemical structures
and protein-related information, among many other data
types. Similarly, Ben Guebila and Thiele (2019) predicted
Gastric ulcers using gene expression data from the LINCS
database with an AUC of 0.97. They also compared using

gene expression alone with adding more information to the
same model.

Using the Optuna optimization package (Akiba et al., 2019)
made our prediction models’ creation computationally expensive;
hence, only a limited number of models were built. However, our
approach can help generate models to serve specific applications
using other data resources such as DrugMatrix, depending on the
user’s needs.

One of the limitations of this study is the relatively smaller
number of samples, and also the various dosages and durations of
the exposure to the drugs. The effect of these limitations can be
seen in the training plots (Figures 5, 7), which show fluctuating

curves. Accordingly, a few models display lower correlations with
ADR prediction as evidenced from their Matthews correlation
coefficient plots (Figure 3), however, the majority have
correlation values greater than 50%.

In conclusion, we have developed 14 deep learning models to
predict adverse drug events utilizing the publicly available Open
TG–Gates and FAERS databases. These models can be used to
examine if a new drug candidate can cause these side effects.
Moreover, following the same feature selection and model
building and tuning steps, other models can be created for
other ADRs.
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