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Deep Learning Predicts Total 
Knee Replacement from Magnetic 
Resonance Images
Aniket A. Tolpadi  1,2, Jinhee J. Lee2, Valentina Pedoia2 & Sharmila Majumdar2*

Knee Osteoarthritis (OA) is a common musculoskeletal disorder in the United States. When diagnosed 
at early stages, lifestyle interventions such as exercise and weight loss can slow OA progression, but 
at later stages, only an invasive option is available: total knee replacement (TKR). Though a generally 
successful procedure, only 2/3 of patients who undergo the procedure report their knees feeling 
“normal” post-operation, and complications can arise that require revision. This necessitates a model 
to identify a population at higher risk of TKR, particularly at less advanced stages of OA, such that 
appropriate treatments can be implemented that slow OA progression and delay TKR. Here, we present 
a deep learning pipeline that leverages MRI images and clinical and demographic information to predict 
TKR with AUC 0.834 ± 0.036 (p < 0.05). Most notably, the pipeline predicts TKR with AUC 0.943 ± 

0.057 (p < 0.05) for patients without OA. Furthermore, we develop occlusion maps for case-control 
pairs in test data and compare regions used by the model in both, thereby identifying TKR imaging 
biomarkers. As such, this work takes strides towards a pipeline with clinical utility, and the biomarkers 
identified further our understanding of OA progression and eventual TKR onset.

Knee Osteoarthritis (OA) is one of the most common musculoskeletal disorders in the United States, with esti-
mates of its incidence rate ranging from 14 to 30 million1,2. Annual arthritis-related medical expenditures are 
nearly $140 million, and hip and knee OA together are the 11th highest contributor to global disability3,4. �e pro-
pensity of knee OA to induce eventual disability can be attributed to structural changes in the joint that character-
ize the disease, as well as symptoms that can include in�ammation, debilitating pain, and functional limitations5,6. 
Progression of the full-joint disease is typically assessed using the Kellgren-Lawrence (KL) scale, a 0-4 scale in 
which a higher score is associated with narrowing of the tibiofemoral joint (TFJ) space and other radiographic 
changes, and thus, a more advanced stage of knee OA7. When diagnosed at early stages (KL = 0, 1), knee OA can 
be managed through nonsurgical treatment options, including exercise and/or weight loss, oral medications such 
as acetaminophen or NSAIDs, or intra-articular injections such as corticosteroids and hyaluronic acid, all of 
which have varying degrees of success in reducing pain8. At late stages (KL = 4), however, no noninvasive option 
exists9; here, the only option is total knee replacement (TKR).

TKR is an elective procedure in which the knee joint is resurfaced with a metal or plastic implant intended 
to restore function, provide pain relief, and improve quality of life10. In the United States, estimates of TKR inci-
dence lie at 400,000 each year, a �gure expected to grow 143% by 2050 even through conservative projections11. 
While TKR is considered one of the most e�ective procedures in orthopedic surgery, electing for it is far from 
straightforward: noninvasive alternatives such as weight loss, physical therapy, and NSAIDs are �rst exhausted. 
If unsuccessful, a patient will undergo a thorough examination of clinical history and comprehensive imaging of 
the joint to determine if a TKR is feasible, and if so, the desired implant design and size12,13. �e procedure is also 
imperfect: only 66% of patients report their knees feeling “normal,” and 33% of patients report some degree of 
pain post-implant14. Furthermore, the implant can fail under some circumstances: periprosthetic joint infection 
and wound complications can be observed, and implant instability can occur due to aseptic loosening, malposi-
tioning of the implant, and wear of joint components15,16. It is thus much preferable to prolong the good health of 
the knee, particularly in patients where OA has not advanced to the most severe stages, thereby delaying TKR as 
long as possible. �is necessitates a model to identify patients at higher risk of TKR such that appropriate treat-
ment options can be pursued.
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Given the multitude of factors on which a decision to pursue TKR is made, devising a model to predict if the 
invasive intervention will be necessary is a di�cult task, but with obvious utility. For a patient in earlier stages 
of OA, a model predicting the patient to be at risk of TKR can be the impetus for a more aggressive nonsurgical 
treatment. Meanwhile, for a late-stage OA patient, a model predicting them to undergo TKR may facilitate a doc-
tor and patient opting for the treatment earlier than they otherwise would, thereby reducing time spent pursuing 
nonsurgical alternatives with minimal probability of success while dealing with serious pain. Beyond this, if the 
model were to draw from medical images of the knee, it could identify anatomic regions most correlated with 
a TKR prediction. To this point, few studies have been conducted in this space, and those that have primarily 
investigate the importance of cartilage volume loss, subchondral bone defects, and bone marrow lesions17–19. An 
identi�cation of more such biomarkers for TKR, however, could greatly improve understanding of both OA and 
TKR, and ultimately guide treatment strategies.

Predictive modeling of TKR, however, has a limited history, particularly with models that use medical images. 
A few studies have leveraged random forest regression, Cochran-Armitage tests for trend, and t-tests to identify 
demographic, general health, and physical examination measurements that most strongly correlate with TKR 
or total joint arthroplasty (TJA)20,21. Others have taken these e�orts further, using techniques such as multiple 
regression and multivariate risk prediction models to predict TKR outright22,23. To our knowledge, only one 
group has developed a predictive model of TKR that accepts image inputs, attaining performance that surpasses 
that of models using only clinical and demographic information24. Notably, past TKR predictive models largely 
measure performance by evaluating the area under the receiver operating characteristic (ROC) curve, which 
plots true positive rate against false positive rate25. However, in most datasets used in this space, the number of 
patients who eventually undergo TKR is dramatically higher among those who have advanced OA as opposed to 
those with no or moderate OA. Consequently, this performance metric (AUC), while e�ectively capturing a mod-
el’s combination of sensitivity and speci�city, can be in�ated for TKR prediction by indiscriminately predicting 
patients without OA not to undergo TKR, while more accurately predicting patients with severe OA to undergo 
TKR, the latter of which is easier. As a result, while past works have made clear progress in predicting TKR, none 
have overcome datasets imbalanced with respect to OA severity to report sensitive and speci�c prediction at these 
early stages, where a model would have the most utility.

One technique that has shown promise in delivering such performance is deep learning (DL). DL, especially 
convolutional neural networks (CNNs), has made strides in image classi�cation tasks, attaining performances 
on the popular ImageNet classi�cation challenge that approach or surpass human performance26–28. DL shines 
when a�orded large datasets, as its automated feature extraction allows one to solve problems too complex for 
conventional approaches29. Given the complex prognostic features in TKR recommendation, CNNs become more 
promising for TKR prediction. In the past, DL had seen limited utility in OA and TKR prediction due to the 
large dataset requirement for e�cacy; that limitation has been somewhat mitigated by the curation of large-sized 
cohort studies such as the Osteoarthritis Initiative (OAI)30. Consequently, DL has recently been applied for knee 
OA classi�cation and progression prediction9,31–33. �e success of these works further suggests the feasibility of 
leveraging DL to predict TKR.

In this study, we formulate a DL-based pipeline that incorporates knee joint images in addition to clinical and 
demographic information to predict the onset of TKR (Fig. 1). We demonstrate that the pipeline’s predictions 
using solely Magnetic Resonance Imaging (MRI) images matches that of past work, while the integration of MRI 
image-based predictions with non-imaging variables facilitates TKR prediction with especially high sensitivity 
and speci�city for patients without radiographic OA. Furthermore, we show the increase in pipeline performance 
when using 3D MRI images as opposed to 2D radiographs, suggesting MRI may have a role in TKR risk screening 
despite higher costs and more limited availability. And �nally, we leverage occlusion maps to conduct a thorough 

Figure 1. Pipeline predicting if patient will undergo TKR within 5 years from MRI/X-ray images and non-
imaging variables. MRI and X-ray images are center-cropped and cropped to a region centered around the joint, 
respectively, and normalized. DenseNet-121 is pretrained to predict OA and �ne-tuned to predict TKR. Image-
based predictions and clinical information are fed to a logistic regression (LR) ensemble based on OA severity. 
Each ensemble, whose hyperparameters were optimized for Youden’s index in a hyperparameter search, 
averages predictions of LR models in its OA severity for �nal TKR prediction. Pipeline is subsequently analyzed 
through occlusion map analysis to identify imaging biomarkers of TKR.
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analysis of tissues that most signi�cantly a�ect the output model metric associated with TKR prediction con�-
dence, thereby identifying a set of imaging biomarkers for eventual TKR onset.

Novelty
�is work reports a methodology and results that are novel in the following manners:

 1. �is model is the �rst to apply a 3-dimensional DenseNet CNN for prediction of TKR from MRI.
 2. �e TKR prediction model is evaluated for patients strati�ed by OA severity, which has not been reported 

in previous studies.
 3. With the aim of improving model interpretability and clinical utility, we report the �rst comprehensive, 

case-control study to identify imaging biomarkers for TKR.

Materials and Methods
Data. Data was acquired from a prospective observational study conducted by OAI. �e dataset followed 4,796 
patients and acquired images including 2D posteroanterior radiographs and 3D Sagittal Double Echo Steady-
State (DESS) MRI images over the course of 10 years. Details of data collection and study design have been previ-
ously reported30. �e OAI study protocol was approved by the National Institute of Arthritis and Musculoskeletal 
and Skin Diseases (NIAMS) and is registered on ClinicalTrials.gov as “Osteoarthritis Initiative (OAI): A Knee 
Health Study”, NCT#00080171. �e study was carried out in accordance with all pertinent guidelines and regu-
lations, and written and informed consent was obtained from participants prior to each clinical visit in the study.

Both posteroanterior radiographs and DESS MRI images were evaluated as data sources for TKR prediction 
models. Patients for whom KL grade was not recorded at any point in the longitudinal study were excluded. To 
homogenize datasets, radiograph and MRI images were only taken from patients and time points at which both 
were available (n = 35,482). We labeled entries as cases if the patient underwent a �rst TKR within 5 years of 
the given time point (n = 1,043). We labeled entries as controls if patients did not undergo a TKR or eventually 
underwent one but the time to it was longer than 5 years (n = 34,439). Contralateral TKRs were not considered.

�e radiographs and MRI images were preprocessed for training and model evaluation. Radiographs were 
cropped to a 500 × 500 region centered around the knee joint. Brie�y, 2D cross-correlation template matching 
was used to identify a 500 × 500 bounding box centered around the knee joint in 450 joints, and these cases were 
used to train a U-Net architecture that identi�ed this region for all posteroanterior radiographs from the OAI 
study32. DESS MRIs were center-cropped to a 120 × 320 × 320 region, a�er which both sets of cropped images 
were normalized. Normalized MRI pixel values were then rounded to nearest integers, compressing the MRI 
image to 14 possible pixel values. �is rounding approach was initially tested as a strategy to accelerate training 
of a 3D CNN, given the large imaging volumes and large dataset on which it was being trained, believing the 
approach could suppress information extraneous to eventual TKR. Empirically, this approach yielded superior 
validation performance to leaving pixel values unrounded, so it was utilized. Examples of the results of this com-
pression strategy are in Supplementary Fig. S1.

Non-imaging variables were screened for among studies and reviews detailing risk factors for knee OA pro-
gression and TKR onset21–23,34–37. Variables such as KL grade known to be deducible directly from MRI images and 
radiographs were not considered. From these studies, 40 non-imaging variables of interest were identi�ed (see 
Supplementary Table S1). �e OAI database was then parsed for corresponding variables, and these correspond-
ing variables were added as potential non-imaging variables for our study, yielding 44 potential non-imaging 
variables. In some cases, multiple OAI metrics corresponded to non-imaging variables of interest, causing the 
number of OAI non-imaging variables to exceed what was identi�ed from literature. Missing data points were 
imputed with k-nearest neighbors. �ese potential variables were used to train a random forest with 100 trees to 
predict onset of TKR within 5 years, and the minimum depth at which each feature was used across all trees in 
the forest was identi�ed. Features whose minimum depth was below the average minimum depth of all features 
were preserved as non-imaging variables38. �is yielded 27 non-imaging variables that are displayed in Table 1.

�e data were then split into training, validation, and test with a 65%/20%/15% split, ensuring entries of any 
patient were only in one of the three datasets to prevent data leakage. Within the training set, imbalance between 
TKR and non-TKR cases was addressed with data augmentation, drawing bootstrap samples from the rare class 
with replacement39. A summary of the data prior to augmentation is provided in Table 2, detailing the number 
of cases and controls while showing descriptive statistics regarding demographics in each of the three datasets.

Pipeline architecture. �e DL-based pipeline is based on a DenseNet-121 with the following parameters: 16 
�lters in initial layer, growth rate of 32, pooling block con�guration of [6, 12, 24, 16], 4 bottleneck layers, 2 classes. 
�e same architecture was used for the radiograph and MRI pipelines, but for the MRI pipeline, we modi�ed 
the convolutional layers, batch normalization layers, pooling layers, and leaky recti�ed linear unit (ReLU) layers 
to allow for 3D image input40. �e network yielded a scalar re�ecting certainty of TKR within 5 years, which 
was added to the non-imaging variables. �e 28 resulting variables were fed into one of three sets of Logistic 
Regression (LR) ensembles, with each ensemble optimized to maximize sensitivity and speci�city in cases of no 
(KL = 0, 1), moderate (KL = 2, 3), and severe OA (KL = 4). Based on the KL grade of a sample, it was fed into an 
LR ensemble, yielding a prediction as to whether the patient will undergo a TKR within 5 years.

Training. A DenseNet-121 was initially pretrained to predict knee OA using the entire training set, assessing 
cross-entropy loss and accuracy on the validation set a�er completion of each epoch. �e pre-train was stopped 
when validation loss began to increase. �e pretrained model was subsequently �ne-tuned to predict TKR. We 
utilized a random search to determine optimal learning rate, dropout rate, weights of the cross-entropy loss 
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function, and number of layers to freeze during �ne-tuning. �e search was carried out for 25 iterations, a�er 
which a set of parameters were selected that yielded the best combination of accuracy, sensitivity, and speci-
�city on the validation set. Due to computational intensity, the hyperparameter search was not conducted on 
the entire dataset: for the 2D DenseNet-121, 10% of training and validation sets were used, whereas for the 3D 
DenseNet-121, 2.5% of both were used. A�er the search, the model �ne-tuned using the subset of the training set 
was further �ne-tuned on the entire training set using optimal parameters until validation loss began to increase. 
�e test set was held out during training and predictions for it evaluated just once a�er �ne-tuning, which marked 
the end of model optimization.

Integration of imaging and non-imaging data. Random forest regression, support vector machine, 
neural network, and LR architectures were assessed for e�cacy of integrating imaging and non-imaging predic-
tions, with LR providing best results on validation data. �e LR architecture was thus used: all 28 imaging and 
non-imaging models were fed into an LR model, the optimal parameters of which were also identi�ed through a 
random search. �e search was conducted for 100 iterations, seeking to optimize the cross-entropy loss function 
weights a�orded to both classes. For the cases of no, moderate, and severe OA, ideal parameters were identi�ed 
by selecting those that maximized Youden’s index within each OA classi�cation in the search41. Predictions of the 
best few models in each classi�cation were averaged to yield �nal TKR predictions. �e number of predictions 
averaged in each classi�cation was selected by �nding a value that optimized validation accuracy, AUC, and 
Youden’s index. �e resulting LR models were ensembled and run on test data just once. Con�dence intervals of 
accuracy, sensitivity, and speci�city for each OA severity were obtained by bootstrapping, sampling 100% of test 
data with replacement (B = 100). Con�dence intervals for AUC were calculated in the same manner. Results are 
reported on 3 versions of each model: the sole DenseNet-121 output (image only), output of a single LR model 
trained to predict TKR using solely the 27 non-imaging variables while not weighting the loss function class 
weights (non-imaging info. only), and output of the LR ensemble with image predictions (integrated model).

Non-imaging variables used to augment image-based predictions

Age Comorbidity score

BMI Injections to treat arthritis in previous 6 months

Education Seen physician for arthritis in previous year

Ethnicity Knee valgus negative alignment (degrees)

Income Isometric leg strength

NSAID usage Back pain in previous 30 days

Analgesics usage Di�culty squatting in previous 7 days

Systolic BP Di�culty kneeling in previous 7 days

Considering TKR Baseline frequent knee pain status

PASE Previous knee injury that limited walking

KOOS QOL 0-10 global rating assessing e�ect of knee pain

KOOS pain SF-12 physical component score

WOMAC pain SF-12 mental component score

WOMAC disability

Table 1. List of non-imaging variables fed into logistic regression models to make predictions of whether a 
patient would undergo TKR within 5 years. Abbreviations used: Body Mass Index (BMI), Nonsteroidal Anti-
in�ammatory drugs (NSAIDS), Blood Pressure (BP), Physical Activity Scale for the Elderly (PASE), Knee Injury 
and Osteoarthritis Outcome Score (KOOS), Quality of Life (QOL), Western Ontario and McMaster Universities 
Arthritis Index (WOMAC), Short Form 12 (SF-12).

Dataset Data type Age BMI KOOS pain Male Female
OA status

Total entries Unique patients
None Moderate Severe

Training
Control 62.5 ± 9.15 28.3 ± 4.75 87.2 ± 16.2 9,708 12,731 12,721 8,950 768

23,126 3,114
Case 66.3 ± 8.38 29.6 ± 4.79 67.2 ± 19.6 291 396 41 357 289

Validation
Control 62.4 ± 9.21 28.4 ± 4.64 87.6 ± 15.9 2,876 4,035 4,118 2,611 182

7,115 957
Case 66.1 ± 8.76 29.8 ± 4.61 66.2 ± 19.1 70 134 13 93 98

Test
Control 62.8 ± 9.55 28.4 ± 4.81 87.4 ± 16.5 2,126 2,963 2,892 2,056 141

5,241 719
Case 66.4 ± 7.78 29.9 ± 3.96 68.7 ± 20.6 59 93 12 83 57

Table 2. Data used to train 3D DESS MRI and 2D radiograph architectures. A�er exclusion criteria were 
applied, 35,482 qualifying entries were found in the OAI dataset across 4,790 unique patients, all of which were 
split into training, validation, and test sets as displayed in table. To prevent data leakage, all entries from any 
given patient were only allowed to be in one of the three sets. S.d. is reported for age, BMI, and KOOS pain score 
within the table.

https://doi.org/10.1038/s41598-020-63395-9


5SCIENTIFIC REPORTS |         (2020) 10:6371  | https://doi.org/10.1038/s41598-020-63395-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Statistical analysis. �e accuracies of X-ray and MRI pipeline performances within each OA classi�cation 
and overall were compared using McNemar’s test42,43. �is test was appropriate because it speci�cally tests for dif-
ferences in a dichotomous variable in matched groups. In our case, the variable was correct TKR prediction and 
the groups were the X-ray and MRI pipelines. Initially, the McNemar test statistic was modeled with a chi-squared 
distribution to test for signi�cant di�erences between the pipelines, and if one existed, a binomial distribution 
was used to interrogate which pipeline yielded the signi�cantly higher performance. All tests were carried out at 
α = 0.05.

Relative sensitivity and speci�city of the X-ray and MRI pipelines were assessed by comparing their AUCs 
within each OA classi�cation and overall. �is test is appropriate because the ROC curve plots true positive rate 
(sensitivity) against false positive rate (1 – speci�city); consequently, the closer the AUC is to 1, the better the 
combination of sensitivity and speci�city. 100% of test data was sampled with replacement (B = 100), and for 
each corresponding pair of X-ray and MRI pipelines (matched by OA classi�cation and use of images only or both 
image and non-image information), AUCs were calculated. To test if one outperformed the other, di�erences in 
AUCs were calculated at each iteration, and the mean and standard deviation of the di�erences used to conduct 
a student’s t-test with 99 degrees of freedom. �is test is applicable on each matched pair of X-ray and MRI pipe-
lines due to the number of iterations for which test data was sampled, allowing the central limit theorem to apply. 
For con�dence intervals, mean and standard deviation of AUCs of individual models were calculated and used 
to report 95% intervals.

Imaging biomarker identification. For all 124 true positives in the test data for the integrated MRI pipe-
line, corresponding controls were identi�ed by randomly sampling from test data true negatives, keeping OA 
status distributions identical and using a student’s t-test with 123 degrees of freedom to ensure no signi�cant 
di�erence in KOOS pain scores across cases and corresponding controls at α = 0.05. Occlusion maps were gener-
ated for all cases and controls using voxel size of 12 × 32 × 32 and stride of 12. For each pixel, the value displayed 
represented the magnitude of change in the scalar pipeline output resulting when that pixel was occluded, aver-
aged across all occlusions in which that pixel existed. Pixels for which scalar pipeline output change lied in the 
top 5% were designated as “hotspots.” Anatomic regions of these hotspots were identi�ed and odds ratios (OR) 
calculated to interrogate possible imaging biomarkers of TKR. 95% OR con�dence intervals were calculated for 
each anatomic region investigated in this analysis using Corn�eld’s method, as this method performs well with 
relatively small sample sizes44. P values of ORs were calculated using a two-tailed Fisher’s exact test45. Tissues 
where p values fell below the signi�cance level of α = 0.05 and in which 95% OR con�dence intervals did not 
include 1 were deemed signi�cant. �ese test selections were appropriate, as they allowed for direct comparison of 
the frequencies at which several tissues were hotspots across cases and controls, and as such, identi�ed signi�cant 
tissues with regards to TKR onset.

Results
OA pretrain utility in TKR prediction. To test information learned from the OA pretrain, pretrained 
models themselves were used to predict TKR, with results depicted in Table 3. Predictably, the radiograph OA 
pretrain model had poor sensitivity for patients without OA, and poor speci�city in moderate and severe cases 
of OA. While the MRI OA pretrain model expectedly yielded more balanced sensitivity and speci�city across 
all OA stages, it too le� room for improvement, particularly in sensitivity at no OA and speci�city at severe OA. 
�is con�rmed the pretrain provided useful information to both architectures but �ne-tuning and integration of 
non-imaging variables were necessary to attain desired TKR prediction performance.

X-Ray pipeline optimization and performance. For the X-Ray model, hyperparameter tuning steps 
found the following to yield the best combination of validation accuracy, sensitivity, and speci�city: learning rate 
of 3.981 × 10−6, TKR class weight in cross-entropy loss function of 0.927 and non-TKR class weight of 0.073, 
dropout rate of 0.375, and only the last 2 layers �ne-tuned a�er OA pretrain.

A radiograph model was �ne-tuned to predict TKR with these parameters, and its predictions fed into an LR 
ensemble. Averaging predictions of the best 5 LR models found through random search in the 3 OA categories 
yielded best validation performance, so this ensemble was used on the test set. Test accuracy, sensitivity, and spec-
i�city are provided in Table 4, and ROC curves of all three versions of this pipeline are found in Fig. 2a. AUCs are 
as follows: 0.848 ± 0.039 (image only), 0.868 ± 0.028 (non-imaging info. only), 0.890 ± 0.021 (integrated model). 
Furthermore, AUCs for the image-only and combined versions of the pipeline at no OA are as follows: 0.514 ± 
0.087 (image only); 0.799 ± 0.055 (integrated model). At moderate OA: 0.788 ± 0.025 (image only); 0.865 ± 
0.016 (integrated model). At severe OA: 0.552 ± 0.040 (image only); 0.641 ± 0.044 (integrated model). All AUC 
intervals are calculated using standard deviation (s.d.), p < 0.05.

MRI pipeline optimization and performance. Similarly, a hyperparameter search was carried out for the 
MRI pipeline to optimize parameters for eventual �ne-tuning. �e following hyperparameters were found opti-
mal: learning rate of 1.906 × 10−2, TKR class cross-entropy weight of 0.902 and non-TKR class weight of 0.098, 
dropout rate of 0.329, only last layer of model �ne-tuned a�er OA pretrain.

An MRI-based model was �ne-tuned from these parameters. �e resulting predictions were fed into an LR 
ensemble, where averaging predictions of the best 4 models in each OA category optimized validation perfor-
mance. Performance of the resulting architecture on test data is reported in the same manner as the radiograph 
pipeline, in Table 4 and Fig. 2b. AUCs are as follows: 0.886 ± 0.020 (image only), 0.868 ± 0.028 (non-imaging 
info. only), 0.834 ± 0.036 (integrated model). AUCs for the image-only and combined pipeline versions at no 
OA are as follows: 0.897 ± 0.039 (image only); 0.943 ± 0.029 (integrated model). At moderate OA: 0.764 ± 0.020 
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(image only); 0.830 ± 0.024 (integrated model). At severe OA: 0.560 ± 0.042 (image only); 0.726 ± 0.038 (inte-
grated model). Again, all AUC intervals are calculated using s.d., p < 0.05.

Comparison of MRI and radiograph pipeline performances. A comparison of overall AUCs attained 
by the integrated MRI and X-ray pipelines across OA grades and overall shows that at no OA and severe OA, 
the MRI pipeline outperformed the X-ray pipeline (No OA, B = 100: p = 3.04 × 10−2; Moderate OA, B = 100: 
p = 9.55 × 10−1; Severe OA, B = 100: p = 4.57 × 10−2; Overall, B = 100: p = 9.94 × 10−1). �e MRI pipeline thus 
has a superior combination of sensitivity and speci�city than does the X-ray pipeline for patients without OA 
and those with severe OA. �e AUCs obtained by the image-only pipelines also were compared, and showed the 
MRI pipeline to outperform the X-ray pipeline for patients without OA and overall (No OA, B = 100: p = 6.10 × 
10−5; Moderate OA, B = 100: p = 7.58 × 10−1; Severe OA, B = 100: p = 4.37 × 10−1; Overall, B = 100: p = 1.16 × 
10−2). �ese results follow intuition: while radiographic imaging is primarily capable of illuminating bones in the 
joint, MRI can visualize so� tissues such as cartilage, muscle, and meniscus46,47. It follows that an MRI model will 

OA status Model type Accuracy (95% CI) Sensitivity (95% CI) Speci�city (95% CI) Non-TKR cases TKR cases

None
Radiograph 92.1 ± 0.083 25.2 ± 2.16 92.4 ± 0.081

2,892 12
MRI 94.3 ± 0.070 48.7 ± 2.48 94.4 ± 0.070

Moderate
Radiograph 29.3 ± 0.151 93.8 ± 0.439 26.7 ± 0.156

2,056 83
MRI 65.4 ± 0.154 65.5 ± 0.848 65.4 ± 0.158

Severe
Radiograph 29.7 ± 0.488 100.0 ± 0.000 1.4 ± 0.180

141 57
MRI 33.4 ± 0.523 82.2 ± 0.824 14.0 ± 0.441

All
Radiograph 64.2 ± 0.124 90.7 ± 0.378 63.4 ± 0.126

5,089 152
MRI 80.2 ± 0.079 70.4 ± 0.595 80.5 ± 0.082

Table 3. Performance in TKR prediction of OA pretrained models for radiographs and MRI, strati�ed by 
severity of OA. Pretraining strategy yields useful information to both models, but performance at no OA in 
particular leaves room for improvement, justifying subsequent model �ne-tuning. Standard errors used to 
calculate con�dence intervals.

OA status Image source Model type
Accuracy 
(95% CI)

Sensitivity 
(95% CI)

Speci�city 
(95% CI)

Non-TKR cases TKR cases

None

X-ray

Non-imaging info. only 89.1 ± 0.139 49.7 ± 2.80 89.3 ± 0.140

2,892 12

Image only 95.0 ± 0.089 7.8 ± 1.64 95.4 ± 0.089

Integrated model 95.4 ± 0.081 8.6 ± 1.95 95.8 ± 0.077

MRI

Non-imaging info. only 89.1 ± 0.139 49.7 ± 2.80 89.3 ± 0.140

Image only 95.2 ± 0.088 66.9 ± 3.23 95.3 ± 0.089

Integrated model 82.4 ± 0.171 92.2 ± 1.68 82.4 ± 0.173

Moderate

X-ray

Non-imaging info. only 72.9 ± 0.208 70.0 ± 1.16 73.0 ± 0.212

2,056 83

Image only 79.9 ± 0.196 66.7 ± 1.23 80.4 ± 0.195

Integrated model 81.4 ± 0.178 76.0 ± 1.12 81.6 ± 0.179

MRI

Non-imaging info. only 72.9 ± 0.208 70.0 ± 1.16 73.0 ± 0.212

Image only 68.8 ± 0.225 78.3 ± 0.952 68.4 ± 0.227

Integrated model 74.9 ± 0.216 78.9 ± 0.974 74.7 ± 0.228

Severe

X-ray

Non-imaging info. only 51.3 ± 0.744 89.4 ± 0.864 35.8 ± 0.925

141 57

Image only 32.1 ± 0.714 94.5 ± 0.735 7.2 ± 0.467

Integrated model 60.5 ± 0.775 64.0 ± 1.57 59.0 ± 0.959

MRI

Non-imaging info. only 51.3 ± 0.744 89.4 ± 0.864 35.8 ± 0.925

Image only 34.6 ± 0.775 98.3 ± 0.390 9.2 ± 0.632

Integrated model 59.6 ± 0.770 84.0 ± 1.03 49.6 ± 1.04

All

X-ray

Non-imaging info. only 81.1 ± 0.118 75.6 ± 0.776 81.2 ± 0.122

5,089 152

Image only 86.4 ± 0.095 72.5 ± 0.864 86.9 ± 0.095

Integrated model 88.4 ± 0.094 66.3 ± 0.924 89.1 ± 0.090

MRI

Non-imaging info. only 81.1 ± 0.118 75.6 ± 0.776 81.2 ± 0.122

Image only 82.1 ± 0.118 84.9 ± 0.636 82.1 ± 0.119

Integrated model 78.5 ± 0.134 81.8 ± 0.643 78.4 ± 0.138

Table 4. Performance of X-ray and MRI architectures on test data. While integrated X-ray pipeline delivers 
higher accuracy than integrated MRI pipeline, integrated MRI pipeline yields improved sensitivity over 
integrated X-ray pipeline across all stages of OA, markedly so at no OA. Standard errors used to calculate 
con�dence intervals.
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exhibit a better combination of sensitivity and speci�city, especially in early OA stages at which few radiographic 
changes in the knee have occurred. ROC curves for pipeline versions and OA classi�cations in which the MRI 
architecture yielded a signi�cantly better AUC than its X-ray counterpart are shown in Fig. 3.

McNemar’s test assessed relative accuracies of these pipelines. �ere was a statistically signi�cant di�erence 
between the accuracies of the integrated X-ray and MRI pipelines for patients at no OA, moderate OA, and overall 
(No OA, n = 537: p = 1.65 × 10−59; Moderate OA, n = 521: p = 1.13 × 10−9; Severe OA, n = 47: p = 8.84 × 10−1; 
Overall, n = 1,105: p = 1.52 × 10−54), and in each of those 3 statistically signi�cant cases, the X-ray pipeline out-
performed the MRI pipeline (No OA, n = 537: p = 1.11 × 10−16; Moderate OA, n = 521: p = 5.97 × 10−10; Overall, 
n = 1,105: p = 1.11 × 10−16). In interpreting these tests and the AUC tests holistically, it is evident that the X-ray 
pipeline is able to attain superior accuracy in several OA classi�cations by compromising on its combination of 
sensitivity and speci�city. �is is further supported by the accuracies and sensitivities reported for the respective 
pipelines in Table 4, which show that while the X-ray pipeline is more accurate than its MRI counterpart at every 
OA classi�cation, the opposite is true for sensitivity—drastically so for patients without OA. In the clinic, where 
sensitivity as to whether a patient is at risk of eventual TKR is paramount, these results would show the MRI 
pipeline to be the more useful model.

It is also worthy to note the improvement in performance that occurs for patients without OA when imag-
ing predictions are added to non-imaging variables in both pipelines. In the X-ray pipeline, the model’s AUC 
increased from 0.514 ± 0.087 to 0.799 ± 0.055 when non-imaging variables were added to the radiographs, a size-
able increase when compared to the MRI pipeline performance, which saw AUC increase from 0.897 ± 0.039 to 
0.943 ± 0.029 (p < 0.05 for all). �is demonstrates that non-imaging variables such as various pain scales seem to 
add critical information to the X-ray pipeline, while the same information is less important in the MRI pipeline.

Biomarker identification and analysis. Of the 152 patients in test data who underwent a TKR, 124 were 
detected by the MRI pipeline. Occlusion maps were generated for these cases and their corresponding true neg-
ative controls, an example of which is shown in Fig. 4. Tissues and their hotspot percentages across these true 
positives and corresponding true negative controls can be found in Supplementary Table S2 and S3, respectively. 
ORs, 95% con�dence intervals, and associated p values for each tissue can be found in Table 5.

�ree tissues saw ORs and 95% con�dence intervals that lied above 1 and p values below α = 0.05: the medial 
patellar retinaculum, gastrocnemius tendon, and plantaris muscle. �us, we conclude there is a substantial and 
statistically signi�cant di�erence in the risk of TKR within 5 years when these tissues are identi�ed as hotspots by 
the pipeline. From the ORs, we see that the risk of TKR increases when any of the three are identi�ed as hotspots: 
for the medial patellar retinaculum, the risk is 1.98 times higher with a 95% con�dence interval from 1.02 to 3.99; 
for the gastrocnemius tendon, it is 2.97 times higher with a 95% con�dence interval from 1.12 to 10.0; and for the 
plantaris muscle, it is 2.84 times higher with a 95% con�dence interval from 1.47 to 5.82. As such, these results 
provide evidence that all are imaging biomarkers of TKR.

On the other hand, several tissues located within or near the tibiofemoral joint—namely, cartilage and bone 
in both medial and lateral locations of the joint, menisci in all tested regions, and the ACL—saw ORs and 95% 
con�dence intervals entirely below 1 and p values below α = 0.05. Consequently, for all of these tissues, we �nd 
a statistically signi�cant di�erence in the risk of TKR within 5 years when these tissues are identi�ed as hotspots. 
In the case of each, the risk of TKR appears to decrease when these tissues are identi�ed as hotspots. Interestingly, 

Figure 2. ROC curves for X-ray and MRI architectures on test data. X-ray pipeline ROC curves are shown in 
(a), with AUCs as follows, p < 0.05: 0.848 ± 0.039 (image only), 0.868 ± 0.028 (non-imaging info. only), 0.890 
± 0.021 (integrated model). MRI pipeline ROC curves are shown in (b), with AUCs as follows, p < 0.05: 0.886 
± 0.020 (image only), 0.868 ± 0.028 (non-imaging info. only), 0.834 ± 0.036 (integrated model). Standard 
deviations used to calculate con�dence intervals. ROC curves with AUCs within 1 standard deviation of the 
mean for each model type during bootstrapping are also shown on plots.
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each of these tissues have either been implicated as imaging biomarkers of OA progression, or damage within 
them is associated with OA onset48–50. �ese results, in conjunction with the three tissues in which risk of TKR 
increased when identi�ed as hotspots, suggest that compared to OA progression, TKR onset relies less on tissues 
in and around the tibiofemoral joint and more on tissues in other locations of the joint to make predictions. 
TKR has been considered an outcome of OA progression, but these results demonstrate in part how it is a more 
nuanced problem.

Discussion
In this work, we present a pipeline that integrates MR imaging and non-imaging features to attain strong TKR 
prediction performance, reporting accuracy of 78.5 ± 0.134%, sensitivity of 81.8 ± 0.643%, and speci�city of 78.4 
± 0.138% (intervals calculated with standard error of measurement (s.e.m.), p < 0.05). Comparisons of AUCs 
showed the MRI pipeline to outperform the X-ray pipeline for patients without OA and with severe OA, thereby 
showing the MRI model to have a better combination of sensitivity and speci�city in these OA classi�cations. �at 
it did so particularly for patients without OA shows the utility of the MRI pipeline in screening for patients at risk 
of TKR despite higher costs. It was also interesting that, particularly among patients with no OA, the X-ray model 
improved drastically more than the MRI model when non-imaging information was added, judging by disparities 
in AUCs. �is suggests the MRI-trained DenseNet-121 may have learned to predict some of the non-imaging 
features from the images themselves, indicating that MRI images may intrinsically contain information regarding 
pain, quality of life, and physical performance, among other non-imaging variables used in this study. �e utility 
of MRI in predicting these variables through DL is certainly worth further investigation.

Figure 3. ROC curves for MRI and X-ray pipelines at selected OA classi�cations and pipeline versions in which 
MRI performance was signi�cantly better than that of X-ray. MRI pipeline outperforms X-ray pipeline at no 
OA for both image-only and integrated models, as seen in (a,c). As shown in (b), integrated MRI pipeline also 
outperformed integrated X-ray pipeline for patients with severe OA, while (d) shows image-only MRI pipeline 
outperformed image-only X-ray pipeline across all OA stages. AUCs are displayed in the �gure with p < 0.05. 
Standard deviations used to calculate con�dence intervals. ROC curves with AUCs within 1 standard deviation 
of the mean for each pipeline version during bootstrapping are also shown on plots.
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A comparison of the MRI pipeline performance to past work is insightful. �e closest analog to our work was 
conducted by Wang, T. et al.24, who trained independent residual networks to predict TKR from both DESS and 
Turbo Spin Echo (TSE) MRI images, integrating both predictions with non-imaging variables in an LR model 
to yield a �nal TKR prediction. �is yielded a model with AUC of 0.86 ± 0.01 (p < 0.01) when solely DESS or 
TSE images were used, and 0.88 ± 0.02 (p < 0.01) when both images and non-imaging features were integrated. 
Our MRI image-only model saw AUC of 0.886 ± 0.020 (image only, p < 0.05) and an integrated AUC of 0.834 
± 0.036 (combined, p < 0.05). Our image-only model thus yields performance superior to its image-only coun-
terpart, with a 95% con�dence interval lying entirely above the mean AUC of the image-only model by Wang, T. 
et al.24. Our integrated model, as discussed previously, was optimized to maximize Youden’s index within each 
OA classi�cation rather than overall AUC, explaining why our integrated model has a lower overall AUC than 
our image-only model. However, due to this decision, we obtained strong performance at early and moderate 
OA stages, with sensitivity and speci�city of 92.2 ± 1.68% and 82.4 ± 0.173% at no OA, respectively, and 78.9 ± 
0.974% and 74.7 ± 0.228% at moderate OA (intervals calculated using s.e.m., p < 0.05). In particular, the AUC of 
0.943 ± 0.029 (interval calculated with s.d., p < 0.05) obtained by the MRI pipeline for patients without OA, the 
most di�cult OA classi�cation from which to predict TKR, by far surpasses that of past TKR predictive models 
that include patients across all stages of OA. �is performance marks progress towards a model that identi�es 
patients at risk for TKR such that nonsurgical treatment strategies can be implemented to delay TKR.

�e biomarker analysis conducted also has implications, as it identi�ed several tissues located within or near 
the tibiofemoral joint as reducing risk of TKR when identi�ed as hotspots by the full MRI pipeline—namely, these 
were medially and laterally located cartilage and bone, all examined meniscal regions, and the ACL. �ese tissues 
or damage within them all have been associated with progression or onset of OA, and that our model shows TKR 
onset to be less reliant on these imaging features in cases compared to controls demonstrates TKR onset to be a 
more complicated problem than OA progression, despite the relationship between the two. On the other hand, 
the model identi�es three tissues as increasing risk of TKR when identi�ed as hotspots in the pipeline: the medial 
patellar retinaculum, gastrocnemius tendon, and plantaris muscle. �e medial patellar retinaculum is crucial for 
lateral stabilization of the knee joint, and as such, damage to it results in a patella that more easily dislocates51. 
Past work has shown patellar dislocation increases risk for OA, and TKR can be an e�ective procedure to treat 
inveterate patellar dislocation, showing a previous link between this tissue’s functionality and eventual OA and 
TKR52,53. �e gastrocnemius tendon and plantaris muscle, on the other hand, are both posteriorly located tissues 
within the knee that play a key role in knee �exion54. While literature regarding the plantaris muscle is rather 
sparse, injuries to the muscle can be implicated in knee and calf pain felt by a patient55. Given their related func-
tionality and location, the gastrocnemius tendon and plantaris muscle can jointly be implicated in conditions 
such as “tennis leg,” which refers to mid-calf pain felt during extension of the leg, usually due to damage to one of 
these tissues or their associated muscles or tendons56. �e signi�cance of the plantaris muscle and gastrocnemius 

Figure 4. Slices of occlusion map of true positive detected by MRI pipeline, overlaid on corresponding slices of 
DESS MRI. Such maps were generated and analyzed for all 124 true positives and corresponding true negative 
controls of the integrated MRI pipeline.
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tendon to OA progression and TKR, however, have not been well characterized, and these results justify future 
studies to these ends.

�is study had some limitations. �e �rst is speci�c to the OAI dataset, which tends towards older, female 
patients, all from the United States: across 4,796 patients, the mean age is 61 years and 58% of patients are female. 
�is is not emblematic of the general population, so the robustness of the pipeline could be strengthened by test-
ing on a dataset such as the Multicenter Osteoarthritis Study (MOST). A further limitation of the dataset is that, 
despite the fairly large size, there are a very limited number of patients with the classi�cation of most interest: 
those without radiographic OA that still undergo TKR within 5 years. Only 66 such cases existed in the entire OAI 
dataset, and 12 were in the test set. As such, the OAI dataset and the number of comparison experiments we ran 
within and across OA classi�cations limits the statistical power of our conclusions. Furthermore, in this study, 
pixels in MRI images were compressed to 14 possible values to optimize performance—a version of the pipeline 
was also constructed and evaluated without the compression, but its TKR prediction performance was not as 
strong. Ideally, a model that uses all available information would be used in occlusion map analysis to draw more 
precise conclusions regarding anatomic regions that associate with TKR, but this compromise was necessary to 
improve performance. A �nal limitation was computational intensity in occlusion map generation: the voxel size 
and stride used were 12 × 32 × 32 and 12, respectively. �ese ideally would be smaller so maps could yield more 
precise insights but doing so was infeasible in a reasonable amount of time.

To conclude, this work presents a predictive model that delivers performance not previously seen in predict-
ing TKR, especially for patients without OA. By delivering such performance, this pipeline can identify patients 
at risk of TKR with high sensitivity and speci�city, and for patients with no or moderate OA, this can allow a 
non-invasive treatment to be implemented that prolongs good health of the knee and delays TKR. �e biomarker 
analysis identi�es the medial patellar retinaculum, gastrocnemius tendon, and plantaris muscle as increasing risk 
of TKR when identi�ed as a hotspot by the model, while its assessment that several tissues within and near the 
tibiofemoral joint appear to reduce risk of TKR helps demonstrate the added complexity of predicting TKR onset 

Tissue type Tissue OR (95% CI, n = 124) P value (n = 124)

Cartilage

TFJ medial* 0.05 (0.00–0.48) 3.36 × 10−3

TFJ lateral* 0.03 (0.00–0.25) 3.89 × 10−5

PFJ 1.03 (0.60–1.77) 1.00 × 100

Meniscus

Medial anterior* 0.33 (0.12–0.79) 1.04 × 10−2

Medial posterior* 0.40 (0.16–0.89) 2.37 × 10−2

Lateral anterior* 0.23 (0.05–0.67) 5.05 × 10−3

Lateral posterior* 0.26 (0.06–0.80) 1.49 × 10−2

Bone

TFJ medial* 0.17 (0.00–0.91) 3.57 × 10−2

TFJ lateral* 0.02 (0.00–0.22) 8.48 × 10−6

PFJ 1.11 (0.64–1.92) 7.93× 10−1

Ligament

ACL* 0.49 (0.23–0.99) 4.72 × 10−2

PCL 1.58 (0.89–2.87) 1.27 × 10−1

Popliteal 1.62 (0.96–2.77) 7.51 × 10−2

Tendon

Medial patellar retinaculum* 1.98 (1.02–3.99) 4.19 × 10−2

Lateral patellar retinaculum 1.08 (0.60–1.96) 8.88 × 10−1

Popliteal 1.49 (0.87–2.57) 1.56 × 10−1

Patellar 1.76 (0.92–3.48) 9.00 × 10−2

Gastrocnemius* 2.97 (1.12–10.0) 2.67 × 10−2

Semimembranosus 0.50 (0.23–1.03) 6.17 × 10−2

Quadriceps 3.18 (0.88–20.4) 8.38 × 10−2

Gracilis 4.52 (0.74–290) 1.20 × 10−1

Fat pad Ho�a 2.38 (0.92–7.38) 7.80 × 10−2

Muscle

Popliteus 1.98 (1.00–4.14) 5.11 × 10−2

Vastus medialis 1.26 (0.54–3.00) 6.93 × 10−1

Gastrocnemius 1.35 (0.73–2.54) 3.76 × 10−1

Plantaris* 2.84 (1.47–5.82) 1.29 × 10−3

Biceps femoris 4.52 (0.74–290) 1.20 × 10−1

Tibialis anterior 2.37 (0.24–161) 6.22 × 10−1

Semimembranosus 0.35 (0.05–1.32) 1.36 × 10−1

Synovium General 1.17 (0.50–2.82) 8.41 × 10−1

Table 5. Summary of occlusion map analysis comparing frequencies with which selected knee joint tissues were 
indicated as hotspots in analysis. Hotspots were de�ned as pixels that, when occluded, were among the top 5% 
of all pixels in change of pipeline TKR prediction output metric when occluded. Odds ratios, 95% con�dence 
intervals calculated using Corn�eld’s method, and p values calculated using Fisher’s exact test are displayed. 
Tissues that were signi�cant at α = 0.05 are designated with a *. N value for all tests was n = 124.
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as opposed to OA progression. Beyond this, additional directions include investigating a more e�ective means of 
integrating non-image information with image predictions to improve TKR prediction performance, assessing 
the e�cacy of alternate network architectures, and reducing computational time to make predictions.

Data availability
�e datasets analyzed during the current study are available through the Osteoarthritis Initiative, which can 
be accessed at https://nda.nih.gov/oai/. In addition, model checkpoints, code, and label �les used to produce 
presented results can be accessed at https://bitbucket.org/atolpadi7/dl-tkr-sci-rep/.
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