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Lung cancer is the leading cause of cancer-related death at 
18.4% (1). Volume CT screening can reduce the 10-year 

mortality of lung cancer by 24% (2). Despite the rapidly 
increasing demand for lung cancer screening, the cumu-
lative burden of radiation exposure limits its wide imple-
mentation (3). On the premise of maintaining diagnostic 
performance, it is essential to reduce the radiation dose as 
much as possible. However, traditional image reconstruc-
tion methods, such as filtered back projection (FBP), do 
not reduce image noise with low-dose acquisitions (4). 
Iterative reconstruction, such as adaptive statistical itera-
tive reconstruction-V (ASIR-V) and advanced modeled 
iterative reconstruction, or ADMIRE, was developed to 
reconstruct images and reduce noise (4,5). In low-dose CT 
settings, with absorbed doses from 1 to 2 mSv, iterative 
reconstruction can significantly reduce image noise and 

improve image quality (6). Further radiation dose reduc-
tion for low-dose CT screening may help encourage more 
use of this method. Ultra–low-dose (ULD) CT reduces the 
dose level to 0.13–0.49 mSv (7–9), still higher than that 
of chest radiography (0.03–0.1 mSv) (10). When using 
ULD CT at doses similar to those used in chest radiogra-
phy, iterative reconstruction algorithms affect the display 
of subtle imaging features, limiting their applicability to 
this task (11).

Recently, deep learning image reconstruction (DLIR) 
technology based on convolutional neural networks has 
been introduced to improve image quality in low-dose set-
tings (12–14). With these methods, studies have shown 
significant image quality improvement at coronary CT an-
giography (15) and thoracic (12), abdominal (16), and ce-
rebral CT (17). The purpose of this study was to compare 

Background: Ultra–low-dose (ULD) CT could facilitate the clinical implementation of large-scale lung cancer screening while 
minimizing the radiation dose. However, traditional image reconstruction methods are associated with image noise in low-dose 
acquisitions.

Purpose: To compare the image quality and lung nodule detectability of deep learning image reconstruction (DLIR) and adaptive 
statistical iterative reconstruction-V (ASIR-V) in ULD CT.

Materials and Methods: Patients who underwent noncontrast ULD CT (performed at 0.07 or 0.14 mSv, similar to a single chest radio-
graph) and contrast-enhanced chest CT (CECT) from April to June 2020 were included in this prospective study. ULD CT images 
were reconstructed with filtered back projection (FBP), ASIR-V, and DLIR. Three-dimensional segmentation of lung tissue was 
performed to evaluate image noise. Radiologists detected and measured nodules with use of a deep learning–based nodule assess-
ment system and recognized malignancy-related imaging features. Bland-Altman analysis and repeated-measures analysis of variance 
were used to evaluate the differences between ULD CT images and CECT images.

Results: A total of 203 participants (mean age 6 standard deviation, 61 years 6 12; 129 men) with 1066 nodules were included, 
with 100 scans at 0.07 mSv and 103 scans at 0.14 mSv. The mean lung tissue noise 6 standard deviation was 46 HU 6 4 for 
CECT and 59 HU 6 4, 56 HU 6 4, 53 HU 6 4, 54 HU 6 4, and 51 HU 6 4 in FBP, ASIR-V level 40%, ASIR-V level 80% 
(ASIR-V-80%), medium-strength DLIR, and high-strength DLIR (DLIR-H), respectively, of ULD CT scans (P , .001). The nod-
ule detection rates of FBP reconstruction, ASIR-V-80%, and DLIR-H were 62.5% (666 of 1066 nodules), 73.3% (781 of 1066 
nodules), and 75.8% (808 of 1066 nodules), respectively (P , .001). Bland-Altman analysis showed the percentage difference in 
long diameter from that of CECT was 9.3% (95% CI of the mean: 8.0, 10.6), 9.2% (95% CI of the mean: 8.0, 10.4), and 6.2% 
(95% CI of the mean: 5.0, 7.4) in FBP reconstruction, ASIR-V-80%, and DLIR-H, respectively (P , .001).

Conclusion: Compared with adaptive statistical iterative reconstruction-V, deep learning image reconstruction reduced image noise, 
increased nodule detection rate, and improved measurement accuracy on ultra–low-dose chest CT images.
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eosin staining and immunohistochemical staining were studied. 
Figure 1 shows the research pipeline steps.

CT Scanning and Image Reconstruction
All participants underwent noncontrast ULD CT and CECT 
scanning with a 256-row volume CT scanner (Revolution CT, 
GE Healthcare) (Appendix E1 [online], Table E1 [online]). For 
the ULD CT scan, each participant’s scanning protocol was ran-
domly set to 70 kVp and 20 mA or 70 kVp and 40 mA, resulting 
in two different absorbed dose levels (0.07 mSv or 0.14 mSv, 
respectively). For CECT, each participant was injected with 40–
60 mL of contrast medium (iopamidol [Iopamiro 300, Bracco]) 
at 3.0 mL/sec through the antecubital vein and scanned at 120 
kVp and automatic mA, with a noise index of 20.

Six groups of CT images were reconstructed, including five 
groups of ULD CT images and one group of CECT images. 
The DLIR algorithm (TrueFidelity, GE Healthcare) was applied. 
The five ULD CT image groups were reconstructed with FBP, 
ASIR-V level 40% (ASIR-V-40%), ASIR-V level 80% (ASIR-
V-80%), medium-strength DLIR (DLIR-M), and high-strength 
DLIR (DLIR-H). The CECT image group (ASIR-V level 50%) 
was used as a reference for image quality and nodule assessment. 
All images were reconstructed with a standard kernel, and the 
section thickness/interval was 1.25 mm/1.25 mm.

Image Quality Assessment
We three-dimensionally segmented the whole lung tissue and 
upper air background in vitro to evaluate the image noise (Ap-
pendix E1 [online], Fig E1 [online]), expressed as the standard 
deviation of CT values. Two radiologists (B.J. and a second ra-
diologist) with 5 years of experience in chest imaging indepen-
dently assessed subjective image quality with use of a five-point 
Likert scale (1, unacceptable; 2, poor; 3, moderate; 4, good; and 
5, excellent) based on the European Guidelines on Quality Cri-
teria for Computed Tomography (20).

Nodule Detection Rate and Measurement Accuracy
Based on the image quality evaluation results, one group with 
lower image noise and higher subjective image quality was se-
lected from the ASIR-V-40% and ASIR-V-80% groups to rep-
resent ASIR-V, and one group from DLIR-M and DLIR-H to 
represent DLIR. A radiologist (B.J.) read all CT images to de-
tect lung nodules with the aid of a deep learning–based nodule 
evaluation system (InferRead CT Lung 8.6, Infervision) and 
measured the long diameters and volumes of the nodules (Fig 
E2 [online]) on CECT, FBP, ASIR-V, and DLIR images. The 
detected nodules included three types: subsolid, solid, and calci-
fied nodules (21). Nodules smaller than 30 mm were analyzed 
and divided into three categories: 3–6 mm, 6–10 mm, and 10 
mm or larger. A general radiologist (X.X.) with 20 years of expe-
rience independently confirmed the detected nodules by using 
the results of CECT as a reference and measured the nodules at 
CECT as the reference for long diameter and volume.

Imaging Features
To investigate the influence of ULD CT on the diagnostic evi-
dence of malignant nodules, we analyzed the malignancy-related 

the image quality and lung nodule detectability of DLIR and the 
widely used ASIR-V in ULD CT.

Materials and Methods

Study Participants
Consecutive patients at Shanghai General Hospital from April 
to June 2020 were prospectively included and randomly di-
vided into two subgroups (those scanned at 0.07 mSv and 
those at 0.14 mSv). The local institutional review board ap-
proved this study, and written informed consent was obtained. 
X.S., S.Z., and J.L. are employees of GE Healthcare, the CT 
manufacturer of this study, and had no control over the data 
or analysis. The inclusion criteria were as follows: (a) adult 
participants with indications for contrast-enhanced chest CT 
(CECT) and (b) adults in whom CECT and noncontrast ULD 
CT were performed. The exclusion criteria were (a) poor image 
quality caused by motion or respiratory artifacts, (b) an incom-
plete image reconstruction sequence, (c) unsuccessful lung pa-
renchyma segmentation, and (d) body mass index (BMI) of 30 
kg/m2 or more. The included participants were prespecified to 
stratify by BMI according to the World Health  Organization 
classification as follows: underweight (BMI ,18.5 kg/m2), nor-
mal weight (18.5–24.9 kg/m2), and overweight (25 kg/m2) 
(18). Assuming that our study is similar to the previous studies 
evaluating lung nodules at ULD CT based on  approximately 
200 patients (7,19), a sample size of 200 would provide suf-
ficient statistical power.

Participants with 1–50 nodules at CECT were further ana-
lyzed for nodule detection and measurement. Participants with 
51 or more nodules were excluded because of the difficulty of 
manual counting. Finally, the imaging features of participants 
with malignant nodules confirmed with use of hematoxylin and 

Abbreviations
ASIR-V = adaptive statistical iterative reconstruction-V, ASIR-V-40% = 
ASIR-V level 40%, ASIR-V-80% = ASIR-V level 80%, BMI = body 
mass index, CECT = contrast-enhanced chest CT, DLIR = deep learn-
ing image reconstruction, DLIR-H = high-strength DLIR, DLIR-M = 
medium-strength DLIR, FBP = filtered back projection, ULD = 
ultra–low-dose

Summary
Compared with the traditional iterative reconstruction method, deep 
learning image reconstruction improved image quality and lung nodule 
detection at ultra–low-dose chest CT (0.07–0.14 mSv, similar to a 
single chest radiograph).

Key Results
 n In a prospective ultra–low-dose CT study of 203 participants, 

compared with adaptive statistical iterative reconstruction-V 
(ASIR-V), deep learning image reconstruction (DLIR) reduced the 
background image noise by 21% (mean air background noise 6 
standard deviation, 23 HU 6 4 vs 29 HU 6 4; P , .001).

 n The nodule detection rates for DLIR and ASIR-V were 75.8% (808 
of 1066 nodules) and 73.3% (781 of 1066 nodules), respectively.

 n The percentage difference of long diameter at DLIR and ASIR-V 
from that at contrast-enhanced chest CT was 6.2% and 9.2%, 
respectively (P , .001).
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imaging features of histologically confirmed malignant nodules. 
Malignancy-related features included lobulated shapes, spiculated 
margins, pleural tags, and air bronchograms (22). These imaging 
features were independently identified by four general radiologists 
(X.X. and three others) with more than 10 years of experience.

Statistical Analysis
Normally distributed continuous variables are expressed as 
means 6 standard deviations and were evaluated with use of the 

 Student t test. The Pearson x2 test was used to compare partici-
pant characteristics of nominal or categorical variables between 
the 0.07-mSv ULD CT and 0.14-mSv ULD CT groups. The 
Fisher exact test was used to compare the detection rates of nod-
ules. Kruskal-Wallis one-way analysis of variance was used to 
compare qualitative image evaluations. Bland-Altman analysis 
and repeated-measures analysis of variance were used to evalu-
ate the differences in long diameter and volume between ULD 

Figure 1: Overview of the research pipeline. ASIR-V = adaptive statistical iterative reconstruction-V, ASIR-V-0% = ASIR-V level 0%, ASIR-V-40% = ASIR-V level 40%, 
ASIR-V-50% = ASIR-V level 50%, ASIR-V-80% = ASIR-V level 80%, CECT = contrast-enhanced chest CT, DLIR = deep learning image reconstruction, DLIR-H = high-strength 
DLIR, DLIR-M = medium-strength DLIR, FBP = filtered back projection, MS-SSIM = multiscale structural similarity, PSNR = peak signal-to-noise ratio, recon = reconstruction, 
ULDCT = ultra–low-dose CT.
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CT images and CECT images. Multivariable logistic regression 
and a generalized linear mixed model were used to analyze the 
predictive value of reconstruction methods for nodule detec-
tion after adjusting for confounding factors on a per-nodule 
and per-participant basis, respectively. The intraclass correlation 
coefficient was used to indicate the interobserver consistency of 
subjective image quality assessment between the two radiolo-
gists and the observed malignancy-related features among the 
four radiologists. Two-tailed P , .05 was considered indicative 
of statistically significant difference. Two statistical packages 
(SPSS 25.0, IBM; MedCalc 19.1, MedCalc Software) were used 
for data analysis. B.J., X.S., and G.H.d.B. performed statistical 
analysis. Data generated or analyzed during the study are avail-
able from the corresponding author by request.

Results

Participant Characteristics
Of 226 patients, 203 (mean age 6 standard deviation, 61 years 
6 12) were eligible, including 129 men (63.5%) and 74 women 
(36.5%) (Table). Twenty-three patients were excluded: five for 
poor image quality, two for incomplete CT reconstruction se-
quences, nine for unsuccessful lung parenchyma segmentation, 
and seven for BMI of 30 kg/m2 or higher. Figure 2 shows the 
study flowchart. The 0.07-mSv ULD CT and 0.14-mSv ULD 

Participant and Nodule Characteristics

Variable All Participants Participants Scanned at 0.07 mSv Participants Scanned at 0.14 mSv P Value*
No. of participants 203 100 103
Age (y)† 61 6 12 62 6 11 60 6 14    .20
Sex    .80
 M 129 (63.5) 65 (65.0) 64 (62.1)
 F 74 (36.5) 35 (35.0) 39 (37.9)
Body mass index (kg/m2)† 23.1 6 3.1 23.1 6 3.4 23.1 6 2.8 ..99
 ,18.5 kg/m2 12 (5.9) 7 (7.0) 5 (4.9)
 18.5–24.9 kg/m2 144 (70.9) 69 (69.0) 75 (72.8)
 25 kg/m2 47 (23.2) 24 (24.0) 23 (22.3)
No. of nodules 1066 596 470
Type‡    .39
 Subsolid 313 (29.4) 170 (28.5) 143 (30.4)
  Less than 2400 HU 154 (14.4) 82 (13.8) 72 (15.3)
  2400 HU or greater 159 (14.9) 88 (14.8) 71 (15.1)
 Solid 661 (62.0) 367 (61.6) 294 (62.6)
 Calcified 92 (8.6) 59 (9.9) 33 (7.0)
Size‡    .91
 3–6 mm 761 (71.4) 425 (71.3) 336 (71.5)
 6–10 mm 193 (18.1) 110 (18.5) 83 (17.6)
 10–30 mm 112 (10.5) 61 (10.2) 51 (10.9)
No. of nodules with histologic results 41 22 19
Histologic subtype‡    .69
 Benign and preinvasive lesions 14 (34) 10 (45) 4 (21)
 Malignant lesions 27 (66) 12 (55) 15 (79)

Note.—Unless otherwise specified, data are numbers of participants, with percentages in parentheses.
* P values represent the comparison between participants scanned at 0.07 mSv and those scanned at 0.14 mSv.
† Data are means 6 standard deviations.
‡ Data are numbers of nodules, with percentages in parentheses.

Figure 2: Inclusion and exclusion flowchart.
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CT groups comprised 100 and 103 participants, respectively. 
We found no differences in age, sex, or BMI between these two 
groups (P . .05). The mean BMI was 23.1 kg/m2 6 3.1. Of all 
203 participants, 12 (5.9%), 144 (70.9%), and 47 (23.2%) were 
underweight, at normal weight, and overweight, respectively. The 
volume CT dose index values of CECT, 0.07-mSv ULD CT, and 

0.14-mSv ULD CT were 4.9 mGy 6 0.7 (mean 6 standard de-
viation), 0.13 mGy, and 0.27 mGy, respectively. The effective ab-
sorbed doses were 2.38 mSv 6 0.37 (mean 6 standard deviation), 
0.07 mSv, and 0.14 mSv, respectively. Compared with CECT, the 
absorbed doses of 0.07-mSv ULD CT and 0.14-mSv ULD CT 
were reduced by 97.0% and 94.0%, respectively (both P , .001).

Figure 3: Image quality assessments according to image noise. (A, B) Box and whisker plots show lung tissue noise and background noise at contrast-enhanced 
chest CT (CECT) (reconstructed with use of adaptive statistical iterative reconstruction-V [ASIR-V] level 50%) as the reference and of filtered back projection (FBP),  
ASIR-V level 80% [ASIR-V-80%], and high-strength deep learning image reconstruction (DLIR-H) images at ultra–low-dose CT. The central line represents the median, box 
boundaries indicate the first and third quartiles, and the whisker boundaries extend 1.5 quartiles. Other points outside the whisker boundaries are plotted as outliers. (C, D) 
Dot plot shows relative noise reduction with the baseline FBP. Error bars represent the standard deviation. * = P , .05 and ** = P , .001. ASIR-V-40% = ASIR-V level 
40%, DLIR-M = medium-strength DLIR.
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Image Quality
The mean lung tissue noise 6 standard deviation was 46 HU 6 4 
for CECT and 59 HU 6 4, 56 HU 6 4, 53 HU 6 4, 54 HU 6 
4, and 51 HU 6 4 for FBP, ASIR-V-40%, ASIR-V-80%, DLIR-
M, and DLIR-H of ULD CT, respectively (P , .001) (Fig 3, Ta-
ble E2 [online]). Pairwise comparisons of FBP and ASIR-V-80% 
showed that the lung tissue noise of DLIR-H was the lowest, with 
a relative reduction of 13.8% from the baseline FBP level, which 
was better than the reduction of ASIR-V-80% (11.3% [P = .03]). 
The relative noise reduction of DLIR-M was higher than that of 
ASIR-V-40% (8.9% vs 6.1% [P , .001]).

The mean air background noise 6 standard deviation of 
CECT images was 22 HU 6 5, while that of ULD CT FBP, 
ASIR-V-40%, ASIR-V-80%, DLIR-M, and DLIR-H was 35 
HU 6 3, 32 HU 6 3, 29 HU 6 4, 27 HU 6 4, and 23 HU 6 
4, respectively (P , .001). Among all ULD CT reconstructions, 

DLIR-H had the lowest background noise, with a relative reduc-
tion of 34.7% from the baseline FBP level, which was higher 
than that of ASIR-V-80% (16.6% [P , .001]) and reached the 
CECT level (36.0% [P . .99]). Thereafter, ASIR-V-80% and 
DLIR-H images were selected for nodule detection and mea-
surement accuracy analysis because they showed better image 
quality than ASIR-V-40% and DLIR-M (Fig 4). Additionally, 
the image noise and background noise of lung tissues in the 
0.14-mSv ULD CT group were lower than those in the 0.07-
mSv ULD CT group (all P , .05).

The subjective image quality scores of DLIR-M (4.1 for both 
radiologists) and DLIR-H (4.2 and 4.4) were higher than those 
of FBP (2.7 and 2.9), ASIR-V-40% (3.0 and 3.4), and ASIR-
V-80% (3.8 and 4.0) (all P , .001) (Table E2 [online]). The 
interobserver consistency was high (intraclass correlation coef-
ficient = 0.85 [95% CI: 0.83, 0.86]).

Figure 4: Representative chest CT images from deep learning image reconstruction (DLIR) and adaptive statistical iterative 
reconstruction-V (ASIR-V) compared with contrast-enhanced chest CT (CECT). A 72-year-old man had a body mass index of 19.0 
kg/m2, with a clinical history of lung cancer surgery in the right middle lobe 5 years prior. The four images include a CECT image 
(reconstructed with use of ASIR-V level 50%) as the reference and filtered back projection (FBP), ASIR-V level 80% (ASIR-V-80%), 
and high-strength DLIR (DLIR-H) images at 0.14-mSv ultra–low-dose CT. The red outlined areas show the details of the magnified 
images of lung parenchyma. The DLIR-H image shows clearer lung parenchyma and more details than the ASIR-V-80% image, simi-
lar to the CECT image.
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Nodule Detection Rate
For nodule detection analysis, 169 of 203 participants (83.3%) 
with 1066 nodules (mean of six and median of four nodules 
per participant, ranging from one to 39) detected at CECT 
were eligible. For ULD CT, 666 of 1066 (62.5%), 781 of 1066 
(73.3%), and 808 of 1066 (75.8%) nodules were detected 
on the FBP, ASIR-V-80%, and DLIR-H images, respectively 
(Fig 5A, Table E3 [online]). Among the 100 participants who 
underwent 0.07-mSv ULD CT, 596 nodules were detected at 
the  reference CECT and 329 (55.2%), 396 (66.4%), and 417 
nodules (70.0%) were detected at FBP, ASIR-V-80%, and 
DLIR-H, respectively. Among the 103 participants who under-

went 0.14-mSv ULD CT, 470 nodules were detected at CECT 
and 337 (71.7%), 385 (81.9%), and 391 nodules (83.2%) were 
detected at FBP, ASIR-V-80%, and DLIR-H, respectively. The 
detection rate of DLIR-H in both ULD CT groups was higher 
than that of FBP and ASIR-V-80% (P , .001). After adjust-
ing for age, BMI, radiation dose, nodule size, and nodule type, 
multivariable logistic regression showed that the odds ratio of 
DLIR-H in predicting nodule detection on a per-nodule basis 
was 2.46 (P , .001), slightly higher than the 2.04 (P , .001) 
for ASIR-V-80% (Table E4 [online]). On a per-participant ba-
sis, the odds ratio of DLIR in predicting nodule detection was 
2.69 (P , .001), higher than the 2.19 (P , .001) of ASIR-V. 

Figure 5: (A) Bar graphs show nodule detection rates of deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction-V (ASIR-V) com-
pared with filtered back projection (FBP) in relation to radiation dose, participant body mass index (BMI), nodule type, and nodule size. Error bars represent the 95% CI of 
the mean. ASIR-V-80% = ASIR-V level 80%, DLIR-H = high-strength DLIR, ULDCT = ultra–low-dose CT (Fig 5 continues).
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Figure 5 (continued). (B) Box and whisker plots show deviation of the measured diameter and volume at ultra–low-dose CT (ULDCT) from those at contrast-enhanced 
chest CT (CECT). The central line represents the median, the box boundaries indicate the first and third quartiles, and the whisker boundaries extend 1.5 quartiles. Other 
points outside the whisker boundaries are plotted as outliers. ASIR-V-80% = adaptive statistical iterative reconstruction-V level 80%, BMI = body mass index, DLIR-H = high-
strength deep learning image reconstruction, FBP = filtered back projection. 

ASIR-V-80%, and DLIR-H, respectively (P , .001) (Fig E3A 
[online]). Bland-Altman analysis showed that the percentage dif-
ference in volume from that of CECT was 19.0% (95% CI of 
the mean: 14.6, 23.5), 21.0% (95% CI: 16.9, 25.1), and 14.4% 
(95% CI: 10.6, 18.2) in the three reconstructions, respectively 
(Fig E3B [online]).

DLIR-H showed the least error in nodule size from CECT 
compared with that at FBP and ASIR-V-80% (Fig 5B). DLIR-
H slightly underestimated the long diameter and volume of sub-
solid nodules by 1.1% and 0.9%, respectively, but overestimated 
those of solid (6.2% and 16.7%) and calcified nodules (14.1% 
and 28%). The overestimation of DLIR-H nodule measure-
ments at 0.14 mSv was lower than at 0.07 mSv (long diameter, 
3.5% vs 8.9%; volume, 11.0% vs 17.9%; both P , .001).

Malignancy-related Imaging Features
Postsurgical histologic results were available for 41 nodules in 
32 of 203 participants (15.8%), including 14 benign and pre-
invasive lesions and 27 malignant lesions (Table, Table E4 [on-
line]). Four radiologists evaluated 27 malignant nodules and 
found 276 malignancy-related features at CECT, including 79 
lobulated shapes, 79 spiculated margins, 66 pleural tags, and 52 
air bronchograms. The overall intraclass correlation coefficient 
among the four radiologists in determining malignancy-related 
features was 0.77 (95% CI: 0.73, 0.80), and the intraclass cor-
relation coefficients for lobulated shapes, spiculated margins, 
pleural tags, and air bronchograms were 0.75, 0.70, 0.74, and 
0.79, respectively.

The detection rate of all malignancy-related features for 
DLIR-H was 81.5% (225 of 276 features), higher than that of 
FBP (72.5% [200 of 276 features]) and ASIR-V-80% (77.5% 
[214 of 276 features]) (P = .04) (Fig 6, Table E6 [online]). The 

For ULD CT, the false-positive rate of DLIR-H was 1.8% (15 of 
823 nodules), which was lower than that of ASIR-V-80% (7.4% 
[62 of 843 nodules]; P , .001) and FBP (1.9% [13 of 679 nod-
ules]; P = .90).

The detection rates of DLIR-H in the underweight, nor-
mal-weight, and overweight groups were 92.2% (119 of 129 
 nodules), 76.1% (595 of 782 nodules), and 60.6% (94 of 155 
nodules), respectively. At 0.14 mSv, the detection rates of DLIR-
H in the underweight and normal-weight groups were 99% (85 
of 86 nodules) and 81.7% (272 of 333 nodules), respectively. 
At 0.07 mSv, the detection rate of DLIR-H in the underweight 
group was 79% (34 of 43 nodules). However, the detection rate 
in the overweight group was seriously affected by poor image 
quality and was only 57.7% (60 of 104 nodules) and 67% (34 of 
51 nodules) at 0.07 mSv and 0.14 mSv, respectively.

The detection rates of DLIR-H for subsolid, solid, and calcified 
nodules were 48.2% (151 of 313 nodules), 85.8% (567 of 661 
nodules), and 98% (90 of 92 nodules), respectively. Among sub-
solid nodules, the detection rate of DLIR-H for nodules with CT 
values of 2400 HU or greater was 69.8% (111 of 159 nodules). 
At 0.14 mSv, the detection rate of DLIR-H for solid nodules was 
94.9% (279 of 294 nodules). At 0.07 mSv, the detection rate of 
DLIR-H was reduced to 78.5% (288 of 367 nodules). The detec-
tion rates of DLIR-H for nodules 3–6 mm, 6–10 mm, and 10 
mm or larger were 71.7% (546 of 761 nodules), 80.8% (156 of 
193 nodules), and 94.6% (106 of 112 nodules), respectively.

Measurement Accuracy
Bland-Altman analysis showed that the percentage difference in 
the long diameter from that of CECT was 9.3% (95% CI of the 
mean: 8.0, 10.6), 9.2% (95% CI of the mean: 8.0, 10.4), and 
6.2% (95% CI of the mean: 5.0, 7.4) in FBP reconstruction, 
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detection rates of DLIR-H for the four features were 99% (78 of 
79 lobulated shapes), 72% (57 of 79 spiculated margins), 76% 
(50 of 66 pleural tags), and 77% (40 of 52 air bronchograms).

If at least one malignancy-related feature could be detected 
in each nodule, we considered the nodule to have a malignant 
tendency. Thus, the diagnosis rates of malignant tendency iden-
tified with use of CECT, FBP reconstruction, ASIR-V-80%, and 
DLIR-H were 92.6% (100 of 108 nodule evaluations by four 
radiologists), 79.6% (86 of 108), 86.1% (93 of 108), and 88.0% 
(95 of 108), respectively.

Discussion
We evaluated deep learning image reconstruction (DLIR) in chest 
radiography–equivalent ultra–low-dose CT in terms of image 
quality and nodule detection and compared this method to the 
traditional method, adaptive statistical iterative  reconstruction-V 
(ASIR-V). DLIR showed better image noise reduction both in 
lung tissue noise (13.8% vs 11.3%; P = .03) and air background 
noise (34.7% vs 16.6%; P , .001) than ASIR-V from the baseline 
of the filtered back projection (FBP) level. DLIR also showed a 
higher detection rate of lung nodules compared with those of FBP 
(75.8% vs 62.5%; P , .001) and ASIR-V (73.3%; P = .18), pro-
vided higher nodule measurement accuracy compared with that of 
ASIR-V in long diameter (6.2% vs 9.2%; P , .001) and volume 
(14.4% vs 21.0%; P , .001), and displayed more malignancy-
related imaging features of nodules than ASIR-V (81.5% [225 of 
276 features] vs 77.5 [214 of 276 features]; P = .04).

With DLIR, we performed chest CT scans at 0.07 and 0.14 
mSv, lower than the 0.13–0.49 mSv reported in previous ULD 

CT studies (7–9) and equivalent to the 0.03–0.1 mSv in chest 
radiography (10). The difference in denoising performance be-
tween DLIR and iterative reconstruction was investigated. Sev-
eral studies have reported that DLIR can reduce more noise than 
iterative reconstruction in conventional-dose CT (13,17,23) 
and low-dose CT (12,15). Benz et al (15) compared the image 
noise between DLIR-H and ASIR-V in low-dose coronary CT 
angiography and found that DLIR-H yielded the higher image 
quality.

We found that the long diameter and volume of nodules were 
over- or underestimated in ULD CT with CECT as a reference, 
which was also observed in some previous studies of ULD CT 
(24) and low-dose CT (25,26). In our study, DLIR-H slightly 
underestimated the long diameter and volume of subsolid nod-
ules but overestimated the solid and calcified nodules. Due to 
the partial volume effect, there is a transition zone between high-
attenuation (nodules) and low-attenuation (pulmonary paren-
chyma) objects on CT images, which is important for accurate 
volumetry (27). Since the measured values were determined by 
the segmentation algorithm, the transition zone around solid or 
calcified nodules would lead to overestimation. However, sub-
solid nodules (especially pure ground-glass nodules) have blurred 
margins and low attenuation and are therefore indistinguishable 
from lung parenchyma, which would reduce the accuracy of 
nodule segmentation, resulting in underestimation.

Subsequently, we observed malignancy-related imaging fea-
tures at different ULD CT reconstruction sequences. Among 
them, DLIR images had the most abundant subtle features, and 
the overall malignant feature detection rate was 81.5%.

Figure 6: Malignancy-related imaging features. (A) Bar graph shows detection rate of malignancy-related imaging features among filtered back projection (FBP), 
adaptive statistical iterative reconstruction-V level 80% (ASIR-V-80%), and high-strength deep learning image reconstruction (DLIR-H). (B) A 64-year-old man with a body 
mass index of 23.9 kg/m2 was hospitalized for surgery because of the CT finding of a pulmonary nodule (28.2 mm in long diameter in the right middle lobe), which was 
histologically proven as invasive adenocarcinoma. The array shows a contrast-enhanced chest CT (CECT) image and three 0.14-mSv ultra–low-dose CT images of FBP, 
ASIR-V-80%, and DLIR-H. The DLIR-H image shows that this nodule (arrow) has three malignancy-related imaging features, including a lobulated shape, spiculated margin, 
and air bronchograms.
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According to the World Health Organization, BMI of 30 kg/
m2 or greater is considered to indicate obesity and chronic dis-
ease. Because our ULD CT study was preferentially carried out 
in a normal population for screening purposes, participants with 
obesity were not included. Previous studies on ULD CT also ex-
cluded participants with obesity (28,29). Vardhanabhuti et al (30) 
found that the detectability of pulmonary nodules was reduced 
in individuals with higher BMIs due to higher image noise, and 
they concluded that ULD CT may not be suitable for overweight 
people. In our study, seven of 226 candidates had a BMI higher 
than 30 kg/m2. The obesity incidence rate was not high and there-
fore did not affect the screening target of ULD CT.

Our study has limitations. First, because of ethics concerns, 
noncontrast CT scans of high and low radiation were not repeated 
for each participant. Instead, we used conventional-dose CECT 
as a reference from a routine chest CT examination (noncontrast 
and contrast-enhanced scans). Second, a head-to-head compari-
son between conventional-dose and ULD noncontrast CT was 
not performed. Third, we used a deep learning–based system to 
detect and measure lung nodules. This system was trained based 
on conventional-dose data sets, not on ULD CT data.

Compared with adaptive statistical iterative reconstruction-V, 
deep learning image reconstruction (DLIR) improved the image 
quality by reducing image noise and increasing the lung nodule 
detection rate. DLIR also improved the nodule measurement ac-
curacy and displayed more detailed malignancy-related imaging 
features of nodules. With the introduction of this specific DLIR 
algorithm, it is feasible to use chest radiography– equivalent chest 
CT acquisition as low as 0.14 mSv in underweight and normal-
weight participants to detect and characterize lung nodules, 
which is crucial to facilitate the clinical implementation of large-
scale lung cancer screening. Nevertheless, only a limited number 
of nodules had pathologic results in this study, and with larger 
sample size, the results may have been different. More studies are 
needed to explore the clinical application and image optimiza-
tion of DLIR.
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