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In this study, we present a detailed analysis of deep learning techniques for intrusion detection. Specifically,

we analyze seven deep learning models, including, deep neural networks, recurrent neural networks,

convolutional neural networks, restricted Boltzmann machine, deep belief networks, deep Boltzmann

machines, and deep autoencoders. For each deep learning model, we study the performance of the model

in binary classification and multiclass classification. We use the CSE-CIC-IDS 2018 dataset and TensorFlow

system as the benchmark dataset and software library in intrusion detection experiments. In addition, we

use the most important performance indicators, namely, accuracy, detection rate, and false alarm rate for

evaluating the efficiency of several methods.

Deep Learning, intrusion detection, Cyber Security, machine learning

1. INTRODUCTION

The major target of cyber attacks is a country’s

Critical National Infrastructure (CNI) such as ports,

hospitals, water, gas or electricity producers, which

use and rely upon Supervisory Control and Data Ac-

quisitions(SCADA) and Industrial Control Systems

(ICS) to manage their production. Protection of CNIs

becomes an essential issue to be considered. Gen-

erally, available protective measures are classified

according to legal, technical, organizational, capacity

building, and cooperation aspects. Except from regu-

lations and policies that may be used to tackle cyber

attacks to CNIs specific practical measures need to

be taken in order for these regulations to be effective

Maglaras et al. (2018).

Along with other preventive security mechanisms,

such as access control and authentication, intrusion

detection systems (IDS) are deployed as a second

line of defense Ahmim et al. (2018). IDS based on

some specific rules or patterns of normal behavior

of the system can distinguish between normal and

malicious actions Ahmim et al. (2018). The necessity

of cyber physical security is rising and traditional

methods may not be effective anymore Stewart et al.

(2017). According to Dewa and Maglaras (2016),

data mining and its core feature which is knowledge

discovery can significantly help in creating Data

mining based IDSs that can achieve higher accuracy

to novel types of intrusion and demonstrate more

robust behaviour compared to traditional IDSs.

Moreover, many researchers struggle to find

comprehensive and valid datasets to test and

evaluate their proposed techniques and having a

suitable dataset is a significant challenge itself. In

order to test the efficiceny of such mechanisms,

reliable datasets that contain both bening and

several attacks, meets real world criteria and that is

publicly avaialble is needed Sharafaldin et al. (2018).

Our contributions in this work are:

• We review the deep learning techniques

papers applied to cyber security intrusion

detection.

• We present all datasets used by the deep

learning techniques papers applied to cyber

security intrusion detection.

• We analyze seven deep learning

techniques according to two models,
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namely, deep discriminative models and

generative/unsupervised models.

• We study the performance of each deep

learning model in binary classification and

multiclass classification using CSE-CIC-IDS

2018 dataset and TensorFlow system.

The rest of this paper is organized as follows.

Section 2 gives the intrusion detection systems

based on deep learning techniques. In Section 3,

we present the different datasets used by deep

learning techniques papers applied to intrusion

detection. In Section 4, we present seven deep

learning approaches. In Section 5, we study the

performance of each deep learning technique in

binary classification and multiclass classification.

Lastly, Section 6 presents conclusions.

2. A REVIEW OF INTRUSION DETECTION

SYSTEMS BASED ON DEEP LEARNING

TECHNIQUES

This section describes the intrusion detection

systems based on deep learning techniques.

Zhou et al. (2018) proposed a system that uses a

deep neural network model to help classify cyber-

attacks. Specifically, the system uses three phases,

namely, data acquisition (DAQ), data pre-processing,

and deep neural network classification. The system

achieves an accuracy of 0.963 SVM model with

learning rate 0.01, training epochs 10, and input units

86. The results show outperform slightly compared to

the following traditional machine learning algorithms:

random forest, linear regression, and k-nearest

neighborhood.

Tang et al. (2016) describe an IDS system that

employs deep learning technique in software-

defined networking. The proposed IDS system

is implemented in the SDN controller which can

monitor all the OpenFlow switches and request

all network statistic. The study used NSL-KDD

dataset under 2-class classification (normal and

anomaly class), where the dataset consisted of four

categories, namely, DoS attacks, R2L attacks, U2R

attacks, Probe attacks. The experimental results

reported that the learning rate of 0.001 performs

better than others with the highest receiver operating

characteristic curve (AUC).

The framework proposed by Kim et al. (2016) use the

KDD Cup 1999 dataset to perform long short term

memory architecture to a recurrent neural network

for intrusion detection. The study used (41 features)

as an input vector (4 attacks and 1 nonattack) as

the output vector. They used a time step size 100,

batch size 50, and epoch 500. The attack detection

performance is reported as 98.8% among the total

attack instances.

Integrating a recurrent neural network in an IDS

system was attempted by Yin et al. (2017) for

supervised classification learning. The study used

NSL-KDD dataset as benchmark dataset under

three performance indicators, including, accuracy,

true positive rate, and false positive rate. The

anomaly detection performance is reported as higher

accuracy when there are 80 hidden nodes and

the learning rate is 0.1. The paper also states the

benefits of a recurrent neural network for intrusion

detection.

In another study, Tang et al. (2018) suggested a

gated recurrent unit recurrent neural network for

intrusion detection in software-defined networking.

The paper states a detection rate of 89% using

a minimum number of features. The NSL-KDD

dataset is used in the network performance with

four evaluation metrics, including, precision, recall,

F-measure, and accuracy.

A multi-channel intelligent attack detection system

that uses long short term memory recurrent neural

networks is described by Jiang et al. (2018).

The NSL-KDD dataset is used to evaluate the

performance of the proposed intelligent attack

detection system. The performance of the long short

term memory recurrent neural network is reported

as 99.23% detection rate with a false alarm rate of

9.86% and an accuracy of 98.94%.

The convolutional neural networks were used by

Basumallik et al. (2019) for packet-data anomaly

detection in phasor measurement units-based state

estimator. They use a convolutional neural network-

based data filter in order to extract event signatures

(features) from phasor measurement units. The

IEEE-30 bus and IEEE-118 bus system are used

as the phasor measurement unit buses. The study

states a probability of 0.5 with 512 neurons at a

fully connected layer and a 98.67% accuracy. The

authors claim that convolutional neural network-

based filter has a superior performance over

other filters, including, recurrent neural network,

long short-term memory, support vector machine,

bagged, and boosted.

The framework developed by Fu et al. (2016) uses

a convolutional neural network in order to capture

the intrinsic patterns of fraud behaviors, especially

for credit card fraud detection. Zhang et al. (2018)

employed the convolutional neural network and used

the commercial bank B2C online transaction data for

training and testing. The data of one month were

divided into training sets and test sets. The study

states a precision rate of 91% and the recall rate of
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Table 1: Deep learning techniques for intrusion detection and dataset they use

Deep Learning Technique IDS Dataset Used
No. of times cited

(as of 30/05/2019)

Deep neural network Tang et al. (2016) NSL-KDD dataset 110

Deep neural network Potluri and Diedrich (2016) NSL-KDD dataset 37

Deep neural network Kang and Kang (2016) Vehicular network communication 137

Deep neural network Zhou et al. (2018) 4 types of attacks (DOS, R2L, U2R, and PROBING) 0

Deep neural network Feng et al. (2019) KDD Cup 1999 dataset 1

Deep neural network Zhang et al. (2019) KDD Cup 1999 dataset 0

Deep neural network Roy et al. (2017) KDD Cup 1999 dataset 23

Feed forward deep neural network Kasongo and Sun (2019) NSL-KDD dataset 0

Recurrent neural network Kim et al. (2016) KDD Cup 1999 dataset 86

Recurrent neural network Yin et al. (2017) NSL-KDD dataset 100

Recurrent neural network Tang et al. (2018) NSL-KDD dataset 9

Recurrent neural network Jiang et al. (2018) NSL-KDD dataset 22

Convolutional neural network Basumallik et al. (2019) IEEE-30 bus and IEEE-118 bus 1

Convolutional neural network Fu et al. (2016) Credit card transaction data 47

Convolutional neural network Zhang et al. (2018) Commercial bank B2 online transaction data 3

Convolutional neural network Feng et al. (2019) KDD Cup 1999 dataset 1

Convolutional autoencoder Yu et al. (2017) Contagio-CTU-UNB dataset 17

Restricted Boltzmann machine Alrawashdeh and Purdy (2016) KDD Cup 1999 dataset 35

Restricted Boltzmann machine Aldwairi et al. (2018) ISCX dataset 4

Restricted Boltzmann machine Fiore et al. (2013) KDD Cup 1999 dataset 176

Restricted Boltzmann machine Salama et al. (2011) NSL-KDD dataset 96

Restricted Boltzmann machine Gao et al. (2014) KDD Cup 1999 dataset 69

Restricted Boltzmann machine Alom et al. (2015) NSL-KDD dataset 59

Restricted Boltzmann machine Yang et al. (2017) Real online network traffic 16

Restricted Boltzmann machine Otoum et al. (2019) KDD Cup 1999 dataset 3

Deep belief network Zhao et al. (2017) KDD Cup 1999 dataset 13

Deep auto-encoder Shone et al. (2018) NSL-KDD dataset 66

Deep auto-encoder Khan et al. (2019) UNSW-NB15 dataset 0

Deep auto-encoder Papamartzivanos et al. (2019) NSL-KDD dataset 1

Denoising auto-encoder Abusitta et al. (2019) KDD Cup 1999 dataset 1

94%. These results are increased by 26% and 2%,

respectively, compared with the work proposed by Fu

et al. (2016).

The restricted Boltzmann machine was used for

intrusion detection by Fiore et al. (2013). They use

a discriminative restricted Boltzmann machine in

order to combine the expressive power of generative

models with good classification. The KDD Cup

1999 dataset was used, with a set of 41 features

describing various aspects. The study used only part

of the total training data, namely, those containing

’normal’ connections (97,278 instances).

Salama et al. (2011) combine the restricted

Boltzmann machine and support vector machine for

intrusion detection. The NSL-KDD dataset was used,

which the training set contains a total of 22 training

attack types, with an additional 17 types in the testing

set. The study states that this combination shows

a higher percentage of classification than support

vector machine.

3. PUBLIC DATASETS

Table 1 lists the representative deep learning

techniques papers applied to intrusion detection

that were reviewed, including the number of times

they have been cited and the dataset used. We

can observe that most papers use four datasets,

including, KDD Cup 1999 dataset, NSL-KDD

dataset, and UNSW-NB15 dataset. However, these

datasets are outdated and of very limited practical

value for a modern IDS. Note that there are others

IDSs dataset evaluation framework (e.g., DEFCON,

CAIDAs, LBNL, CDX, KYOTO, TWENTE, UMASS,

and ADFA2013), which are not yet used by deep

learning techniques. In our work, we use a new real

traffic data set "CSE-CIC-IDS20181" developed by

the Communications Security Establishment (CSE)

& the Canadian Institute for Cybersecurity (CIC).

1https://registry.opendata.aws/cse-cic-ids2018/
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Figure 1: Deep neural network.

4. DEEP LEARNING APPROACHES

According to Deng and Yu (2014), deep learn-

ing techniques can be classified into two mod-

els, namely, 1) deep discriminative models and

2) generative/unsupervised models. The deep dis-

criminative models include deep neural networks

(DNNs), recurrent neural networks (RNNs), con-

volutional neural networks (CNNs). The genera-

tive/unsupervised models include restricted Boltz-

mann machine (RBMs), deep belief networks

(DBNs), deep Boltzmann machines (DBMs), and

Deep autoencoders (DA). Depending on how these

Deep learning techniques are intended for use, these

techniques can be categorized into three major

classes, including, 1) Deep networks for unsuper-

vised or generative learning; 2) Deep networks for

supervised learning; and 3) Hybrid deep networks.

4.1. Deep discriminative models

4.1.1. Deep neural networks (DNNs)

Deep Neural Network is multilayer perceptrons

(MLP) with a number of layers superior to three. MLP

is a class of feed forward artificial neural network,

which is defined by the n layers that compose it and

succeed each other, as presented in Figure 1.

The layer M ∈ [1, N ] of a DNN network is defined

by DM (aM , αM , nM ). aM ∈ N is the number of

neurons in the layer. αM : RaM−1 → R
aM is the affine

transformation defined by the matrix WM and the

vector bM . nM : RaM → R
aM is the transfer function

of the layer M . The matrix WM is called the weight

matrix between the layer M − 1 and the layer M .

The vector bM is called the bias vector of the layer

M . Refer to Figure 1 and Liu et al. (2017), deep

neural network algorithm based on MLP is described

as Algorithm 1.

4.1.2. Recurrent neural networks (RNNs)

A recurrent neural network is a neuron network,

which the connection graph contains at least one

cycle. There are many types of RNNs such as

Elman networks proposed by Elman (1990), Jordan

Algorithm 1 DNN network based on MLP

1: Choose a learning pair (x, c);
2: h0 = x;

3: for M = 1 to N do

4: gM = nM (hM−1) = WM × hM−1 + bM ;

5: hM = αM (gM )
6: end for

Input Cell

Recurrent Cell

Output Cell

Input Cell

Input Cell

Recurrent Cell

Output Cell

Output Cell

Figure 2: Recurrent neural network

networks proposed by Jordan (1997) and Echo State

networks proposed by Jaeger and Haas (2004).

Currently, RNN based on Long Short-Term Memory

(LSTM) is the most used. The RNN is defined by

adding an interconnection matrix VWM ∈ R
aM×aM

to the layer M ∈ [1, N ] in order to obtain a layer

M ′ of the recurrent network. Refer to Figure 2 and

Gelly and Gauvain (2017), recurrent neural network

algorithm is described as Algorithm 2.

4.1.3. Convolutional neural networks (CNNs)

A convolutional neural network is defined as a neural

network that extracts features at a higher resolution,

and then convert them into more complex features at

a coarser resolution, as presented in Figure 3. There

are many types of CNNs such as ZFNet proposed

by Zeiler and Fergus (2014), GoogleNet proposed

by Szegedy et al. (2015), and ResNet proposed by

He et al. (2016). Therefore, CNN is based on three

types of layers, including, convolutional, pooling, and

fully-connected layers. Refer to Gu et al. (2018), the

feature value at location (x, y) in the k-th feature map

Algorithm 2 Recurrent neural network

1: Choose a learning pair (x(t), c(t));
2: h0 (t) = x (t) , ∀t ∈ [1, tf ];
3: for M = 1 to N do

4: for t = 1 to tf do

5: gM (t) = WM × hM−1 (t) + VWM ×
hM (t− 1) + bM ;

6: hM (t) = αM (gM (t));
7: end for

8: end for
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Figure 3: Convolutional neural network
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Figure 4: Restricted Boltzmann machine

of M -th layer can be calculated as follow:

featureMx,y,k = WM
k

T
XM

x,y + bMk (1)

where XM
x,y is the input patch centered at location

(x, y), WM
k is the weight vector of the k-th filter, and

bMk is bias term of the M -th layer.

The activation value activMx,y,k and pooling value

poolMx,y,k of convolution feature featureMx,y,k can be

calculated as follow

activMx,y,k = activation(featureMx,y,k) (2)

poolMx,y,k = pooling
(

featureMa,c,k

)

, ∀(a, c) ∈ Rx,y

(3)

where Rx,y is a local neighbourhood around location

at location (x, y). The nonlinear activation function

activation(·) are be ReLU, sigmoid, and tanh. The

pooling operation pooling(·) are average pooling and

max pooling.

Backfed Input Cell

Probabilis;c Hidden

Cell

Hidden Cell Hidden Cell

Probabilis;c Hidden

Cell

Probabilis;c Hidden

Cell

Match Input Output Cell

Figure 5: Deep belief network.

4.2. Generative/unsupervised models

4.2.1. Restricted Boltzmann machine (RBMs)

An RBM is an undirected graphic model G =
{Wij , bi, cj}, as presented in Figure 4. There are

two layers, including, the hidden layer and the visible

layer. The two layers are fully connected through a

set of weights Wij and {bi, cj}. Note that there is

no connection between the units of the same layer.

Refer to Fischer and Igel (2012), the configuration

of the connections between the visible units and the

hidden units has an energy function, which can be

defined as follow:

En (V,H,G) = −
∑

i

∑

j

VjHjWij−
∑

i∈V

biVi−
∑

j∈H

cjHj

(4)

Based on this energy function, the probability of each

joint configuration can be calculated according to the

Gibbs distribution as follow:

Prob (V,H,G) = −
1

Z(G)
e−En(V,H,G) (5)

where Z is the partition function, which can be

calculated as follow:

Z (G) =
∑

V ∈V

∑

H∈V

e−En(V,H,G) (6)

where curved letters V and V are used to denote the

space of the visible and hidden units, respectively.

4.2.2. Deep belief networks (DBNs)

A DBN is multi-layer belief network, where each layer

is Restricted Boltzmann Machine, as presented in

Figure 5. The DBN contains a layer of visible units

and a layer of hidden units. The layer of visible units

represent the data. The layer of hidden units learns

to represent features. Refer to Hinton (2009), the
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Figure 6: Deep Boltzmann machine.

probability of generating a visible vector, V , can be

calculated as:

Prob(V ) =
∑

H

Prob (H | W )Prob(V |H,W ) (7)

where Prob (H | W ) is the prior distribution over

hidden vectors.

4.2.3. Deep Boltzmann machines (DBMs)

A DBM is a network of symmetrically coupled

stochastic binary units, which contains a set of visible

units and a sequence of layers of hidden units, as

presented in Figure 6. Refer to Salakhutdinov and

Larochelle (2010), a DBM with three hidden layers

can be defined by the energy of the state {V,H} as:

En (V,H,G) == −V TW 1H1−V 1W 2H2−V 2W 3H3

(8)

where H = {H1, H2, H3} are the set of hidden units,

and G = {W 1,W 2,W 3} are the model parameters.

The probability that the model assigns to a visible

vector V can be defined as:

Prob (V,G) =
1

Z(G)

∑

H

e−En(V,H,G) (9)

4.2.4. Deep auto encoders (DA)

An autoencoder consists of two parts, the encoder

and the decoder, as presented in Figure 7. Refer to

Vincent et al. (2010), these two parts can be defined

as follow:

encoderG (x) = s(Wx+ b) (10)

decoderG′ (y) = s (W ′y + b′) (11)

Input Output

Hidden

Encoder Decoder

Figure 7: Deep auto encoder.

Table 2: Attack Types in CSE-CIC-IDS2018 dataset

Category Attack Type Flow Count Training Test

Brute-force
SSH-Bruteforce 230 184 46

FTP-BruteForce 611 489 122

Web attack

Brute Force -XSS 187589 7504 1876

Brute Force -Web 193360 15469 3867

SQL Injection 87 70 17

DoS attack

DoS attacks-Hulk 466664 18667 4667

DoS attacks-SlowHTTPTest 139890 55956 13989

DoS attacks-Slowloris 10990 4396 1099

DoS attacks-GoldenEye 41508 16603 4151

DDoS attack

DDOS attack-HOIC 686012 27441 6860

DDOS attack-LOIC-UDP 1730 1384 346

DDOS attack-LOIC-HTTP 576191 23048 5762

Botnet Bot 286191 11448 2862

Infilteration Infilteration 161934 6478 1620

Benign / 12697719 50791 12698

Total / 15450706 231127 57782

where G = {W, b}; G′ = {W ′, b′}; W is a d′ × d

weight matrix; x is an input vector; y is the hidden

representation; b is an offset vector of dimensionality

d′.

5. EXPERIMENTATION

We use the CSE-CIC-IDS2018 dataset 2 for the

experiments. Table 2 summarizes the statistics

of attacks in Training and Test datasets. The

experiment is performed on Google Colaboratory3

under python 3 using TensorFlow and Graphics

Processing Unit (GPU).

5.1. Performance metrics

We use the most important performance indicators,

including, detection rate (DR), false alarm rate (FAR)

and accuracy (ACC). Table 3 shows the four possible

cases of correct and wrong classification.

DRAttack = TPAttack

TPAttack+FNAttack
(12)

2https://registry.opendata.aws/cse-cic-ids2018/
3https://colab.research.google.com
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Table 3: Confusion matrix

Predicted class
Negative class Positive class

Class
Negative class True negative (TN) False positive (FP)
Positive class False negative (FN) True positive (TP)

Table 4: Performance of deep discriminative models

relative to the different attack type and benign

DNN RNN CNN

TNR (BENIGN) 96.915% 98.112% 98.914%

DR SSH-Bruteforce 100% 100% 100%

DR FTP-BruteForce 100% 100% 100%

DR Brute Force -XSS 83.265% 92.182% 92.101%

DR Brute Force -Web 82.223% 91.322% 91.002%

DR SQL Injection 100% 100% 100%

DR DoS attacks-Hulk 93.333% 94.912% 94.012%

DR DoS attacks-SlowHTTPTest 94.513% 96.123% 96.023%

DR DoS attacks-Slowloris 98.140% 98.220% 98.120%

DR DoS attacks-GoldenEye 92.110% 98.330% 98.221%

DR DDOS attack-HOIC 98.640% 98.711% 98.923%

DR DDOS attack-LOIC-UDP 97.348% 97.118% 97.888%

DR DDOS attack-LOIC-HTTP 97.222% 98.122% 98.991%

DR Botnet 96.420% 98.101% 98.982%

DR Infilteration 97.518% 97.874% 97.762%

TNRBENIGN = TNBENIGN

TNBENIGN+FPBENIGN
(13)

FAR = FPBENIGN

TNBENIGN+FPBENIGN
(14)

Accuracy = TPAttack+TNBENIGN

TPAttack+FNAttack+TNBENIGN+FPBENIGN

(15)

where TP , TN , FP , and FN denote true positive,

true negative, false positive, and false negative,

respectively.

5.2. Results

Table 4 shows the performance of deep dis-

criminative models relative to the different attack

type and benign. It shows that deep neural net-

work gives the highest true negative rate with

96.915%. The recurrent neural network gives the

higest detection rate for seven attacks type, namely,

Brute Force -XSS 92.182%, Brute Force -Web

91.322%, DoS attacks-Hulk 94.912%, DoS attacks-

SlowHTTPTest 96.123%, DoS attacks-Slowloris

98.220%, DoS attacks-GoldenEye 98.330%, and

Infilteration 97.874%. The convolutional neural net-

work gives the higest detection rate for four attacks

type, including, DDOS attack-HOIC 98.923%, DDOS

attack-LOIC-UDP 97.888%, and DDOS attack-LOIC-

HTTP 98.991%, and Botnet 98.982%.

Table 5: Performance of generative/unsupervised models

relative to the different attack type and benign

RBM DBN DBM DA

TNR (BENIGN) 97.316% 98.212% 96.215% 98.101%

DR SSH-Bruteforce 100% 100% 100% 100%

DR FTP-BruteForce 100% 100% 100% 100%

DR Brute Force -XSS 83.164% 92.281% 92.103% 95.223%

DR Brute Force -Web 82.221% 91.427% 91.254% 95.311%

DR SQL Injection 100% 100% 100% 100%

DR DoS attacks-Hulk 91.323% 91.712% 93.072% 92.112%

DR DoS attacks-SlowHTTPTest 93.313% 95.273% 95.993% 94.191%

DR DoS attacks-Slowloris 97.040% 97.010% 97.112% 97.120%

DR DoS attacks-GoldenEye 92.010% 97.130% 97.421% 96.222%

DR DDOS attack-HOIC 97.541% 97.211% 97.121% 96.551%

DR DDOS attack-LOIC-UDP 96.148% 96.122% 96.654% 96.445%

DR DDOS attack-LOIC-HTTP 96.178% 97.612% 97.121% 97.102%

DR Botnet 96.188% 97.221% 97.812% 97.717%

DR Infilteration 96.411% 96.712% 96.168% 97.818%

Table 6: The accuracy and training time of deep

discriminative models with different learning rate and

hidden nodes

Parameters
Accuracy and

training time (s)
DNN RNN CNN

HN = 15

LR=0.01

ACC 96.552% 96.872% 96.915%

Time 20.2 30.3 28.4

HN = 15

LR=0.1

ACC 96.651% 96.882% 96.912%

Time 19.1 29.2 27.2

HN = 15

LR=0.5

ACC 96.653% 96.886% 96.913%

Time 18.9 29.1 27.1

HN = 30

LR=0.01

ACC 96.612% 96.881% 96.922%

Time 88.1 91.3 89.6

HN = 30

LR=0.1

ACC 96.658% 96.888% 96.926%

Time 87.9 90.9 88.5

HN = 30

LR=0.5

ACC 96.662% 96.891% 96.929%

Time 86.1 90.3 87.9

HN = 60

LR=0.01

ACC 96.701% 96.903% 96.922%

Time 180.2 197.5 192.2

HN = 60

LR=0.1

ACC 96.921% 96.970% 96.975%

Time 179.3 192.2 189.1

HN = 60

LR=0.5

ACC 96.950% 96.961% 96.992%

Time 177.7 190.6 182.6

HN = 100

LR=0.01

ACC 97.102% 97.111% 97.222%

Time 395.2 341.5 338.9

HN = 100

LR=0.1

ACC 97.187% 97.229% 97.312%

Time 391.1 336.9 332.5

HN = 100

LR=0.5

ACC 97.281% 97.310% 97.376%

Time 390.2 334.7 331.2

HN: Hidden Nodes; LR: Learning Rate

The performance of generative/unsupervised mod-

els relative to the different attack type and benign,

is shown in Table 5. It shows that deep belief

network gives the highest true negative rate with

98.212% and the higest detection rate for four at-

tacks type, namely, Brute Force -XSS 92.281%,

Brute Force -Web 91.427%, DoS attacks-Hulk
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Figure 8: Performance of deep learning techniques in term of false alarm rate

Table 7: The accuracy and training time of genera-

tive/unsupervised models with different learning rate and

hidden nodes

Parameters
Accuracy and

training time (s)
RBM DBN DBM DA

HN = 15

LR=0.01

ACC 96.551% 96.852% 96.911% 96.912%

Time 20.0 30.1 28.3 28.3

HN = 15

LR=0.1

ACC 96.642% 96.871% 96.901% 96.902%

Time 19.0 29.1 27.1 27.2

HN = 15

LR=0.5

ACC 96.651% 96.885% 96.910% 96.911%

Time 18.8 28.1 26.2 27.1

HN = 30

LR=0.01

ACC 96.602% 96.844% 96.918% 96.917%

Time 88.0 90.4 89.5 88.6

HN = 30

LR=0.1

ACC 96.656% 96.884% 96.922% 96.923%

Time 87.4 90.7 88.3 88.2

HN = 30

LR=0.5

ACC 96.661% 96.890% 96.925% 96.924%

Time 86.1 90.3 87.9 87.10

HN = 60

LR=0.01

ACC 96.691% 96.883% 96.912% 96.913%

Time 180.1 196.5 191.1 191.4

HN = 60

LR=0.1

ACC 96.920% 96.967% 96.972% 96.971%

Time 179.1 192.1 189.0 189.1

HN = 60

LR=0.5

ACC 96.947% 96.960% 96.991% 96.992%

Time 177.6 190.5 181.4 181.4

HN = 100

LR=0.01

ACC 97.101% 97.108% 97.211% 97.221%

Time 394.1 340.4 339.1 337.11

HN = 100

LR=0.1

ACC 97.186% 97.227% 97.300% 97.311%

Time 390.0 334.8 330.1 331.7

HN = 100

LR=0.5

ACC 97.280% 97.302% 97.371% 97.372%

Time 390.1 344.7 351.5 341.3

HN: Hidden Nodes; LR: Learning Rate

91.712%, and DDOS attack-LOIC-HTTP 97.612%.

The deep auto encoders gives the higest detection

rate for three attacks type, namely, Brute Force -

Web 95.311%, DoS attacks-Slowloris 97.120%, and

Infilteration 97.818%. The deep Boltzmann machine

gives the higest detection rate for five attacks type,

namely, DoS attacks-Hulk 93.072%, DoS attacks-

SlowHTTPTest 95.993%, DoS attacks-GoldenEye

97.421%, DDOS attack-LOIC-UDP 96.654%, and

Botnet 97.812%.

Table 6 presents the accuracy and training time of

deep discriminative models with different learning

rate and hidden nodes. Compared to both deep

neural network and recurrent neural network, the

convolutional neural network gets a higher accuracy

97.376%, when there are 100 hidden nodes and the

learning rate is 0.5.

Table 7 demonstrates the accuracy and training time

of generative/unsupervised models with different

learning rate and hidden nodes. The deep auto

encoders gets a higher accuracy 97.372%, when

there are 100 hidden nodes and the learning rate

is 0.5 compared to three techniques, including,

restricted Boltzmann machine, deep belief network,

and deep boltzmann machine.

The performance of deep learning techniques in

term of false alarm rate is depicted in Figure 8.

In the generative/unsupervised models, mean false

alarm rate of the convolutional neural network is

better than both deep neural network and recurrent

neural network. In the deep discriminative models,

mean false alarm rate of the deep autoencoders

is better than three techniques, including, restricted

Boltzmann machine, deep belief network, and deep

Boltzmann machine.

6. CONCLUSION

In this paper, we conducted a comparative study

of deep learning techniques for intrusion detec-

tion, namely, deep discriminative models and gen-

erative/unsupervised models. Specifically, we ana-

lyzed seven deep learning approaches, including,

deep neural networks, recurrent neural networks,

convolutional neural networks, restricted Boltzmann

machine, deep belief networks, deep Boltzmann
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machines, and deep autoencoders. These machine

learning methods are compared using the CSE-CIC-

IDS 2018 dataset with three important performance

indicators, namely, accuracy, detection rate, and

false alarm rate.
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