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Abstract
During the last few years, Unmanned Aerial Vehicles (UAVs) technologies are widely used to improve agriculture

productivity while reducing drudgery, inspection time, and crop management cost. Moreover, they are able to cover large

areas in a matter of a few minutes. Due to the impressive technological advancement, UAV-based remote sensing

technologies are increasingly used to collect valuable data that could be used to achieve many precision agriculture

applications, including crop/plant classification. In order to process these data accurately, we need powerful tools and

algorithms such as Deep Learning approaches. Recently, Convolutional Neural Network (CNN) has emerged as a powerful

tool for image processing tasks achieving remarkable results making it the state-of-the-art technique for vision applications.

In the present study, we reviewed the recent CNN-based methods applied to the UAV-based remote sensing image analysis

for crop/plant classification to help researchers and farmers to decide what algorithms they should use accordingly to their

studied crops and the used hardware. Fusing different UAV-based data and deep learning approaches have emerged as a

powerful tool to classify different crop types accurately. The readers of the present review could acquire the most

challenging issues facing researchers to classify different crop types from UAV imagery and their potential solutions to

improve the performance of deep learning-based algorithms.

Keywords Unmanned aerial vehicle � UAV � Deep learning � Deep neural network � Convolutional neural network �
Crop classification

1 Introduction

Agriculture is the hand that feeds more than seven billion

people around the globe, which is first appeared 13,000

years before present in an area between the Tigris and

Euphrates rivers, north of what is now called Iraq [32]. It

was limited to the only harvesting of spontaneous wild

wheat and other plant species using rudimentary means. At

that time, there were only a few people to be fed. However,

according to the United Nations (UN), the population

number will be around 10 billion by 2050 [111], which is a

big challenge that faces the farmers to feed all of these

mouths. On the other hand, the farmlands are decreasing

due to many issues, including urban expansion and deser-

tification. Moreover, the COVID-19 pandemic has pro-

voked a serious threat to economic growth and food

security [50]. In order to overcome such issues, we need to

develop more reliable solutions to ensure the necessary

amount of food with very little human resources.

Over time, many researchers have proposed various

innovative techniques to improve agriculture productivity

such as greenhouses [64], vertical agriculture [10, 31], and

even exploiting new technologies such as satellites and

airplanes [16, 69]. The continuous evolution of different

sciences such as chemistry, biology, agronomy, and
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technology, provides to the farmers the ability to know

precisely the plants’ nutrient and water needs, their dis-

eases. The future is changing and if we look 10–20 years

from now the agriculture sector would be very different

from the way we perceive it today. Nowadays, farmers are

turning to modern technologies that provide accurate and

timely information about crop states ensuring productivity

increasement. In addition, in the last years, agricultural

technologies are attracting investment like never before,

even from big companies such as Google and Amazon.

These companies do not have the same classical invest-

ments vision anymore. They are making big investments in

many other fields, including agriculture to increase global

food production.

Accurate and timely information about the crop state is

an important component to improve crop productivity,

which could be done using efficient remote sensing tech-

nologies. Moreover, powerful algorithms are crucial to

exploit remote sensing data efficiently. Crop classification

is one of the fundamental keys in modern agriculture,

which aims classify crop and plant types into different

categories while defining their spatial distribution. It can

help government authorities and farmers to have efficient

information about their crops that could be used to improve

their abilities of decision-making. Abundant research has

been carried out on precise crop classification from satel-

lite-based remote sensing imagery using different machine

learning and deep learning algorithms achieving remark-

able results [2, 56, 70, 117, 120]. However, they have many

drawbacks such as low spatial/temporal resolutions that

should have a harmful impact on data quality, and different

weather conditions that should make data collection very

hard. These limitations could decrease the algorithm per-

formance leading to wrong crop classification. In addition,

traditional approaches to classify different crop/plant types

from aerial imagery have relied on classical machine

learning algorithms, including Support Vector Machine

(SVM) [83] and Random Forrest (RF) [106]. These tech-

niques are based on extracting features manually using

different features extraction methods, including Local

Binary Pattern (LBP), Histogram of Oriented Gradients

(HOG), and Scale Invariant Feature Transform (SIFT), to

name a few. These properties make traditional methods

time-consuming and inefficient in the case of complex

data. However, deep learning algorithms have emerged as

an interesting solution to overcome these issues.

In recent years, UAV-based remote sensing and deep

learning have emerged as new technologies that can play a

crucial role in future agriculture and global food produc-

tivity. They are new efficient ways that should help farmers

to automate many tasks, including plant/crop identification.

UAVs provide many advantages over other available

remote sensing platforms (Table 1), such as high

flexibility, low cost, small size, real-time data acquisition,

the best tradeoff between spatial, temporal, and spectral

resolution. Moreover, UAVs are non-destructive tech-

nologies while analyzing different crops, unlike Unmanned

Ground Vehicles (UGVs) that could destruct some plants

and impact the field through soil compaction, which has a

direct effect on crop productivity. These characteristics

make UAVs typical for crop monitoring and classification.

Combining UAVs and deep learning models should

provide instantaneous information about crop status, soil

type, and disease/pest attack, which were impossible dur-

ing the past millennia. Precise and automatic crop classi-

fication using UAV-based remote sensing imagery and

deep learning techniques represent a fundamental task for

many smart farming applications, including crop yield

estimation [5, 119], crop surveying/monitoring [107, 113],

water stress monitoring [28], precise pesticide and liquid

fertilizers spraying [35]. These tasks could lead to crop

production increasement, cost reduction, and save a lot of

precious time providing precious information that should

help the farmers to make instant decisions. In the literature,

there are a few survey studies that investigated the appli-

cations of either UAV or various deep learning algorithms

in several fields, including agriculture. Mittal et al. [71]

investigated the performance of different deep learning-

based object detection algorithms to detect objects from

low altitudes, which could be very helpful to understand

the concept of recent object detection algorithms. The

authors in [51, 98] provide review studies on the applica-

tions of deep learning techniques to solve different chal-

lenges related to agriculture and food production.

Similarly, Gao et al. [28] reviewed the most recent deep

learning-based computer vision algorithms to detect crop

stress. However, none of these reviews have focused on the

use of UAV-based images to perform agricultural tasks.

Other studies focused on the use of UAV technologies to

achieve different agricultural tasks [36, 115] but they did

not investigate the use of deep learning algorithms in

detail. To the best of our knowledge, this is the first review

that investigates crop classification through the combina-

tion of deep learning and UAV.

In this review paper, we are interested in investigating

deep learning techniques applied to UAV-based remote

sensing images, which should achieve interesting results on

the crop classification task. To the best of our knowledge,

this is the first review paper that highlights crop classifi-

cation from UAV imagery using CNN-based algorithms.

The main contributions of this paper include:

• Presenting the importance of UAV-based remote sens-

ing technologies and Deep Learning techniques used to

improve the agricultural field as well as solve many

related issues, especially crop/plant classification.
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• Presenting state-of-the-art object-based and pixel-based

deep learning techniques to achieve high crop/plant

classification performance.

• Helping researchers and farmers to decide what algo-

rithms they should apply accordingly to their studied

crops and the used hardware.

The remainder of this paper is organized as follows. In

Sect. 2, we present different CNN architectures helping to

realize the crop classification task. Advantages of UAVs, as

a reliable remote sensing platform, over other available

technologies are presented in Sect. 3. Section 4 highlights

the object-based and pixel-based crop/plant classification

algorithms, while presenting the pros and cons of each one.

In Sect. 5, we present different UAV-based datasets and

evaluation metrics. Discussions and conclusions are pre-

sented in Sects. 6 and 7, respectively.

2 Convolutional neural networks overview

Computer vision is in continuous progress thanks to the

tremendous advances in deep learning techniques and

hardware processing technologies. Nowadays, deep learn-

ing-based computer vision is one of the most powerful

tools that can help farmers to solve and facilitate many

agriculture-related applications. In this section, we are

going to present some deep learning-based techniques that

should help with plant/crop classification. Deep Learning is

a machine learning subfield, which is based on Deep

Artificial Neural Networks. It has emerged as an efficient

solution for many remote sensing image processing issues,

including UAV-based images. Among the various deep

learning techniques, CNN represents the state-of-the-art

deep learning methods for many image processing and

computer vision-based applications. Nowadays, due to its

powerful capabilities for automatic feature extraction from

input images, CNN architecture is widely used in a wide

range of image processing applications achieving state-of-

the-art results, including object detection [114], face

recognition [40], and action recognition [110]. Moreover,

these capabilities make CNN an effective architecture to

solve many vision-based agricultural issues, including

weed detection [7], plant disease identification [95], yield

estimation [119], precise crop classification [128].

CNN is a neural network type with a special structure,

which gained popularity in the field of image analysis. It

could be used to make robots (including UAVs) able of

analyzing, processing, and understanding the content of

digital images to make decisions according to the extracted

information. A typical CNN architecture consists of three

main types of layers. A series of convolution and pooling

layers repetitively stacked one after the other followed by

one or more dense layers (also called fully connected

layers) (Fig. 1). The main role of convolution and pooling

layers is to find patterns in the input data, whereas the

dense layers are responsible for classifying these features

into their corresponding category.

Table 1 Advantages and drawbacks of the existing remote-sensing platforms for agriculture

Remote sensing technologies Advantages Drawbacks

Satellite Very low spatial resolution

Very large area coverage Cloud sensitivity

Very high spectral resolution High cost

Data not available all time

Manned aircraft Cloud sensitivity

Large area coverage High cost

High spectral resolution Low spatial resolution

Affected by weather conditions

Unmanned aerial vehicle Low cost Medium area coverage

High spatial/spectral resolution Low endurance

Data available all time whenever we want it Affected by weather conditions

Not sensitive to clouds Require more time than satellite to cover very large areas

Accurate position Taught flying laws and regulations

Difficult areas accessibility

Unmanned/manned ground vehicle

? other on-ground technologies

Very low area coverage

Very high spatial resolution Direct impact on the field

Require very long time to cover even small areas
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A wide range of deep CNN models have been proposed

over the last few years to solve different computer vision

problems. The majority of deep CNNs follow a simple

architecture by concatenating convolutional and pooling

layers followed by one or more fully connected layers.

Among these models we can find LeNet [59], AlexNet

[55], ZFNet [121], and VGGnet [99]. Other CNN archi-

tectures are deeper, more complex, and provide better

results, including GoogLeNet [103], ResNet [37], Dense-

Net [44], Inception V3 [104], Inception V4 [105], Incep-

tion-ResNet [105], among others. These aforementioned

CNN architectures represent the most used ones in the

literature. However, there are other efficient and light-

weight architectures proposed just recently. These models

have very few trainable parameters making them more

suitable for small devices with low computational power

achieving better processing speed. Among the lightweight

versions we can find the different MobileNet versions

[41, 42, 96] and ShuffleNet [65, 124] to name a few. Fig-

ure 2, shows the performance evolution of the CNN

architectures tested on the famous ImageNet dataset.

Many studies have shown that 2D-CNN-based models

can achieve remarkable results in plant/crop classifications

from high spatial and spectral resolutions [4, 8, 97, 102].

Some of these models are based on object detection tech-

niques such as YOLOv3 [87] and Faster R-CNN [89].

Others are based on segmentation techniques, including

Mask R-CNN [38], SegNet [6], U-Net [90]. The main

difference between object detection-based techniques and

segmentation-based approaches is that the first one only

predicts bounding boxes around each plant of interest in the

input image. However, segmentation-based techniques

predict an exact mask of each crop or plant. Many other

architectures are increasingly being applied for multi-

temporal crop classification from satellite imagery. Among

these methods, one dimensional CNN (Conv-1D), and

Recurrent Neural Network (RNN, including Long Short-

Term Memory (LSTM)) was used to capture temporal

characteristics [127]. However, only few studies have

addressed multitemporal crop classification from UAV

imagery, such as the works in [24, 77]. In fact, multi-

temporal crop classification was beyond the scope of this

study. Therefore, the present study has only investigated

crop classification, applying 2D-CNN-based techniques,

from spatial and spectral viewpoints using RGB and

spectral UAV imagery.

3 UAVs as remote sensing platforms

Remote sensing technology, for crop classification, is about

measuring crop characteristics by observing them from

different distances that could range from few meters to

hundreds of kilometers from the targeted object. It has been

proved to be one of the most promising technologies for

crops and farmlands monitoring. Satellites, manned air-

planes, UGVs, and UAVs are among the most reliable

remote sensing technologies that provide better perfor-

mance than conventional methods for crop scouting, where

we need most of the time a large number of workers.

Even with the continuous improvements of satellites and

airplanes-based remote sensing technologies, there are still

limitations concerning spatial/temporal resolution, cost,

and smallholders crop classification performance [13]. The

same thing for UGVs that provide high spatial resolution

images, but they take very long time to cover large farm-

lands. In the case of small scale and mixed planting agri-

cultural field, very high spatial, temporal, and spectral

image resolutions are required to identify crop/plant types

all along with large area monitoring in reasonable time

ability.

Fig. 1 CNN architecture
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In the last years, UAVs equipped with multi-sensor

cameras have received much attention and becoming more

and more important as a data acquisition platform for

precision agriculture. Like any other robotic system, UAVs

perform the three main concepts, which are perception,

decision making, and actions performing. In the agricul-

tural field, UAVs can perceive the external world through

different sensors, like cameras to understand the world

visually, GPS to know its geographical position, barometer

to detect altitude. The decision-making depends on

applying different algorithms to achieve certain objective.

The last concept is to take actions like invasive plant

fighting, pesticide spraying, communicate with farmers or

other machines.

Todays’ technological advancements make UAVs cap-

able of acquiring high-quality images at different band

ranges using a variety of image acquisition tools, including

RGB, Multispectral, and Hyperspectral camera sensors.

Therefore, there are several camera sensor characteristics

that should be considered according to the targeted appli-

cations such as cost and spatial/spectral resolution. These

sensors have shown great potential for various precision

agriculture and smart farming applications. Each type of

these sensors can sense a portion of the electromagnetic

radiation reflectance from agricultural fields, thus provid-

ing valuable vegetation characteristics, including the color,

the texture, and the reflected radiation in certain wavebands

[13, 24].

RGB cameras are the most used sensors in agricultural

UAVs due to their properties, including Low price,

lightweight, flexibility, high-spatial resolution, easy data

analysis. They provide images in three wavebands, which

are Red, Green, and Blue. However, due to various factors,

RGB cameras have lower performance than other available

cameras to achieve different agricultural tasks, including

disease detection and crop classification. They are extre-

mely susceptible to environmental factors such as sunlight

angle and shadows, resulting in performance reduction of

the developed classifier. Multispectral and hyperspectral

imaging systems could be an effective solution to over-

come some of the RGB cameras issues. They are less

sensitive to environmental conditions making them more

suitable and efficient for crop classification. Multispectral

and hyperspectral cameras can capture more valuable

information that varies from a few wavebands (more than

three bands) up to thousands in both visible and NIR

spectral regions. However, in addition to their very high

prices and hard operation, hyperspectral cameras provide

complex data making their processing and analysis com-

plicated. Thermal infrared cameras are other highly used

types of sensors for agricultural field monitoring. This sort

of camera may be utilized at any time of day or night due to

its qualities. Thermal cameras, unlike RGB cameras that

detect visible light, are sensitive to infrared spectra, which

provide additional information about the plant’s health that

is not available in the visible spectrum making them the

best choice for different crop stress monitoring, including

water stress and plant diseases. On the other hand, the

Light Detection and Ranging (LiDAR) imaging systems

provide 3D data that could be very useful for biomass and

Fig. 2 Performance evolution of different Deep CNN architectures for Image net classification challenge
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crop height estimation [68, 73]. Similar to hyperspectral

cameras, LiDAR systems are very expensive. Figure 3

shows some examples of each type of the aforementioned

camera sensors that could be used for crop classification

and many other agricultural applications, Zenmuse x3

(Fig. 3a), Mecasense RedEdgeMX (Fig. 3b), Nano-

Hyperspec (Fig. 3c), FLIR Vue Pro R (Fig. 3d), and

Phoenix LiDAR (Fig. 3e).

4 UAV and deep learning for accurate crop
classification

The problem of automatic crop classification and recogni-

tion is based especially on classical machine learning

techniques, like SVM [19], Decision Trees [26], and

Random Forest [15]. However, these techniques facing

several limitations in terms of performance. Deep learning

algorithms have emerged as an effective solution for many

agricultural applications allowing farmers to take important

decisions at the right time. They provide several advan-

tages over the classical machine learning algorithms, such

as their high ability to extract highly relevant features

automatically. Also, recent advances in hardware and

software technologies all along with the high availability of

data make it possible to train and deploy such powerful

techniques. Thus, the use of deep learning algorithms in

crop classification tasks has greatly increased in the last

few years, where we find several serious efforts to improve

this task using recent deep learning algorithms.

In order to achieve smart and precision agriculture,

several studies adopted deep learning algorithms to process

satellite images [11, 125]. However, most of the satellite

images have low spatial and temporal resolutions making

them not suitable to analyze small-scale plants. The low

spatial resolution satellite images are mostly caused by the

sensor types and the very high altitude that could be hun-

dreds of kilometers, whereas the low temporal resolution is

due to the long revisit time and weather conditions that can

cause the missing of an entire growing season data [34].

The missed spatial and temporal information can affect the

performance of the deep learning model. The continuous

advances in remote sensing technologies make satellites

and airbornes achieve higher spatial and temporal resolu-

tions. For example, the WorldView-3 satellite provides a

relatively high spatial resolution of around 0.3 meters and a

revisit frequency of less than 1 day [33, 94]. However, even

with these impressive advances, they are still facing several

challenges, including the high cost and weather sensitivity

which could affect the deep learning model efficiency.

Thus, UAV platforms flying at low altitudes can capture

more detailed information about crop types and status that

were impossible using satellite data. This detailed infor-

mation giving us the possibility to build more accurate

deep learning algorithms that can even detect small pests

and diseases at their early stages before their large

spreading. Fusing satellite and UAV technologies is

Fig. 3 Examples of different

camera sensors a RGB,

b Multispectral,

c Hyperspectral, d FLIR Vue

Pro R, and e Phoenix LiDAR
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another recent solution that may improve the deep learning

model performance further as shown in the studies of

[126, 129].

Recently, Deep learning and UAV-based remote sensing

technologies are changing the way we are looking to

agriculture. They have emerged as new powerful innova-

tive techniques for automatic and accurate crop classifi-

cation task. UAVs provide to the farmers the ability to

inspect small and medium farmlands and crops using dif-

ferent camera sensors. On the other hand, deep learning

allows automatic crop classification and decision-making.

Deep learning-based automatic crop classification from

UAV-based images have been widely used in many agri-

culture applications, like precise agrochemicals spraying

[35], water stress monitoring [28], crop yield estimation

[119], among other needs. Recently, many researchers have

focused on CNN architectures for large crop and single

plant segmentation and detection from UAV imagery.

Deep learning can help UAVs to fly autonomously

above agricultural fields and provide instantly information

about crop state. Deep learning techniques are becoming

more sophisticated, enabling UAVs to understand the real

world through images and to classify different crop types

precisely. Crop classification is a fundamental task in

agricultural field, which can be used to perform many other

tasks. Fusing UAV and Deep Learning should help the

farmers to monitor their crops, fight invasive plants, esti-

mate the crop productivity. In order to increase crop pro-

ductivity, farmers are increasingly using different

agrochemical products. However, the wrong use of these

products is dangerous and have many side effects on the

environment and the human health. Deep learning-based

precise crop classification methods through UAV-based

remotely sensed data has received much attention over the

last decade. These techniques can help farmers to reduce

the amount of the used chemical products, such as fertil-

izers, herbicides and pesticides, by applying them at the

right place and the right time. This reduction has a direct

effect on the overall farming cost.

Recently, there has been considerable interest in crop/-

plant types classification and identification through UAV

imagery using deep learning techniques. Most of the recent

studies on crop classification using CNN-based deep

learning algorithms and UAVs targeted cash crops, such as

legumes and fruits. However, to address food security

issues, most countries focus their efforts to increase the

major grain crops productivity, which are representing the

most consumed food all around the world, especially in the

African and Asian countries [80]. To the best of our

knowledge, other studies, in a smaller number, targeted the

major grain crops such as maize, wheat, and rice. He et al.

[39] adopted YOLOv4 to detect wheatears from images

acquired by the UAV platform, which could be used for

yield estimation. The studies in [118] and [21] targeted the

classification of rice crops, which is one of the most

important grain crops in Asian countries. Also, several

studies [8, 18, 21, 53, 81, 109, 129] targeted the classifi-

cation of maize/corn crops using different deep learning-

based image segmentation. Thus, using deep learning and

remote sensing technologies to classify and monitor the

major grain crops is a fundamental topic that we should

focus on in the future to achieve food security due to their

importance to a large number of communities. In this

section, we are going to present the state-of-the-art deep

learning-based methods for crop classification through

UAV imagery.

4.1 Object-based crop classification

Object detection through remote sensing technologies is

one of the fundamental tasks in computer vision applica-

tions, which aims to identify objects of interest within

digital images/videos and placing a bounding box around

each one of them (Fig. 4). Object detection algorithms have

been widely studied in the last years even from UAV

imagery, where CNN-based algorithms achieved the state-

of-the-art results. In the last years, CNN-based object

detection algorithms represent the sate-of-the-art tech-

niques in image processing and computer vision applica-

tions achieving remarkable results even in the agriculture

field. Various object detection approaches have been pro-

posed over the few past years, which can be divided into

two major classes: - two-stage detectors and - one-stage

detectors. The two-stage algorithms mainly include

R-CNN [30] and its variants, including Fast R-CNN [29],

and Faster R-CNN [89]. Two-stage algorithms split the

detection framework into two parts. The first stage is

responsible for candidate regions generation, and the sec-

ond one is about making classification predictions for each

of these regions. These algorithms achieved remarkable

results in terms of accuracy. However, the inference speed

still very limited making them not suitable for real-time

applications, especially for small devices with low com-

putation power, such as UAVs.

In order to improve detection speed and memory effi-

ciency, one-stage methods were proposed. The idea behind

one-stage detectors is that the algorithm only needs to look

to the input image once making the detection faster. Red-

mond et al. [88] introduced the first real-time object

detection algorithm called You Only Look Once (YOLO),

which is improved in YOLOv2 [86], and YOLOv3 [87].

Other popular one-stage detectors were proposed over the

time, including SSD [62] and RetinaNet [61]. Bochkovskiy

et al. [12] proposed YOLOv4 achieving the state-of-the-art

accuracy of 43.5% on the challengings MS COCO dataset

while keeping a high interference speed of 65 frame per
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second (fps) on Tesla V100 GPU making it the optimal

detection and speed solution. Just after the release of

YOLOv4, Glenn Jocher released an open source imple-

mentation of YOLOv5 on his GitHub [48]. YOLOv5

achieved higher inference speed than YOLOv4 of 140 FPS

on Tesla P100 GPU [75]. CNN-based object detection

algorithms have realized huge enhancement in terms of

accuracy and speed overcoming traditional techniques [9].

These algorithms are mostly used for per-plant crop clas-

sification, such as tree and individual plant/fruit detection

[9, 54, 116]. Table 2 summarizes object-based crop/plant

classification methods that are available in the literatures.

In [9], the authors investigated the performance of two

state-of-the-art object detection algorithms (YOLOv3 and

RetinaNet) to detect and count ornamental plants from

UAV-based RGB images. As shown in Table 2, YOLOv3

outperformed RetinaNet detector achieving a mean average

precision (mAP) of around 80% and 73%, respectively.

Other studies have investigated the performance of

object-based classification algorithms on different trees

detection, where three state-of-the-art CNN-based detec-

tors were evaluated in [97] for individual tree detection

from UAV-based high-resolution RGB images. RetinaNet

provided the best average precision of 92.64% against

85.88% and 82.48% for YOLOv3 and Faster R-CNN,

respectively. Similarly, Csillik et al. [20] utilized CNN

architecture followed by a Simple Linear Iterative Clus-

tering (SLIC) algorithm [1] for classification refinement to

identify citrus crops from UAV multispectral imagery.

They were able to achieve an F1-Score, Precision, and

Recall rates of 96.24%, 94.59%, and 97.94%, respectively.

Also, Ampatzidis and Partel [4] used two CNN-based

algorithms to detect and count citrus trees automatically in

large multispectral UAV imagery. They achieved remark-

able precision and recall rates of 99.9% and 99.7%,

respectively, using YOLOv3 as the main detector. Another

study targeted apple tree detection using Faster R-CNN

was adopted in the work of Wu et al. [112], where they

achieved, also, good results.

Several researches have adopted object detection algo-

rithms to classify different fruit types. The performance of

YOLOv2 was investigated in [116] for mango fruits

detection from UAV-based color images in real-time.

Remarkable results were achieved, even in various light-

ening conditions, achieving a precision and recall rates of

96.1% and 89%, respectively, on a dataset that was col-

lected from a distance of 1.5–2 meters. Another study that

targeted mango fruits detection in trees, but not from UAV

imagery, were presented by Koirala et al. [54]. They pro-

posed ‘‘MangoYOLO’’ architecture that combines

YOLOv3 and YOLOv2-tiny properties to detect mango

fruits (at night) in trees from a distance of 2 m for fruit load

estimation achieving an overall accuracy of 98.3%. How-

ever, the used detectors suffer to detect small mango fruits

from farther distances due to the YOLO architecture that

has limitation to detect small objects [87]. Also, the

MangoYOLO detector provides real-time detection on a

large on-ground vehicle that can carry sophisticated hard-

ware for the processing task. Unfortunately, it is not suit-

able to be implemented on UAV platforms that have a

limited computational power. In order to detect and count

banana plant from high-resolution UAV-based RGB ima-

ges, Neupane et al. [76] adopted Faster R-CNN based on

Inception-V2 as the main features extractor. The results in

Table 2 showed that their proposed approach provides an

acceptable detection performance achieving F1-scores of

97.82%, 91.05%, and 85.67% from different altitudes of

40, 50, and 60 meters, respectively. Also, they achieved an

even better F1-Score of 98.64% by fusing data collected

from different altitudes.

Improvements on YOLOv4 algorithm was made by He

et al. [39] to detect small wheatear in dense fields from

UAV-based aerial images. They achieved remarkable

results even in different environment conditions, such as

different colors at different growing stages, light changes,

Fig. 4 Example of wheat detection framework from UAV imagery.
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Table 2 Different object-based crop/plant classification methods

Ref. Method Backbone Plant types Sensor GSD

(cm)

Altitude

(m)

Average

Precision

(%)

Precision

(%)

Recall

(%)

F1-

Score

(%)

Inference

time (ms)

FPS

[76] Faster

R-CNN

Inception-

v2

Banana

plant

RGB 1.78 40 99.3 96.4 97.82

2.03 50 97.9 85.1 91.05

2.54 60 98.5 75.8 85.67

40 ? 50 98.3 99 98.64

40 ? 50

? 60

97.9 98.6 98.24

[9] RetinaNet ResNet Ornamental

plants

RGB 73.41

YOLOv3 DarkNet-

53

79.85

[116] YOLOv2 Mango

fruits

RGB 1.5 - 2 86.4 96.1 89 92.41 80 40

[54] MangoYOLO / Mango

fruits

RGB 2 98.3 96.8 15 14

YOLOv2 DarkNet-

19

95.9 93.3 20

YOLOv2-

tiny

/ 95.3 91.7 10

YOLOv3 DarkNet-

53

96.7 95.1 25

SSD VGG-16 98.3 95.9 70

Faster

R-CNN

VGG 95.3 94.5 67

Faster

R-CNN

ZF 95 93.9 37

[97] Faster

R-CNN

ResNet-

50

Trees RGB 0.82 20 - 40 82.48 163

YOLOv3 DarkNet-

53

85.88 26

RetinaNet FPN 92.64 67

[39] YOLOv4 Wheatears RGB 0.01

-

0.06

1.2 - 3 62.75 88.23 57

Modified

YOLOv4

77.81 96.71 72

[4] YOLOv3 DarkNet-

53

Citrus trees Multi-

spectral

75 99.9 99.7 99.79

[20] CNN ?

Classifier

(with

refinement)

Citrus trees Multi-

spectral

104 94.59 97.94 96.24

CNN ?

Classifier

(without

refinement)

65 98 78

[78] RetinaNet Citrus trees Multi-

spectral

12.9 120 62 92 74

Faster

R-CNN

86 39 54

Proposed

approach

VGG-16 95 96 95 40 (8

stages)

25

[112] Faster

R-CNN

Apple trees RGB 91.1 94.1 92.5
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overlap. The improved version of YOLOv4 overcame the

original YOLOv4 architecture providing an F1-Score and

average precision of 96.71% and 77.81% against 88.23%

and 62.75%, respectively.

These detectors could be very effective for plant

detection and counting when they have some distance

between them. However, they should have limitation in

high-density planting crops due to the complex features. In

order to overcome some bounding box limitations in

counting number of trees in crowdy images, the authors in

[78] presented another CNN-based approach to identify

and estimate the number of citrus trees in dense fields from

multispectral UAV imagery. They compared their pro-

posed method with two state-of-the-art bounding box-

based object detection algorithms, which are Faster R-CNN

and RetinaNet. The proposed approach applied CNN

architecture to estimate a confidence map that gives the

probability of occurrence of a plant at each pixel instead of

using rectangular bounding box, which could affect the

performance of detection in crowdy images. The proposed

approach achieved an F1-Score of 95% against 74% and

54% of RetinaNet and Faster R-CNN, respectively.

Several review papers have investigated the perfor-

mance of object detection algorithms [14, 47, 108] showing

that these algorithms can achieve good results in different

domains. Unfortunately, they are limited to estimate the

objects locations drawing bounding boxes around each of

them, which could affect the detection performance in

crowdy images [14, 47, 108]. Moreover, they did not

perform a precise location of the object, which is essential

for some applications where we need more precision like

vegetation harvesting or mechanical weed fighting. In this

regard, a more precise algorithms will be presented in the

next section, which are based on image segmentation

techniques.

4.2 Pixel-based crop classification

After the big success of CNN architectures in object

detection task, many researchers adopted them for more

challenging and efficient tasks, such as semantic and

instance segmentation. Semantic segmentation of UAV

imagery has emerged as an effective pixel-based method to

monitor agriculture fields and classify different crop types

within these fields. Unlike object detection algorithms,

where we need to draw a rectangular bounding box around

each object of interest, semantic segmentation algorithms

aim to classify each pixel in an input image to a specific

class resulting a mask or a heatmap that identifies different

crop classes (Fig. 5). Thus, semantic segmentation could be

more powerful tool than object detection, which aims, in

our case, to improve crop/plant classification performance.

However, they are much more complex than bounding box-

based object detection algorithms and consume a lot of

time in the phase of data labeling, where we need to

Fig. 5 Example of semantic segmentation from UAV imagery using U-Net architecture [52].
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annotate each single pixel into the corresponding category

[8].

The main architecture of semantic segmentation algo-

rithms consists of two parts, an encoder network (com-

pression path) followed by a decoder network (expansion

path). The encoder part is responsible for feature extrac-

tions from the input image using the aforementioned CNN

architectures, like VGGnet and ResNet, without the fully

connected layers. On the other hand, the decoder does the

reverse of the encoder using convolution and up-sampling

operations to generate an image of the same size as the

input image with masks to define each crop type. The state-

of-the-art semantic segmentation techniques for crop types

classification from UAV imagery are highlighted in this

section.

During the last years, several efficient image segmen-

tation techniques were proposed to classify crop types, and

still evolving more and more with the advance of CNN

architectures. The authors from the reviewed papers

adopted different CNN-based image segmentation algo-

rithms. J. Long et al. [63] proposed the first CNN-based

image segmentation technique called Fully Convolutional

Network (FCN), that uses convolution and deconvolution

layers to produce semantic mask of each class in the input

image. However, FCN architecture has some limitations

due to the max-pooling layers that reduce spatial resolu-

tion, which could lead to lose some valuable information

about different crops or plants [123]. Thus, more sophis-

ticated algorithms were proposed over the past few years,

including U-Net [90], SegNet [6], DeepLab [17], which are

providing good results for crop classification. Table 3

summarizes the available CNN-based algorithms in various

studies that target pixel-based crop classification from

UAV imagery.

Several studies have already presented the potential of

various segmentation architectures for various crop clas-

sification. The authors in [21, 118] adopted two semantic

segmentation algorithms (SegNet and FCN) for rice crop

identification from RGB images acquired through UAV

platform. As shown in Table 3, the performance of SegNet

was slightly outperformed FCN achieving good results.

However, the adopted procedure in [21] for data collection

and transmission to the on-ground server for processing

task could cause some problems, including loss of data

during wireless transmission in the case of bad 4G con-

nectivity, which is the case in many rural areas. Moreover,

in [102], the authors compared FCN and SegNet algorithms

with their improved SegNet version for sunflower crop

classification from UAV imagery achieving an overall

accuracy, between two studied fields, of 78%, 79%, and

81.95%, respectively, on RGB images, while achieving

77.45%, 78.25%, and 80.5% on RGB?NIR imagery. Also,

they fused RGB and FNIR bands to improve the

classification performance achieving better results of

81.55%, 82.65%, and 86.55% using FCN, SegNet,

improved SegNet, respectively, while keeping real-time

crop classification of 83 frame per second for the proposed

approach. The authors used a combination of three

approaches, including skip connection, Convolutional

Conditional Random Field (ConvCRF), and deep-wise

separable convolutions, to improve SegNet performance.

To solve the vanishing problem, the skip connection was

implemented. The ConvCRF is used to reduce processing

complexity and minimize the noise in sunflower lodging.

They also used deep-wise separable convolutions instead of

generic convolution procedures to boost model speed while

reducing computational power.

Bah et al. [8], proposed CRowNet architecture that

combines the characteristics of SegNet and Hough trans-

form (HoughCNet) to detect and highlight crop rows from

UAV imagery. The proposed technique shows a clear

advantage over the other applied techniques achieving an

F1-Score of 90.39% and 82.5% for sugar beet classifica-

tion, while FCN and SegNet achieve only 32.15% and

72%, respectively (Table 3). In [27], the authors focused on

fig crop segmentation from UAV-based RGB images,

where they developed a Deep Convolutional Encoder-

Decoder Network inspired from SegNet architecture. The

encoder part employed a shallow CNN architecture with

seven learnable layers, four of which are convolution layers

and the other three are pooling layers. The decoder, on the

other hand, has three upsampling and three pooling layers.

Because there are only two classes, the softmax function

was replaced with a sigmoid function to estimate the

probability of each pixel’s class. Because of its simplicity,

the proposed SegNet version may reach faster processing

rates. Moreover, they achieved slightly better classification

performance than SegNet-Basic achieving an overall

accuracy of 93.84% and 93.82%, respectively.

Other studies adopted U-Net as the main architecture to

classify different crops from UAV imagery

[23, 52, 53, 112]. As shown in Table 3, Wu et al. [112]

achieved good results using Faster R-CNN algorithm to

detect apple trees from UAV imagery. Moreover, they

adopted U-Net architecture, as a semantic segmentation

algorithm, to classify each pixel of the detected trees inside

the generated bounding boxes achieving an overall accu-

racy of 97.1%. However, the adopted process is very costly

in terms of time and computation power. Another example

of using U-Net architecture is the one proposed by Kat-

tenborn et al. [52], where they adopted it to predict plant

species accurately from high-resolution UAV-based RGB

images. They fed a (128�128) image to a U-Net archi-

tecture to identify different types of trees. The input image

is passed through a series of (3�3) convolutional and

(2�2) max-pooling layers to extract relevant features. The
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resulting feature maps are then fed to the encoder part that

consists of (2�2) up-convolution (also called transposed

convolution) and (3�3) convolutional layers along with the

concatenation operation. Unlike SegNet, the whole feature

maps are transferred from the encoder part to the decoder

part in the U-Net architecture making use of the concate-

nation concept. However, this increases the size of the

model and necessitates more memory. The concatenation

concept represents the main benefit of U-Net architecture

by giving it the ability to localize the targeted object, which

is in our case the crop type. Its principal purpose is to

conserve information that might otherwise be lost as the

convolution blocks shrink the input image. As shown in

Figure 5, the output of U-Net architecture produces pixel-

based maps that classify each pixel that represents the

targeted type of trees.

DeepLabv3? was adopted in [74] and [25] to identify

Mauritia flexuosa and different Amazonian palms,

respectively, from UAV RGB images. Fuentes-Pacheco

et al. [27] proposed an end-to-end Deep Convolutional

Encoder-Decoder Network, which can accurately perform

semantic segmentation of fig plant from UAV imagery.

Also, they compared their model with another state-of-the-

art semantic segmentation network (SegNet). The experi-

mental results showed that their proposed approach pro-

vides slightly better performance than SegNet architecture

achieving an overall accuracy of 93.84% against 93.82% of

SegNet (Table 3). In [57], the authors developed Fully

Convolutional Regression Networks and Multi-Task

Table 4 UAV-based datasets

Ref. Dataset Data type Number of

images

Image size Altitude/

GSD

(m)

Crop type Acquisition time

WHU-Hi-

HongHu

550�400 500 /

0.463

Corn, cotton, sesame, broad-leaf

soybean, narrow-leaf soybean, and

rice

July 17, 2018, from

13:49 to 14:37

[128] WHU-Hi-

HanChuan

Hyperspectral – 1217�303 250 /

0.109

Strawberry, cowpea, soybean,

sorghum, water spinach,

watermelon, and greens

June 17, 2016, from

17:57 to 18:46

WHU-Hi-

HongHu

940�475 100 /

0.043

17 crop types, including cotton, rape,

and cabbage

November 20,

2017, from 16:23

to 17:37

[93] Weedmap

(000)

Multispectral 10,196 5995�5854 10 / 1.04 Sugar beet & weed 18 September 2017,

9:18–40 a.m.

Weedmap

(001)

4867�5574 10 / 0.94

Weedmap

(002)

6403�6405 10 / 0.96

Weedmap

(003)

5470�5995 10 / 0.99

Weedmap

(004)

4319�4506 10 / 1.07

Weedmap

(005)

7221�5909 10 / 0.85 5–18 May 2017,

around 12:00 p.m.

Weedmap

(006)

5601�5027 10 / 1.18

Weedmap

(007)

6074�6889 10 / 0.83

[60] VOAI RGB 2293 (No data

augmentation)

224�224 20 / 0.47 12 tree species –

21,863 (with

data

augmentation)

30 / 0.90

40 / 1.43

50 / 1.76

[92] WeedNet Multispectral 465 – 2 / – Sugar beet & weed –
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Learning (FCRN-MTL) to detect citrus trees from UAV

imagery, where they achieved an overall accuracy of

98.8% for full-grown trees classification. However, they

achieved only an overall accuracy of 56.6% for tree

seedlings classification, which could be due to its small

size from high altitude. Some studies adopted instance

segmentation algorithm called Mask R-CNN [66, 81]

which is an extended version of Faster R-CNN algorithm

combined with FCN algorithm producing a pixel mask for

each bounding box locating each pixel that belong to the

object.

Other approaches based on CNN were also proposed in

the literatures, such as the work of Rebetez et al. [85],

where they proposed a hybrid architecture that combines

deep CNN with an RGB histogram (HistNN) to classify

different crops distributed in small parcels. They were able

to classify 22 crop types efficiently from RGB images

acquired through UAV platform achieving F1-scores of

around 84% and 87%, respectively; using CNN and

HistNN separately. However, by combining CNN and

HistNN, they were able to achieve better results with an

F1-score of 90%. Also, the authors in [109] applied LeNet

architecture to identify corn crops from UAV imagery. In

[18], the authors applied CNN-based algorithm and transfer

learning to identify some strategic crop types in Rwanda.

They used a pretrained VGG-16 network, without the

dense layers, for feature extraction followed by one-layer

neural network, dropout, and Softmax layers to classify

each of the crop types. They achieved remarkable results of

96% and 90% on the classification of bananas and maize

crops, respectively. However, their approach seems to have

some limitations to classify intercropping such as legumes

achieving only an F1-Score of 49%, which affect the

overall accuracy decreasing it to 86%. The classification

accuracy reduction could be affected by the diversity of

legumes types in the images.

5 Available UAV-based datasets
and evaluation metrics

Since most datasets are not created to fit specific scenarios,

to provide UAVs better computer vision capabilities to

achieve agricultural tasks, large aerial image datasets are

crucial to meet the deep learning models’ training

requirements. In the agriculture field, the lack of large

datasets that consist of aerial images collected from UAVs

to train deep learning models is a serious problem facing

farmers, researchers, and developers. Several methods

were adopted to overcome such a problem, including the

different techniques of data augmentation. However, even

with such techniques, it still not sufficient in many cases. In

the literature, some available public datasets can be used as

a benchmark to evaluate the developed models. Most of

them do not contain aerial images such as the famous

PlantVillage dataset [72]. Therefore, in this section, we aim

to provide readers with the available UAV-based datasets

of different crops all along with the methods used to

evaluate the performance of the trained models.

5.1 UAV-based datasets

Wuhan UAV-borne hyperspectral image (WHU-Hi)

dataset: The Wuhan UAV-borne hyperspectral image

(WHU-Hi) dataset was built and published in 2020 as a

benchmark dataset by Zhong et al. [128] to train and

evaluate deep learning models for the crop classification

task. Hyperspectral images acquired through a Headwall

Nano-Hyperspec sensor mounted on two UAV types (DJI

Matrice 600 Pro and Leica Aibot X6 UAV V1) were col-

lected at different locations and altitudes, where the images

at different locations were kept separate to build different

UAV-based datasets for each location. These datasets were

named after their corresponding location as follows: WHU-

Hi-LongKou, WHU-Hi-HanChuan, and WHU-Hi-Hon-

gHu. As shown in Table 4, the WHU-Hi-LongKou dataset

Table 5 Evaluation metrics
Metric Formula Description

Accuracy TPþTN
TPþTNþFPþFN

Indicates the percentage of true predictions among

all predictions.

Precision TP
TPþFP

Determines how well a model is in predicting positive labels.

Recall (sensitivity) TP
TPþFN

Measures the percentage of true positives successfully

detected by a model.

F1-score (F-measure) 2�Precision�Recall
PrecisionþRecall

Represents the harmonic mean of Precision and Recall rates

Kappa coefficient Po�Pe

1�Pe
Measures inter-annotator agreement.

FPS Number of Frames
Current time�Start time

Determines the detection speed.
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consists of aerial images of six types of crops that were

collected at an altitude of 500 m above ground with a

spatial resolution of 46.3 cm on July 17, 2018, under clear

and cloudless weather conditions. Similarly, the WHU-Hi-

HanChuan dataset consists of seven crop types collected

using the Leica Aibot X6 UAV V1 that flew at an altitude

of 250 m above ground with a spatial resolution of 10.9 cm

on June 17, 2016, under clear and cloudless weather con-

ditions. However, the collected images have a lot of sha-

dow-covered parts because they were obtained in the

afternoon. The last dataset, WHU-Hi-HongHu, consists of

seventeen different cultivars of three main crop types,

which are cotton, rape, and cabbage. The collected images

were acquired on November 20, 2017, through a DJI

Matrice 600 Pro that flew at an altitude of 100 m above the

soil with a Ground Sampling Distance (GSD) of 4.3 cm

under cloudy weather conditions. Table 4, shows more

information about the WHU-Hi dataset. The dataset is

available at http://rsidea.whu.edu.cn/e-resource_WHUHi_

sharing.htm.

Weedmap dataset: The Weedmap dataset [93] is one of

the most known and largest multispectral datasets that can

be used to classify sugar beet crops and weeds. It consists

of more than 10,000 multispectral aerial images with dif-

ferent resolutions collected through two camera types at

different locations and times. The two adopted cameras are

RedEdge-M and Sequoia that are capable of capturing 5

and 4 raw image channels, respectively. This dataset can be

used to train deep learning models to detect and classify

sugar beet and weeds from aerial images. The dataset is

available at https://projects.asl.ethz.ch/datasets/doku.

php?id=weedmap:remotesensing2018weedmap.

VOAI dataset: The vegetational optical aerial image

(VOAI) dataset [60] consists of aerial images of 12 tree

species captured using a UAV platform that flew at dif-

ferent low altitudes of 20, 30, 40, and 50 meters above the

ground. As presented in Table 4, the VOAI dataset con-

tains around 2,300 cropped and normalized images without

data augmentation and more than 21,800 after applying

data augmentation techniques.

WeedNet dataset: The WeedNet dataset [92] consists

of 465 multispectral images collected using a UAV plat-

form equipped with a four-channel Sequoia camera flying

at 2 meters above a sugar beet crop. The collected images

are divided into a training set that contains 132 images for

sugar beet crop and 243 images for weed, and a test set of

90 images for the mixture of both crop and weed. The

dataset is available at https://github.com/inkyusa/weedNet.

Even with these datasets, there is still a lack of datasets

targeting crop classification. Therefore, most of the

reviewed articles in this survey used their own collected

datasets through different UAV platforms and camera

sensors technologies [39, 53, 78, 85]. Unfortunately, these

datasets are not available online.

5.2 Evaluation metrics

After the development of the deep learning-based crop

classification models, we should evaluate their perfor-

mance using several metrics. Therefore, various evaluation

metrics were proposed to determine the effectiveness of the

developed crop classification model. Several evaluation

metrics could be measured to evaluate the deep learning

models, depending on the study’s purpose. Table 5 lists

the most used evaluation metrics all along with their for-

mulas and descriptions.

Note that TP, TN, FN, and FP refer to True Positive,

True Negative, False Negative, and False Positive,

respectively. Also, Po refers to the observed proportional

agreement, while Pe is the expected agreement by chance

[58].

6 Discussion

In this study, various deep learning-based crop classifica-

tion techniques were presented. Either object-based or

pixel-based crop/plant classification achieved a remarkable

performance. However, there still several factors that could

affect crop/plant classification performance from UAV

imagery, including image resolution, flight altitude, sensors

characteristics, same spectral information from various

materials, crop classes with similar feature properties,

dataset size and quality, and choice of the network archi-

tecture and the baseline [109, 128].

6.1 The effect of spatial resolution on the crop
classification performance

Several studies investigated the impact of flight altitude,

image resolution, used sensors types, and GSD, which are

strongly related to each other, on the performance of crop

classification and plant detection. Low altitudes flights

should provide lower GSD thus increase spatial resolution,

which can improve classification and detection accuracy.

As shown in [20, 46], a lower GSD provides more infor-

mation about the targeted crop, which should lead to better

classification performance. However, achieving lower GSD

requires flying at lower altitudes, which leads to a lower

area coverage [79, 100]. In order to demonstrate how the

spatial resolution could affect the detection accuracy, the

authors in [81] adopted different spatial resolution simu-

lating different flight altitude. According to the obtained

results, they conclude that the lower spatial resolution leads

to the poor detection accuracy. Similarly, the poor results
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provided by the adopted FCRN-MTL architecture [57] to

identify citrus tree seedlings could be due to the limited

spatial resolution of these seedlings and their small sizes.

To improve the classification performance, the input patch

size should be carefully selected. Combining different

altitude could also improve banana plant identification

achieving the best F1-Score of 98.64% combining 40m and

50m altitudes. However, the flight altitude is not the only

factor that has an impact on the classification performance,

but also the camera specification [54, 93]. Therefore, we

need to take all of these parameters into account for

achieving better results.

6.2 The effect of the selected model on the crop
classification performance

Another major challenge in deep learning field is to find the

best CNN architecture to solve the targeted problem. The

classification performance could be affected by the net-

work architecture and also the depth of these networks. The

choice of the right architecture depends on many factors,

including targeted crop/plant types, interference speed,

among others. In [60], the authors investigated the impact

of different CNN architectures with various number of

layers for plant classification from UAV-based optical

images. They proposed a CNN-based architecture that

outperformed the state-of-the-art CNN architectures

achieving an overall accuracy of 86%, 84%, and 87% for

FDN-17, FDN-29, and FDN-92, respectively, against 80%,

76%, and 82% for Inception-V1, ResNet-101, and Dense-

Net-121 [44], respectively. Another work presented in [74]

that investigate the impact of the chosen U-Net-based

architectures on the overall classification performance.

Similarly, the performance of YOLOv3 outperformed

RetinaNet detector in [9], which are trained on the same

dataset achieving an average precision of 79.85% against

73.41% of the RetinaNet. This should be due to the dif-

ferent backbone architectures used by the two detectors,

which are DarkNet-53 for YOLOv3 and ResNet for Reti-

naNet. From the results in Tables 2 and 3, we conclude

that, most of the times, the deeper the network, the higher

the classification performance. However, deeper networks

require larger memory for data storing, more computation

capabilities, and more processing time. Some studies have

adopted shallow architectures that should improve the

classification speed [21], while reducing the accuracy.

Also, the authors in [27] developed a SegNet-based

architecture with fewer layers resulting less trainable

parameters, which make it faster and simpler. Moreover, a

sigmoid function was adopted instead of Softmax, because

they have only two classes ’’fig’’ and ’’not fig’’. Doing so,

they achieved slightly better results than original SegNet

Fig. 6 Comparison of different algorithms to classify various crop types a True-color image, b Ground-truth image, c SVM, d FNEA-OO,

e SVRFMC, f Benchmark CNN, and g CNNCRF [128].
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architecture achieving an overall accuracy of around

93.84% and 93.82%, respectively, but it must be faster due

to the reduced number of learnable parameters. However,

such shallow architecture could affect the classification

performance, especially in the case of multi-crop classifi-

cation, where it has a lack in relevant features extraction.

These architectures are more suitable for machines with

low computation power and for applications where we do

not need very high accuracies.

According to Table 2, it is clear that YOLOv3 provides

better results than RetinaNet and Faster R-CNN achieving

an F1-score of around 99.8%. Also, according to Table 2,

RGB images are preferred for tree detection and fruit

detection. For example, faster R-CNN achieved a higher

F1-score of 92% for apple tree detection while it achieved

only 54% using multispectral images. Also, Santos et al.

[97] showed that Faster R-CNN provides the worst infer-

ence time of 163 ms/image, due to the two detection stages,

making it not suitable for real-time operations nether for

tiny devices. However, one-stage algorithms (YOLOv3 and

RetinaNet), as expected, achieved the lowest computa-

tional cost allowing real-time detection. According to

Table 3, CrowNet [8] that is based on SegNet architecture

provide slightly better results on maize crop row segmen-

tation than Mask Scoring R-CNN architecture [81]

achieving a precision rate of around 85% and 83%,

respectively. However, the lower precision provided by

Mask Scoring R-CNN could be resulted due to the higher

flying altitude that is varying between 40 and 60 meters

above the ground. Also, the developed model was trained

on only two growing stages (V4 and V5), which could

affect its performance to detect maize crop rows at the

other growth stages. Also, the study of [118] showed that

the FCN algorithm provides better results on rice crop

classification achieving an F1-score of 83.21% with an

inference time of 72 seconds/image, while Segnet achieved

only 69.36% with an inference time of 106 seconds/image.

Moreover, SegNet has a very high false detection rate with

a recall rate that could be less than 30% using RGB?Ex-

G?ExGR data and a GSD equal to 5.7 cm/pixel. However,

Song et al. [102] showed that SegNet architecture provides

slightly better overall accuracy than FCN in the case of

sunflower crop classification (Table 3). Similarly, Bah

et al. [8] found that FCN architecture performs very badly

to detect beet rows. Figure 6, shows a comparison between

various algorithms used to classify different crop types.

6.3 The effect of data size and type on the crop
classification performance

In order to train deep learning models accurately, we

usually require a huge amount of data, which is a common

point between different deep learning algorithms. Dataset

type, size, and quality are other parameters that could

improve the performance of crop classification. The impact

of different dataset was investigated in [128], where they

adopted three different datasets. The HanChuan and Hon-

gHu datasets have more complicated structure than the

LongKou dataset, which explains the obtained results. As

shown in Table 3, they achieved an overall accuracy of

around 94% on the two first datasets against 98.91% on the

last one. Also, the authors in [109] tested 4 different

datasets to show their impact on corn classification from

UAV imagery (see Tables 1 and 2). However, collecting

and labelling large datasets is a time-consuming task and

not always feasible. In [18, 22], the authors adopted

transfer learning technique as a solution to overcome the

lack in dataset. Transfer learning gives the possibility to

Fig. 7 Examples of object-based (left) [4] and pixel-based (right) [21] crop classification.
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train deep neural network models with small dataset. Data

augmentation is another effective solution that aims to

increase the data size, which is well studied in many

research papers [39, 109, 128].

The training patch size is another fundamental param-

eter that could affect the classification performance. In

[82], the authors investigated the impact of class purity and

patch size on the classification performance of homoge-

nous crops using 2D-CNN. Patches with different sizes and

class purity values are used to evaluate the CNN-based

classifier performance on two different datasets collected

from two platforms, which are Landsat-8 OLI satellite and

senseFly eBee UAV. Similarly, the authors in [27] showed

that the patch size has a slight impact on the classification

performance achieving an accuracy of around 91% for

patch of 256 � 256 pixels against 89.55% for 32 � 32

pixels. Moreover, the patch size has a significant impor-

tance on the training time. As the patch size increase the

training time will also increase.

Efficient techniques were proposed over the few past

years to improve the performance of crop classification.

Several studies have used images acquired at different

spectral bands, such as the works of [13, 82]. Sa et al. [93]

investigated the impact of the chosen camera and the used

channels on the classification performance. Also, in [34],

the authors showed the impact of combining NIR and RGB

channels to improve the classification accuracy of maize.

Other researchers have proposed to apply various vegeta-

tion indices to enhance crop identification [93, 118]. In

order to distinguish between small and large trees, the

authors in [20] thresholding NDVI value taking only the

values superior than 0.7 achieving an F1-Score of around

96%. In addition, FCN and SegNet algorithms performance

were also investigated in the work of Yang et al. [118] for

rice lodging identification using different RGB-based

vegetation indices combinations that are produced from

UAV imagery.

Also, some studies have proposed to use data fusion

from satellite and UAV. The spectral information provided

by UAV-based sensors provide less details than satellites-

based ones [67]. Many studies investigated satellites and

UAVs data fusion to increase the spectral information,

which should help to improve crop classification

[126, 129]. As example, in [129], the authors used three

different approaches (SVM, ML, ANN) to investigate the

impact of satellite and UAV data fusion on crop classifi-

cation performance. By fusing the two platforms-based

remote sensing information, they achieved better overall

accuracy of around 86% on the fused data using ANN

against 78.53% obtained from the original UAV data.

Moreover, the results obtained applying ANN technique

outperform the other two algorithms.

6.4 The impact of crop and UAV characteristics
on the classification performance

The deep learning model performance is highly dependent

on the characteristics of different crop types that vary

according to the different growing stages and health,

including texture, color, size, and spatial distribution.

According to Table 1, object detection algorithms are

preferred for tree crop monitoring. Most of the available

object detection-based studies targeted fruits and tree crops

classification due to their characteristics that are very

suitable for object detection algorithms, especially the low

density and the relatively large distance between trees (Fig,

7 (left)). However, the best results achieved for the major

crop classification, like maize, wheat, legumes, are based

on image segmentation techniques like U-Net, SegNet,

FCN, and Mask R-CNN (Tab. 3) due to their character-

istics in terms of texture, color, and canopy density (Fig. 7

(right)). According to Table 3, the authors in [91] showed

that the geometric features of citrus trees have an impact on

the deep learning model performance, where they achieved

an overall accuracy of around 99% for full-grown citrus

trees while they achieved only 56.6% to classify citrus tree

seedlings. Also, the method developed in [66], which is

based on Mask R-CNN architecture, performs better on

lettuce crops than on potato crops, which could be due to

the texture and density level of the two types of crops. In

addition, as shown in Tables 2 and 3, vegetation indices,

either obtained from RGB or multispectral data, can play a

crucial role to improve the deep learning model accuracy

due to the specific information about crop properties pro-

vided by each type of vegetation indices.

Moreover, UAV properties are also very important that

could affect the deep learning model performance.

Endurance, payload weight, flight speed, and altitude play

crucial roles to improve classification accuracy and UAV

efficiency. Fixed-wings UAVs are preferred for large crop

monitoring due to their long endurance, speed, and high

altitude [45, 84]. However, their high speed can lead to

missing some valuable information due to the motion blur,

and it is very difficult to monitor small and medium fields

and need space to land and take-off [122]. Recently, hybrid

VTOL UAVs were adopted as an effective solution to

bypass the need for landing and taking-off space problems

[101]. Also, multirotor UAVs are considered the best

choice to cover small and medium fields, especially those

located in difficult environments. To cover larger fields

through multirotor UAVs, several studies proposed the use

of multiple UAVs in swarm [3, 49]. Using UAV swarms

allow farmers to examine very large farms in a matter of

minutes. Also, their ability to hover and fly at very low

altitudes above the targeted crop makes them the best
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choice for small plants and fruits classification [43]. Sensor

type is another fundamental parameter that we should take

care of because each crop has different characteristics.

6.5 Choice of deep learning model

The choice of the right deep learning model, among a range

of different models, depends on many factors like the tar-

geted crop type, the deserved output that we want, the

dataset size and type, the targeted hardware, to name a few.

In this section, we go through the most crucial factors to

think about while choosing the deep learning algorithm.

• Crop type: The targeted crop type and its characteristics

play a fundamental role to select the right algorithm.

According to the reviewed papers, it seems that object

detection algorithms are preferred in the case of tree

crop classification or identifying fruit types from

images acquired at low altitudes. However, these

algorithms still have some limitations to detect small

objects in dense crops. For example He et al. [39] show

that object detection algorithms achieved an average

precision of only 78% to detect wheatears even at very

low altitude. Also, it is not practical to cover large fields

at very low altitude, which takes a very long time to

cover the whole area. Therefore, as shown in Table 3,

pixel-based techniques are preferred to monitor and

classify large fields at very high altitudes.

• Data size; nature; and quality: The nature, size, and

quality of data play a fundamental role in deciding

which algorithm that we need to choose. To achieve the

high performance of the algorithm, it is usually

recommended to collect a large amount of data.

However, it is a very challenging task to have such a

large amount of data. Therefore, we can select

pretrained models and adapt them with the targeted

problem using transfer learning and fine tuning tech-

niques. Also, data augmentation could be an effective

solution to improve the algorithm performance.

• Computational time: The available computation time is

another crucial factor that we should consider. Usually,

we need a very long time and powerful GPUs to train

accurate deep learning algorithms. The selection of the

right algorithm is highly dependent on the hardware

that we have. For tasks that require high accuracy, we

need to select deep and complex algorithms that need

high computation performance. The current state-of-

the-art CNN architectures such as GoogLeNet,

VGGnet, and ResNet are based on several trainable

layers (convolutional and fully connected layers) mak-

ing them very heavy and need powerful GPUs and large

memory. These algorithms are not suitable to be

implemented on the drone itself due to the low

processing ability of tiny devices. Therefore, very deep

models are not the best choice to perform crop

classification in real-time. On the other hand, light-

weight models that are based on shallow feature

extractors, like YOLOv2 and YOLOv2-tiny adopted

in [54], are preferred to achieve real-time classification.

Also, the authors in [118] showed that FCN is faster

than SegNet architecture due to the adopted backbone

which are AlexNet that consists only of 8 trainable

layers and VGG-16 that contains 16 trainable layers,

respectively.

7 Conclusion and future outlooks

Automatic crop classification using new technologies and

techniques is recognized as one of the most important keys

in today’s smart farming improvement. It plays a crucial

role in reducing the overall financial cost in reducing the

number of workers, the amount of applied agrochemical

products, among others. Most of previous studies are based

on satellites and UGVs as remote sensing platforms and

classical machine learning algorithms as processing tech-

niques. However, UAVs have emerged as new effective

remote sensing platforms that provide valuable data

through the carried sensors. UAV-based Aerial image

processing using different CNN-based algorithms have

been applied successfully in crop/plant classification even

though there still many challenges. So, in this paper, the

advantages of UAVs over traditional technologies were

highlighted. Moreover, different object-based and pixel-

based algorithms were investigated in this review to help

researchers and farmers to choose the right classifier

according to the targeted crop, the used camera sensors,

among other parameters. The choice of the right model is a

fundamental key that should improve the accuracy, speed,

and reliability to classify different crop types. Furthermore,

possible challenges and their solutions for crop identifica-

tion from UAV imagery were presented in this paper.

The agriculture industry is moving very fast toward

Agriculture 4.0, which is based mainly on recent artificial

intelligence algorithms and remote sensing technologies,

especially deep learning and UAVs. The high advancement

in new technologies and processing techniques, including

camera sensors, 5G connection, cloud computing, GPUs,

quantum computing, and different deep learning algo-

rithms, should provide new opportunities and future out-

looks in the field of precision agriculture. UAV platforms

still have many issues that we should overcome to achieve

the full capabilities required for smart farming. Many

research directions, that have a relevant impact on the deep

learning algorithms and UAV performances in the field of
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agriculture, are being highly investigated. Time to cover

large fields is one of the most disturbing problems that face

the adoption of UAV platforms to handle large area cov-

ering. One solution to overcome such a problem is to build

a whole intelligent Internet of Drone (IoD) system that

could monitor farmlands to improve crop productivity with

less human intervention. Moreover, we should focus on the

development of powerful lightweight versions of deep

learning algorithms that can be implemented on small

devices with low computational power while reducing the

energy consumption to increase the flying time of UAVs,

which is a crucial problem.
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