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Abstract

Spontaneous facial expression recognition under uncon-

trolled conditions is a hard task. It depends on multiple fac-

tors including shape, appearance and dynamics of the facial

features, all of which are adversely affected by environmen-

tal noise and low intensity signals typical of such condi-

tions. In this work, we present a novel approach to Facial

Action Unit detection using a combination of Convolutional

and Bi-directional Long Short-Term Memory Neural Net-

works (CNN-BLSTM), which jointly learns shape, appear-

ance and dynamics in a deep learning manner. In addition,

we introduce a novel way to encode shape features using

binary image masks computed from the locations of facial

landmarks. We show that the combination of dynamic CNN

features and Bi-directional Long Short-Term Memory ex-

cels at modelling the temporal information. We thoroughly

evaluate the contributions of each component in our system

and show that it achieves state-of-the-art performance on

the FERA-2015 Challenge dataset.

1. Introduction

Automatic facial expression recognition has attracted con-

siderable attention in the past few years [6, 18, 20, 23]

due to their potential application in the field of psychol-

ogy, mental health, human-computer interaction, etc. The

Facial Action Coding System (FACS) developed by Ek-

man and Friesen [4], provides a systematic and objective

way to study any kind of facial expression, by representing

them as a combination of individual facial muscle actions

known as Action Units (AU). Automatic detection of facial

Action Units is a challenging problem primarily due to the

high degree of variation in the visual appearance of human

faces (caused by person specific attributes, multiple poses,

etc.), low intensity activation of spontaneous expressions,

non-additive effects of co-occurring AUs and the scarcity

of training data.

Recently, deep learning algorithms have shown signifi-

cant performance improvements for object detection tasks

[13, 7]. The recent success of deep learning algorithms has

been attributed to three main factors: (a) Efficient methods

for training deep artificial neural networks, (b) Availabil-

ity of high performance computational hardware e.g. GPUs

and (c) Availability of large amounts of labeled training

data. Although deep learning algorithms have been shown

to produce state of the art performance on object recognition

tasks, there has been considerably less work on using deep

learning techniques in action recognition, facial expression

recognition, and in particular facial AU recognition. With

the increasing availability of large databases for AU recog-

nition [16, 23, 29], it would be interesting to see if deep

learning algorithms can give a similar leap in performance

in the field of facial expression/AU recognition.

Traditional AU recognition algorithms have used hand-

crafted appearance features (e.g. Gabor, HoG, LBP) and/or

shape/geometric features computed from the locations of fa-

cial landmarks. Since these hand-crafted features are not

tuned to a specific task, they limit the performance of the

classifier learnt on these features. Deep learning techniques

on the other hand allow a multistage approach in which the

features are learnt directly from the pixel values in combi-

nation with the classifier. Therefore, in addition to provid-

ing an algorithm which can be trained directly from pixels

to labels, the features learnt in the intermediate stages are

designed specifically for the target task.

Good automatic facial AU recognition involves the anal-

ysis of three facial features: face shape, appearance and dy-

namics. Each of these can be considered a source of compli-

mentary information for the modelling of facial action unit

detectors. We hypothesise that learning all the three fea-

tures jointly can produce highly accurate models for facial

AU recognition. However, the performance of the models

depends a lot on how one fuses these. In this work, we

present a deep learning based framework for facial AU de-

tection in images. In particular we use Convolutional Neu-

ral Networks (CNNs) to model the appearance, shape and

the dynamics of facial regions for AU detection. In contrast

to previous approaches, our system learns all the key fea-

tures (appearance, shape and dynamics) jointly in a deep

CNN. We also shy from a fully naı̈ve deep learning ap-

proach, which would have us learn directly from pixel data.



Instead we make full use of past progress in face and facial

point detection to guide our CNN.

We introduce a novel way to encode shape of facial parts

by computing binary image masks using the locations of fa-

cial landmarks. This enables us to learn the relevant shape

features instead of using hand-crafted geometric features.

We also use a novel method to model the temporal infor-

mation using a combination of time-windowed CNN and

Bi-directional Long Short-Term Memory (BLSTM) [10, 8].

BLSTM is a recurrent neural network architecture which

is capable of storing information over extended time inter-

vals. It consists of memory enabled blocks to which access

is controlled by multiplicative gates. BLSTMs have pre-

viously been used for continuous emotion prediction from

audio-visual data [25, 17] and have shown promising per-

formance. It has also been used in combination with CNNs

for activity recognition and predicting visual description

[3]. To the best of our knowledge, our work is the first to

use CNN in combination with BLTSM for facial expression

recognition. We show that both BLSTMs and dynamic fea-

tures extracted from a time-windowed CNN improve recog-

nition accuracy, independently from each other, and with

best result achieved when both are used. Our final system

outperforms the winners of the recent FERA 2015 challenge

[23] by a margin of 10%.

In summary, our main contributions are:

• A deep CNN based framework for jointly learning dy-

namic appearance and shape features for facial Action

Unit detection.

• A novel way to encode shape features in a CNN, by us-

ing binary image masks computed from the locations

of automatically detected facial landmarks.

• Learning temporal information for facial AU detec-

tion, using a combination of time-windowed CNN and

BLSTM.

• Achieving new state-of-the-art performance on the

FERA-2015 Challenge dataset.

2. Previous work

Fasel [5] was one of the first to use CNNs for the task of

facial expression recognition. He used a 6 layer CNN archi-

tecture (2 convolutional layers, 2 sub-sampling layers and 2

fully connected layers) for classifying 7 facial expressions

(6 basic emotions + 1 neutral). He experimented with 2 ver-

sions of his architecture. In the first version, the filter size

in the first convolutional layer was fixed to 5x5 pixels, i.e.

the features at the first layer were extracted at a single scale.

In the second version, the features at the first layer were ex-

tracted at multiple scales, using filters of 3 different sizes

(5x5, 7x7 and 9x9 pixels). This CNN consisted of 3 differ-

ent data streams corresponding to the three scales which are

connected to each other only at the fully connected layer of

the network.

Gudi et al.[9] used a deep CNN consisting of 3 convo-

lutional layers, 1 sub-sampling layer and 1 fully connected

layer to predict the occurrence and intensity of Facial AUs.

A similar architecture was used by Tang [21], but replacing

the softmax objective function with L2-SVM.

Liu et al.[15], used 3-dimensional CNN for dynamic

learning of facial expressions in a video. They proposed

a CNN architecture which can jointly localise certain dy-

namic parts of a face (action parts) and encode them for

facial expression classification. In their CNN architecture,

the resulting feature maps from the first convolutional layer

were convolved with a bank of class (of facial expression)

specific part filters to compute part detection maps. These

part detection maps and a set of deformation maps are

summed together (with learned weights), to enforce spa-

tial constraints on the part detections. The resulting feature

maps are passed through a partially connected layer before

obtaining the decision values for each basic emotion.

Kahaou et al.[12] combine face models learnt using a

deep CNN architecture with various other models for fa-

cial expression classification. They combined a CNN face

model with a bag of words model for the mouth region,

a deep belief network for audio information and deep au-

toencoder for modelling spatio-temporal information. A

weighted average of the predictions from all the models was

used to classify the emotion expressed.

Jung et al.[11] used a deep CNN to learn temporal ap-

pearance features for recognising facial expressions. Ad-

ditionally, they also employed a deep Neural network to

learn temporal geometric features from detected facial land-

marks. Both the networks were learned independently to

predict facial expression. The output decision values from

each of the networks were combined (linear combination)

to compute the final score for any example face image.

Liu et al.[14] learn receptor fields which simulates AU

combinations on convolutional feature maps. From each re-

ceptor field, they learn features using multilayer Restricted

Boltzmann Machines (RBM), which are concatenated to

learn a linear Support Vector Machine (SVM).

Another notable work in this field is Rifai et al.[19], who

propose a method to disentangle features which are discrim-

inative for facial expressions, from all other features. They

use features from a CNN (1 layered) whose filters were

pre-trained using Contractive Auto-Encoders (CAE). The

feature output from the CNN serves as input for a semi-

supervised feature learning framework called Contractive

Discriminative Analysis (CDA). CDA is a semi-supervised

version of CAE, in which the input is mapped onto 2 dis-

tinct blocks of features. One of the blocks learns features

which are discriminative for facial expressions, while the

other block learns all other features. Both the blocks are



learnt so as to jointly reconstruct the input. The discrimi-

native features from the first block are then used to train a

SVM for facial expression classification.

Most of the above methods (e.g. [5, 9, 15, 14], do not

utilise all the key facial features i.e. face shape, appearance

and dynamics. Those which do utilise all three of them (e.g.

[11]), do not learn them jointly. We believe that in order to

find the most optimum combination of these features, it is

necessary to model them jointly. Also, almost all the above

CNN based approaches use a fixed time window to learn

the temporal information. This limits the access to tem-

poral information within a specific time window only. On

the other hand, different facial AUs can occur over different

time scales. For e.g., a smile (AU12) can last much longer

compared to a blink (AU45) ,which occurs only for a pe-

riod. Even within a specific AU, the variation in its duration

of occurrence can be quite large. In contrast, our method

uses all key features (shape, appearance and dynamics) and

attempts to jointly learn them in a single CNN. Addition-

ally, we also overcome the problem of a fixed time window

in CNN by employing BLSTM for learning long term tem-

poral dependencies.

3. Methodology

Our system uses small rectangular image regions and corre-

sponding binary image masks to learn the relevant appear-

ance and shape features respectively. We use a sequence

of consecutive images in order to model the dynamics. A

transformed sequence of image regions and binary image

masks are used as input to train a CNN. The dynamic fea-

tures learnt from this CNN are further used for training a

BLSTM neural network. The output from this BLSTM neu-

ral network serves as the final decision value for the occur-

rence of an AU.

3.1. Image Regions

Learning facial action unit models can be a difficult task be-

cause only a small part of the face is responsible for the oc-

currence of a specific Action Unit. Automatically learning

the facial regions which are responsible for a particular Ac-

tion Unit is as difficult task due to the high dimensionality

of the input image data and the limited amount of training

examples available. To solve this problem, the relevant im-

age image region for particular Action Unit is pre-selected

according to domain knowledge.

In order to define image regions, the face images are

first pre-processed by automatically tracking facial land-

marks [27, 22] and aligning the face images with a reference

shape. The alignment is done using a Procrustes transform

of the shape defined by facial landmarks on the eyes corners

and the nose. The locations of these facial landmarks are in-

variant to facial expressions and hence are suitable for the

purpose of face alignment. A small set of facial points in the

aligned face images are used to define a rectangular image

region. The facial points that define these regions are se-

lected by an expert according to the target AU. The mean of

the selected facial points is taken as the center around which

a rectangular image region of a fixed width w and height h,

is defined. The rectangular image region is cropped from

the original image and is denoted as f (see Fig. 1).

3.2. Binary masks

In order to obtain better alignment between different train-

ing examples and to automatically encode the shape of dif-

ferent parts of a face, we compute a binary mask bi, each

corresponding to an image region fi. To compute the bi-

nary masks, the facial points selected for defining the im-

age regions (see Section 3.1) are joined together in a pre-

determined order to form a set of polygons. The binary

mask image bi corresponding to the image region fi is com-

puted by setting all the pixel values of fi which lie inside a

polygon to 1 and all the pixel values which lie outside a

polygon to 0 (see Fig. 1).

3.3. Dynamic encoding

Temporal information can provide vital features for recog-

nition of any facial action unit [24, 1]. We encode tempo-

ral information in our features by extracting image regions

{ft−n, ..., ft+n} and their corresponding binary masks im-

ages {bt−n, ..., bt+n} from a sequence of 2n + 1 consecu-

tive frames of a video centered at the current frame t. The

resulting sequence of image regions are transformed to a

sequence A = {Ai} where

Ai =

{

fi, if i = t

fi − ft, otherwise
(1)

Similarly, the sequence of binary mask images are trans-

formed to a sequence S = {Si} where

Si =

{

bi, if i = t

bi − bt, otherwise
(2)

The resulting image sequences A and S are used as input

to a deep Convolutional Neural Network (CNN). This is in

contrast to the previous approaches [15, 11] which directly

use the images within a time window around the current

frame. Our method of transforming the image sequences by

taking difference from the current frame, makes it easier to

learn the dynamics in a CNN framework.

3.4. CNN architecture

The CNN architecture that we use in this work is shown in

Fig. 1. It has 2 input streams, one for the sequence of im-

age regions A and another for the sequence of binary shape

masks S. In both streams, the inputs are first passed through



Figure 1. A graphical overview of our training pipeline: The colored rectangles in the input image sequence shows the different image

regions selected for different AUs. Here we show the extraction of image regions (A) and binary masks (S) for AU 12. These are used as

input to the train the CNN. Features extracted from the trained CNN (at the fully connected layer) denoted here as F , are used to train a

BLSTM network to get final output prediction values O.

a convolutional layer (Conv1) which consists of 32 filters

of size 5x5x(2n+1). This convolutional layer is followed by

a max-pooling layer of size 3x3x1.

The outputs from both streams are merged after max-

pooling into a single stream. This merged stream passes

through 2 more convolutional layers and 1 fully connected

layer. The first convolutional layer in the merged stream

(Conv2) consists of 64 filters of size 5x5x64. The second

convolutional layer in this stream (Conv3) consists of 128

filters of size 4x4x64. The fully connected layer (FC) has

3072 units and it uses dropout with a probability of 0.2. The

output layer consists of 2 units, one for the positive class and

another for negative class. In this network, we use Rectified

Linear Unit (ReLU) as the activation function. We experi-

mented by increasing the dropout probability parameter and

adding max-pooling layers after the Conv2 and Conv3 lay-

ers, but observed no significant change in performance.

3.5. CNN training

The sequence of image regions A and the sequence of bi-

nary shape masks S for each training example are fed as

input to the CNN described in section 3.4. The 2n + 1 im-

ages of both sequences A and S are stacked along the tem-

poral dimension and fed into two input streams of the CNN

as 2n + 1 channel inputs. Since the size of the Conv1 fil-

ters in the temporal direction is equal to size of sequence A

and S, the network is fully connected in the temporal direc-

tion at the first convolutional layer and only one feature map

is computed per filter at Conv1 for each training example.

The network is trained with logarithmic loss function us-

ing mini-batch gradient descent method. The training data

is normalised so as to have a zero mean and one standard

deviation for each pixel across all training examples.

3.6. Training BLSTM with CNN features

The dynamic encoding described in section 3.3, enables us

to learn only very short term (2n + 1 frame window) tem-

poral information. In order to learn temporal features over

longer and variable time windows, we use a recurrent neural

network architecture known as Bi-directional Long Short-

Term Memory [8]. We train the CNNs for each AU as de-

scribed in the previous sections and extracted the output of

the CNN after the fully connected layer (with 3072 units).

This gives us a 3072 dimensional CNN feature vector for

each training example. We used these CNN features to train

a BLSTM network with a single hidden layer of 300 units.

The output from this BLSTM network serves as the final

decision value for the occurrence of an AU.



4. Evaluation

Databases: We evaluated our proposed method on the

FERA-2015 Challenge dataset [23]. The FERA 2015 chal-

lenge dataset consists of 2 separate databases: SEMAINE

and BP4D. Both databases consist of videos in which the

facial Action Units of the subjects are labeled. The SE-

MAINE database was recorded to study social signals that

occur when people interact with virtual humans. It consists

of videos in which users are interacting with emotionally

stereotyped characters. A total of 6 Facial Action Units are

labeled for each frame in the videos. The dataset is divided

into a fixed training, development and test set. The par-

titioning is subject independent, i.e. the subjects present

in the training set are not present in the test set and vice

versa. The training partition consists of 16 sessions, the de-

velopment partition has 15 sessions, and the test partition

has 12 sessions. There are a total of approximately 48,000

images in the training partition, 45,000 in the development

and 37,695 in the test partition.

The BP4D dataset consists of recorded videos in which

the subjects are responding to emotion elicitation tasks.

Like SEMAINE, BP4D dataset is also divided into a fixed

set of training, development and test data. The training set

consists of 21 subjects while the development and the test

set consists of 20 subjects each. There are 8 sessions for

each subject. In total, the training partition contains 75,586

images, the development contains 71,261 images and the

test contains 75,726 images. Each of these images are an-

notated with 11 Action Units. For 6 of these Action Units,

only occurrence labels are available. For the other 5 Action

Units occurrence as well as intensity levels are available.

It should be noted that in our experiments, we used the in-

tensities (wherever available) instead of occurrence labels

to train our models by switching to Mean-squared error as

loss function rather than log-loss.

We chose these 2 databases for our experimental evalua-

tions because, firstly, it contains large number of annotated

images which benefits deep learning algorithms. Secondly,

since these databases are divided into a fixed training and

test set, they provide a good platform for a fair evaluation

and benchmarking of different AU detection algorithms.

Experiments: A number of experiments were carried out

to evaluate the effect of various aspects of our method and

to compare the performance of our approach to that of other

existing approaches. We conducted 4 sets of experiments:

One for evaluating the effectiveness of various features of

our CNN training method, another for exploring the effect

of CNN architecture parameters and a third for evaluating

the effect of adding BLSTM. The final set of experiments

serves to compare the performance of our models with other

existing methods reporting on the same dataset.

For evaluating the effectiveness of various aspects of our

CNN training method, we performed a number of experi-

ments on the SEMAINE dataset. We trained a number of

baseline models each having some features of our proposed

approach. Our first baseline model consists of a CNN simi-

lar to the CNN in our approach except that the input to this

CNN is the full image of a face (aligned) defined by the face

bounding box and the temporal window parameter n = 0.

There are no image regions (defined by facial landmarks)

or binary masks as input to this CNN. Since n = 0 for

this model, it does not use any temporal information. We

denote this baseline method as CFn=0. Our second base-

line method (CFn=2) uses the same CNN but with temporal

window parameter n = 2. Hence this baseline uses tem-

poral information within a time window of 2n + 1 = 5
frames. Our third baseline (CRn=2) uses the same CNN ar-

chitecture but uses image regions (see section 3.1) as input

and the temporal window parameter n = 2 for this baseline.

Our fourth and final method (CRMn=2) is our proposed ap-

proach which takes as input the image regions and binary

shape masks in 2 different streams of the CNN. The tempo-

ral window size n = 2 for this method as well. It should

be noted that we do not use BLSTM training for this set of

experiments and the performances are evaluated based on

CNN output only.

For this set of experiments, we used the 2 Alternative

Forced Choice (2AFC) scores as performance measure. The

2AFC score is a good approximation of the area under the

receiver operator characteristic curve (AUC). It is defined

as follows:

2AFC(Ŷ ) =
n
∑

i=0

p
∑

j=0

σ(Pj , Ni)
1

n× p
, (3)

σ(X,Y ) =











1, if X > Y

0.5, if X == Y

0, if X < Y

where Ŷ is a vector of output decision values from a classi-

fier, P and N are subsets of Ŷ corresponding to all positive

and negative instances, respectively. n is the total number

of true negatives and p is the total number of true positives.

Fig. 2 shows a comparison of the performance of our

method (CRMn=2) and the other baseline methods, on the

SEMAINE dataset. In this plot we can observe that the

performance of CFn=2 is higher than that of CFn=0 which

shows that our method of encoding the temporal informa-

tion works leading to a significantly improved performance.

The difference in the performance of CRn=2 and CFn=2

also shows that using image regions as input instead of

the entire face image, improves the performance consider-

ably. Similarly, the improved performance of our method

CRMn=2 over CRn=2 shows that our method of encoding

shape using binary masks, also results in a significant im-

provement in performance. Our method CRMn=2 which in-
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Figure 2. 2AFC scores on the SEMAINE test set, showing a com-

parison of the performance of the baseline methods and our pro-

posed method CRMn=2.

corporates all our proposed features achieves the best over-

all performance among all baseline models.

In our second set of experiments, we experimented with

the architectural parameters of the CNN. More specifically,

we evaluated the effect of adding more max-pooling (mp)

layers (adding one after each convolutional layer) and vary-

ing the dropout factor (dp) at the fully connected layer.

We took our proposed approach CRMn=2 and evaluated its

performance under different combination of the parameters

(mp,dp). For this set of experiments we again used the SE-

MAINE dataset for performance evaluation and 2AFC as

the performance measure. We observed that the average

performance on the SEMAINE test set, does not changes

significantly on adding max-pooling layers after the second

and third covolutional layers. Increasing the dropout proba-

bility factor from 0.2 to 0.5 also did not make any significant

change in the average performance. Hence we can conclude

that our proposed method is more or less invariant to these

architecture parameters, at least for this amount of data.

For evaluating the effect of adding BLSTM to our train-

ing pipeline, we conducted a series of experiments on the

SEMAINE database. We computed the performance of

our approach with BLSTM (CRMLn=2) along with 3 other

methods. Our first baseline is the CRMn=0, which does

not use any temporal window and hence does not use dy-

namics. Our second baseline is CRMLn=0 which does not

use any temporal window during CNN training but employs

BLSTM after CNN training. Our third baseline is CRMn=2

which uses a 2n + 1 = 5 frame temporal window during

CNN training, but does not use BLSTM.

Fig. 3 shows the relative performance of our final ap-

proach CRMLn=2 and the other 3 baseline methods. We

observe that the performance of CRMLn=0 is higher than

that of CRMn=0, indicating that BLSTM is able to learn the

dynamics resulting in an improved performance even with-

out using a temporal window during CNN training. The

performance of CRMn=2 over that of CRMn=0 indicates

the extent to which, using a temporal window of 5 frames

while training the CNN, can improve the performance even

without using BLSTMs. However, the best performance is

achieved with CRMLn=2, which uses a 5 frame temporal
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Figure 3. Performance (2AFC scores) comparison on the SE-

MAINE test set when using BLSTMs with CNNs.

Figure 4. Weighted average performance on BP4D and SEMAINE

for AU occurrence.

window during CNN training and also employs BLSTM for

training with features extracted from CNN. This indicates

that BLSTMs perform better with dynamic features (ex-

tracted using a fixed temporal window) compared to non-

dynamic features (extracted using a single image).

In our final set of experiments, we compare the perfor-

mance of our method (CRMLn=2) with 3 other existing

methods on the SEMAINE and BP4D dataset. For this set

of experiments, we used the F1 scores as the performance

measure in order to directly compare with the performance

reported in the literature. We compared the performance of

our method with the Local Gabor Binary Pattern (LGBP,

[26]) and SVM based approach described in [23]. An-

other method that we compare against is a geometric feature

based approach which uses a deep neural network (GDNN).

For computing the performance of this method we trained

a deep neural network with 4 hidden layers (all fully con-

nected). The input to this network were the locations of 49

facial landmarks within a time window of 5 frames. We

also compared our method with the multi-label Discrim-

inant Laplacian Embedding (DLE) approach proposed by

Yüce et al.[28] (FERA-2015 Challenge winner).

Table 1 and 2 shows the performance comparison on the

SEMAINE and BP4D dataset respectively. In table 1, we



AU LGBP [23] GDNN DLE [28] CRMLn=2

2 0.75 0.67 0.66 0.80

12 0.52 0.63 0.76 0.74

17 0.07 0.14 0.25 0.32

25 0.40 0.77 0.61 0.85

28 0.01 0.31 0.26 0.33

45 0.21 0.55 0.35 0.57

Mean 0.33 0.51 0.48 0.60

Table 1. Performance (F1 scores) comparison on SEMAINE test

set.

AU LGBP [23] GDNN DLE [28] CRMLn=2

1 0.18 0.33 0.25 0.28

2 0.16 0.25 0.17 0.28

4 0.22 0.21 0.28 0.34

6 0.67 0.64 0.73 0.70

7 0.75 0.79 0.78 0.78

10 0.80 0.80 0.80 0.81

12 0.79 0.78 0.78 0.78

14 0.67 0.68 0.62 0.75

15 0.14 0.19 0.35 0.20

17 0.24 0.28 0.38 0.36

23 0.24 0.33 0.44 0.41

Mean 0.44 0.48 0.51 0.52

Table 2. Performance (F1 scores) comparison on BP4D Test set.

can see that the performance from our approach is signif-

icantly higher on the SEMAINE dataset, as compared to

other approaches. Similarly, we outperform the other 3 ap-

proaches, on the BP4D dataset as well (see table 2). Fig. 4

shows the weighted average performance on SEMAINE and

BP4D dataset. In this Fig. we compare the performance of

our method with all other approaches ([28],[2],[9], [23]) of

the partcipants of FERA-2015 Challenge. In this Fig. we

can see that our method significantly outperforms other ap-

proaches on the FERA-2015 Challenge dataset.

5. Conclusions

We presented a novel CNN-BLSTM based approach which

learns the dynamic appearance and shape of facial regions

for Action Unit detection. The appearance and shape are

learnt through local image regions and corresponding bi-

nary masks respectively. The dynamics are learnt through

a combination of dynamic features (extracted from a time-

windowed CNN) and BLSTM. We show that each compo-

nent of our system contributes towards an improvement in

performance and achieves new state-of-the-art performance

on the FERA-2015 Challenge databases.
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M. Côté, K. R. Konda, and Z. Wu. Combining modality spe-

cific deep neural networks for emotion recognition in video.

In Proceedings of the 15th ACM on International Conference

on Multimodal Interaction, ICMI ’13, pages 543–550, New

York, NY, USA, 2013. ACM. 2

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

http://arxiv.org/abs/1503.01532


F. Pereira, C. Burges, L. Bottou, and K. Weinberger, edi-

tors, Advances in Neural Information Processing Systems 25,

pages 1097–1105. Curran Associates, Inc., 2012. 1

[14] M. Liu, S. Li, S. Shan, and X. Chen. Au-aware deep net-

works for facial expression recognition. In Automatic Face

and Gesture Recognition. FG 2013. IEEE, pages 1–6. IEEE,

2013. 2, 3

[15] M. Liu, S. Li, S. Shan, R. Wang, and X. Chen. Deeply

learning deformable facial action parts model for dynamic

expression analysis. In D. Cremers, I. Reid, H. Saito, and

M.-H. Yang, editors, Computer Vision – ACCV 2014, volume

9006 of Lecture Notes in Computer Science, pages 143–157.

Springer International Publishing, 2015. 2, 3

[16] S. Mavadati, M. Mahoor, K. Bartlett, P. Trinh, and J. Cohn.

Disfa: A spontaneous facial action intensity database. Affec-

tive Computing, IEEE Transactions on, 4(2):151–160, April

2013. 1

[17] M. A. Nicolaou, H. Gunes, and M. Pantic. Continuous pre-

diction of spontaneous affect from multiple cues and modali-

ties in valence-arousal space. IEEE Transactions on Affective

Computing, 2(2):92–105, 2011. 2

[18] M. Pantic and L. J. M. Rothkrantz. Automatic analysis of

facial expressions: The state of the art. IEEE Trans. Pattern

Anal. Mach. Intell., 22(12):1424–1445, December 2000. 1

[19] S. Rifai, Y. Bengio, A. Courville, P. Vincent, and M. Mirza.

Disentangling factors of variation for facial expression

recognition. In A. Fitzgibbon, S. Lazebnik, P. Perona,

Y. Sato, and C. Schmid, editors, Computer Vision ?ECCV

2012, volume 7577 of Lecture Notes in Computer Science,

pages 808–822. Springer Berlin Heidelberg, 2012. 2

[20] G. Sandbach, S. Zafeiriou, M. Pantic, and L. Yin. Static

and dynamic 3d facial expression recognition: A compre-

hensive survey. Image and Vision Computing, 30(10):683 –

697, 2012. 3D Facial Behaviour Analysis and Understand-

ing. 1

[21] Y. Tang. Deep learning using linear support vector ma-

chines. In Workshop on Challenges in Representation Learn-

ing, ICML, 2013. 2

[22] G. Tzimiropoulos and M. Pantic. Gauss-newton deformable

part models for face alignment in-the-wild. In CVPR 2014,

2014. 3

[23] M. Valstar, J. Girard, T. Almaev, G. McKeown, M. Mehu,

L. Yin, M. Pantic, and J. Cohn. Fera 2015 - second fa-

cial expression recognition and analysis challenge. In Facial

Expression Recognition and Analysis Challenge, in conjunc-

tion with IEEE Int‘l Conf. on Face and Gesture Recognition,

2015. 1, 2, 5, 6, 7

[24] M. F. Valstar and M. Pantic. Fully automatic recognition

of the temporal phases of facial actions. Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on,

42(1):28–43, 2012. 3

[25] M. Wllmer, M. Kaiser, F. Eyben, B. Schuller, and G. Rigoll.

Lstm-modeling of continuous emotions in an audiovisual af-

fect recognition framework. Image and Vision Computing,

31(2):153 – 163, 2013. Affect Analysis In Continuous Input.

2

[26] T. Wu, N. J. Butko, P. Ruvolo, J. Whitehill, M. S.Bartlett, and

J. R. Movellan. Multi-layer architectures of facial action unit

recognition. IEEE Trans. Systems, Man and Cybernetics,

Part B, 2012. In print. 6

[27] X. Xiong and F. De la Torre Frade. Supervised descent

method and its applications to face alignment. In IEEE Inter-

national Conference on Computer Vision and Pattern Recog-

nition (CVPR), May 2013. 3
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