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Abstract— Single plane wave transmissions are promis-
ing for automated imaging tasks requiring high ultrasound
frame rates over an extended field of view. However, a single
plane wave insonification typically produces suboptimal
image quality. To address this limitation, we are exploring
the use of deep neural networks (DNNs) as an alternative to
delay-and-sum (DAS) beamforming. The objectives of this
work are to obtain information directly from raw channel
data and to simultaneously generate both a segmentation
map for automated ultrasound tasks and a corresponding
ultrasound B-mode image for interpretable supervision of
the automation. We focus on visualizing and segment-
ing anechoic targets surrounded by tissue and ignoring
or deemphasizing less important surrounding structures.
DNNs trained with Field II simulations were tested with
simulated, experimental phantom, and in vivo data sets
that were not included during training. With unfocused
input channel data (i.e., prior to the application of receive
time delays), simulated, experimental phantom, and in vivo
test data sets achieved mean ± standard deviation Dice
similarity coefficients of 0.92 ± 0.13, 0.92 ± 0.03, and
0.77 ± 0.07, respectively, and generalized contrast-to-noise
ratios (gCNRs) of 0.95 ± 0.08, 0.93 ± 0.08, and 0.75 ± 0.14,
respectively. With subaperture beamformed channel data
and a modification to the input layer of the DNN architecture
to accept these data, the fidelity of image reconstruction
increased (e.g., mean gCNR of multiple acquisitions of two
in vivo breast cysts ranged 0.89–0.96), but DNN display
frame rates were reduced from 395 to 287 Hz. Overall,
the DNNs successfully translated feature representations
learned from simulated data to phantom and in vivo data,
which is promising for this novel approach to simultaneous
ultrasound image formation and segmentation.
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I. INTRODUCTION

U
LTRASOUND images are widely used in multiple

diagnostic, interventional, and automated procedures

that range from cancer detection [1], [2] to ultrasound-based

visual servoing [3]. Despite this wide clinical utility, there are

three pervasive challenges. First, the presence of speckle and

acoustic clutter often complicates image interpretation [4],

particularly during automated ultrasound-based tasks. Second,

speckle, acoustic clutter, and other inherent ultrasound

image features tend to confuse simple thresholding and

filtering algorithms and require the use of more complex

procedures to successfully perform automated segmentations

[5]. Third, segmentation tasks are traditionally implemented

after image formation [5], [6], which further increases the

computational complexity of implementing segmentation

algorithms to provide the desired segmentation result. These

three challenges have the potential to be addressed by

simultaneously outputting multiple desired information in

parallel, directly from the raw ultrasound channel data, with

the assistance of deep learning.

The field of deep learning has traditionally been applied

to diagnostic ultrasound tasks, such as classification, seg-

mentation, and image quality assessment [7]. Recently, there

has been growing interest in applying deep neural networks

(DNNs) to augment or replace the steps of the ultrasound

image formation process. For example, there is a class of deep

learning approaches that improve data quality obtained from a

single plane wave transmission by enhancing the beamformed

data [8]–[11]. Another class of ultrasound-based deep learning

approaches produces high-quality images with reduced data

sampling in order to increase frame rates [12]–[18]. Deep

learning has also been used to replace portions of the beam-

forming process by learning the parameters of a model created

during an intermediary beamforming step [19]–[23]. However,

none of these methods provide an end-to-end transformation

that learns information directly from raw channel data.

Prior work from our group [24]–[26] introduced DNNs

that were trained purely with simulated data to successfully

extract information directly from raw radio frequency (RF)
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Fig. 1. Illustration of our proposed DNN goals (bottom) in comparison to the traditional approach (top). Traditionally, raw channel data undergo
DAS beamforming followed by envelope detection, log compression, and filtering to produce an interpretable DAS beamformed image, which is
then passed to a segmentation algorithm to isolate a desired segment of the image. We propose to replace this sequential process with an FCNN
architecture, consisting of a single encoder and two decoders, which simultaneously outputs both a DNN image and a DNN segmentation directly
from raw ultrasound channel data received after a single plane wave insonification. The input is in-phase/quadrature (IQ) ultrasound data, presented
as a 3-D tensor.

single plane wave channel data, prior to the application of time

delays or any other traditional beamforming steps. Similarly,

Simpson et al. [27] introduced a method to learn the entire

beamforming process without applying delays to the input

data. This approach trains on real data rather than simulated

data and uses focused transmissions rather than plane wave

transmissions. With the exception of [26], no existing methods

simultaneously provide ultrasound images and segmentation

information directly from raw channel data.

One challenge with learning information directly from raw

channel data is the absence of receive focusing delays. Instead,

the DNN input has dimensions of time versus channels, and

the DNN output has dimensions of depth versus width. Thus,

the network architecture must account for the mapping of time

(recorded on each channel) to depth, as well as the mapping

of multiple channels (which includes temporal recordings) to

a single pixel in the image width dimension, and the proposed

task is, therefore, not a simple image-to-image transformation.

This challenge is not present in other ultrasound-based deep

learning approaches that learn image-to-image transformations

using input and output data that are both represented in the

same spatial domain. In addition, our previous work did not

take advantage of the lower spatial frequencies available when

performing this transformation with raw, complex, baseband,

in-phase and quadrature (IQ) data (when compared with the

higher spatial frequencies of raw RF ultrasound channel data).

The primary contribution of this article is a detailed descrip-

tion and analysis of a DNN framework [28] that is, to the

author’s knowledge, the first to replace beamforming followed

by segmentation (as shown in the top of Fig. 1) with parallel

B-mode and segmentation results offered as a paired network

output from a single network input of raw IQ data (as shown

in the bottom of Fig. 1). This parallel information may be

extracted directly from the recorded echoes received after

a single plane wave insonification, either before or after

the application of time delays (which can be implemented

in hardware), or after receiving channel data from focused

transmissions. We compare these three options in this article

and show that a simple modification to the input layer of a

DNN can be used to accommodate each of these options.

These options have the potential to simultaneously benefit

both robot-based computer vision tasks (which often discard

many of the details in ultrasound B-mode images through

postprocessing and primarily utilize the resulting target seg-

mentation information [3], [29]) and human observers (who

may require the more familiar B-mode information to override,

supervise, or otherwise interpret the output of automated

and image segmentation tasks). Assuming that DNNs can be

optimized to be faster than current acquisition rates [30] and

provide better than current image quality with single plane

wave beamforming, we also provide some guidelines to focus

future efforts.

To demonstrate initial proof of principle, we focus on the

detection of small, round, anechoic, cyst-like targets. This

focus characterizes a range of anatomical targets, including

urine-filled renal calyces (which can range from 3 to 7 mm

in diameter [31]), cysts in the breast (which can be as small

as 2–3 mm in ultrasound images [32] with a mean size of

2.0 ± 1.8 cm [33]), and ovarian follicles (which can range

from 10 to 17 mm in width [34]). We train a task-specific DNN

to target these types of structures and ignore or deemphasize

structures that are not anechoic (considering that this informa-

tion would otherwise be ignored through image postprocessing

to achieve the proposed task). One key feature of our training

approach is the use of ground-truth segmentation masks to

produce enhanced beamformed images in order to enhance

the identification of anechoic targets during network training.

In addition, network training in this article is performed in a

purely supervised manner using a fully convolutional neural

network (FCNN), making the network easier and faster to

train when compared with the generative adversarial network

(GAN) employed in our previous article [26].

The remainder of this article is organized as follows.

Section II describes our network architecture, training, and
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Fig. 2. FCNN architecture and training scheme for simultaneous DNN
image and DNN segmentation generation.

evaluation methods. Section III presents our results. Section IV

includes a discussion of key insights from our results, and

Section V summarizes our major conclusions.

II. METHODS

A. Problem Formulation for Unfocused Input Channel
Data

Let Id be a tensor that contains downsampled IQ channel

data of size d × w × q , where d is the length of each

downsampled IQ signal, w is the IQ data image width, which

is set to be equivalent to the number of transducer element

receive channels, and q has two channels, each representing

the in-phase or quadrature component of the recording. Our

goal is to produce one DNN beamformed image D and

one segmentation map prediction Sp, each with dimensions

d ×w, using Id as input. We employ an FCNN with trainable

parameters θ to learn the optimal mapping of Id → y that

produces acceptable images for robotic automation and human

supervision, where y is the reference for the optimal mapping.

This reference consists of a true segmentation map St and

the corresponding enhanced beamformed image E . Thus, y

describes the tuple (E, St ).

B. Network Architecture

Our DNN architecture, shown in Fig. 2, was designed based

on the U-Net [35] architecture for biomedical image segmen-

tation, possessing a single encoder adopting the VGG-13 [36]

encoder with batch normalization (BatchNorm) [37] layers

to stabilize training and speed up convergence. There is one

encoder, which takes the input and passes it through a series of

ten 3 × 3 convolutional layers and downsamples in the spatial

domain using 2 × 2 max-pooling (MaxPool) layers while

simultaneously increasing the number of feature channels in

the data. This process is followed by two decoders, each

with nine convolutional layers. One decoder produces a DNN

image, D(Id ; θ), while the second decoder produces the DNN

segmentation image, Sp(Id ; θ). The structures of the decoders

are identical, each having a similar architecture to the encoder

but mirrored, with 2×2 upconvolutional (UpConv) layers per-

forming upsampling in the spatial domain and simultaneously

decreasing the number of feature channels in the data. Both

decoders have a sigmoid nonlinearity in the last layer, ensuring

that the final predicted DNN image or DNN segmentation is

restricted to be between 0 and 1. In addition, skip connections

[38] are implemented to copy extracted features from the

encoder to the decoder at the same scale (as in [35]). The skip

connections enable the network to learn finer details that might

otherwise be lost as a result of downsampling, enhance the

flow of information through the network, and reduce training

time and training data requirements [35], [36].

C. Mapping and Scaling of Network Input and Training
Data

In order to consider the time-to-depth mapping described

in Section I, each recorded channel data image, I , was

downsampled from a grid size of approximately 8300 pixels

× 128 pixels (time samples × receive channel number) to a

grid size of 256 pixels × 128 pixels (depth × width) with

linear interpolation, satisfying Nyquist criteria and resulting

in Id . To achieve Id , each axial line in I (i.e., the recorded

echo samples) was mapped to a fixed position in space

using an input speed of sound value that is either known

(for simulated data) or assumed (for experimental data). In

general, the reduction of the input data size (e.g., from I

to Id ) was necessary to maintain the entire input and the

corresponding output images, as well as the corresponding

gradient information of the DNN, within the GPU memory

during training, and to increase training and inference speed.

Id was then normalized by the maximum absolute value to

ensure Id ∈ [−1, 1], resulting in the network input.

To scale the training data used for obtaining the DNN image

output, the recorded channel data image I was demodulated

to baseband, beamformed, downsampled, filtered to create

envelope-detected data, and then log-compressed to achieve

Id B . The demodulation, beamforming, downsampling, and

filtering steps were implemented with the Ultrasound Tool-

box [39]. Id B was initially displayed on a log scale with a

dynamic range of 60 dB (which is a common dynamic range

when displaying ultrasound images). Id B was then rescaled to

In as follows:

In =
Id B + 60

60
(1)

in order to ensure In ∈ [0, 1]. This normalization is an

important step for stable DNN training, as neural networks are

highly sensitive to data scaling [37], and optimal performance

is typically achieved when the ranges of the inputs and outputs

of the network are normalized.

A final enhancement was applied to In to obtain an enhanced

B-mode image E in efforts to overcome the poor contrast and

acoustic clutter limitations of single plane wave transmissions.

For example, Fig. 3 shows a DAS beamformed image obtained
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Fig. 3. From left to right, this example shows a simulated DAS
beamformed ultrasound image In, the ground-truth segmentation of
the cyst from surrounding tissue St, and the corresponding enhanced
beamformed image, E (used during network training only).

after a single plane wave insonification of an anechoic cyst

simulated with Field II [40], [41], followed by the true

segmentation and the enhanced image used during network

training only. The rationale for this enhancement is that the

cyst is intrinsically anechoic, but the visualized cyst in the

DAS beamformed image contains acoustic clutter (e.g., the

sidelobe responses of the scatterers in the surrounding tissue

region extending into the anechoic cyst region). Our goal is to

ideally obtain better quality images than that of DAS images

(and not to simply replicate poor DAS image quality during

training). Toward this end, the pixel labels obtained from the

input echogenicity map (which is also considered as the true

segmentation mask St ) were used to set the pixel values of the

anechoic regions in In to zero while preserving the pixel values

of the surrounding tissue, with the intention of removing the

clutter observed within the cyst, thereby restoring the desired

anechoic appearance of the cyst, as shown in Fig. 3. Enhanced

beamformed DAS images E were only used to train the DNN

to learn the mapping function required for the estimation of the

optimal network parameters θ by minimizing the loss between

the reconstructed images ŷ and the reference y, where ŷ

describes the tuple (D, Sp). Note that the procedure described

to obtain the enhanced images was not applied to alter any of

the DNN output images.

D. Network Training

During training, the total network loss LT (θ) was composed

of the weighted sum of two losses. The first loss was the mean

absolute error, or L1Loss, between the predicted DNN image

D and the reference enhanced beamformed image E defined as

L1Loss(θ) =
1

n

n
∑

i=1

||Di(Id ; θ) − Ei ||1

N
(2)

where ||·||1 is the `1 norm, Di and Ei are the vectorized images

for each training example, N is the total number of image

pixels, and n is the total number of training examples in each

minibatch (i.e., the minibatch size). The second loss was the

Dice similarity coefficient, or DSCLoss, between the predicted

DNN segmentation Sp and the true segmentation St defined as

DSCLoss(θ) =
1

n

n
∑

i=1

1 − 2
|Sp,i(Id ; θ) ∩ St,i |

|Sp,i(Id ; θ)| + |St,i |
(3)

where Sp,i and St,i are the vectorized segmentation masks

for each training example. While the target segmentation

mask is binary valued, the predicted segmentation mask is

allowed to be continuous valued between 0 and 1 (with the

range restricted by the sigmoid nonlinearity in the final layer).

A pixel value of 0 in the predicted segmentation can be inter-

preted as the pixel being predicted as tissue with 100% confi-

dence, and a value of 1 can be interpreted as the pixel being

predicted as cyst with 100% confidence. Thus, the DSCLoss

function is implemented as a soft loss, ensuring that gradient

information can flow backward through the network. The total

network loss was the weighted sum of the two losses defined

in 2 and 3, each loss receiving a weight of one, as defined by

LT (θ) = L1Loss(θ) + DSCLoss(θ)

=
1

n

n
∑

i=1

||Di(Id ; θ)−Ei ||1

N
+1−2

|Sp,i (Id ; θ) ∩ St,i |

|Sp,i(Id ; θ)|+|St,i |
.

(4)

In summary, the network was trained to learn ŷ, which

was composed of representations of E and St from input

Id , to jointly produce both the DNN image D and the DNN

segmentation Sp .

Unless otherwise stated, the DNN was trained using the

following baseline settings. The Adam [42] optimizer used

a learning rate of 10−5 for 25 epochs, where one epoch is

defined as one pass over the entire training data set (i.e., the

entire training data set is once presented to the network for

training). The minibatch size for the training data set was 16.

Training was performed on a system with an Intel Xeon E7

processor and four Tesla P40 GPUs, each equipped with 24 GB

of graphics memory. To relate these computer specifications to

a real-time frame rate, the training time for 25 epochs was 100

min. However, we contrast this with the inference time for our

network to process 51 200 images, as reported in Section III.

E. Comparisons to Training With Receive Delays Applied

To emphasize the challenge of deep learning from unfocused

channel data, the input to the architecture shown in Fig. 2

was modified to be focused channel data and the first layer

of this network was modified to accept the focused channel

data. Specifically, the recorded channel data image I was

transformed to the focused data tensor I f by applying receive

time delays, resulting in a 3-D tensor with the new third

dimension containing the number of focused scan lines. I f was

then downsampled (using the same downsampling procedure

described in Section II-C to convert I into Id ), followed by

the subaperture summation procedure as described in [43],

resulting in Ifds, which is a tensor of size d × w × qs , where

qs is twice the number of subapertures, each representing

the in-phase or quadrature component of the recording. Our

modified goal was to input Ifds to produce D and Sp, each

with dimensions d × w.

To perform subaperture beamforming [43], the third dimen-

sion of I f (which contains the receive delays for each scan

line) was divided into 16 subapertures (i.e., 8 elements per

subaperture). The delayed data corresponding to each subaper-

ture were summed, resulting in 16 complex-valued images,

one for each of the 16 subapertures. The I and Q channels
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TABLE I

SIMULATED CYST IMAGE DATA PARAMETERS

of each subaperture were then grouped together within the

third dimension of the tensor to give 32 feature channels in

total. Although this subaperture beamforming was performed

in software in this article for ease of demonstration of the

feasibility of this approach, this subaperture beamforming step

can also be implemented in hardware [44], which would still

result in a raw channel data input to our network (yet has the

expected tradeoff of increased data transfer rates).

We employed the same FCNN described in Section II-B

with the exception of a modified input layer and updated

trainable parameters θ to learn the optimal mapping of

Ifds → y. Specifically, the first layer of the architecture shown

in Fig. 2 was modified to accept 32 feature channels rather

than two feature channels due to the subaperture beamforming

step. This modified network was then trained as described

in Section II-D, after replacing Id in (2)–(4) with Ifds. The

same computer described in Section II-D was used for train-

ing. Training time for this modified network was 315 min.

However, we contrast this with the inference time for this

network to process 51 200 images, as reported in Section III.

F. Simulated Data Sets for Training and Testing

The Field II [40], [41] ultrasound simulation package was

used to generate 22 230 simulations of individual anechoic

cysts surrounded by homogenous tissue. We employed sim-

ulations in our training approach for two primary reasons.

First, simulations enable the generation of large, diverse data

sets that are required to train robust DNNs. Second, for

segmentation tasks, simulations enable the specification of

ground-truth pixel labels, allowing one to avoid the expensive

and time-consuming step of a human annotator to provide

segmentation labels.

The simulated cyst radius (r ), lateral and axial center

positions of the cyst (x and z, respectively), and speed of

sound in the medium (c) were varied using the range and

increment sizes defined in Table I. The values of r were 2,

3, 4, 6, and 8 mm, which is within the range of renal calyx,

breast cyst, and ovarian follicle sizes [31]–[34]. These cysts

were contained within a cuboidal phantom volume located

between an axial depth of 30 and 80 mm, with a lateral

width of 40 mm, and an elevational thickness of 7 mm. The

cysts were modeled as cylinders with the same diameter in

each elevational cross section. Each simulation contained a

unique speckle realization, enforced by using a different seed

for the random number generator. A total of 50 000 scatterers

were contained within the simulated phantom to ensure fully

developed speckle.

In each simulation, a single plane wave at normal incidence

was simulated to insonify the region of interest. The simulated

ultrasound probe matched the parameters of the Alpinion

TABLE II

TRANSDUCER PARAMETERS

L3-8 linear array transducer, and its center was placed at the

axial, lateral, and elevation center of the phantom (i.e., 0, 0,

and 0 mm, respectively). The simulated probe parameters are

summarized in Table II. The one exception to matching the

real hardware system was a simulated sampling frequency of

100 MHz (rather than the 40-MHz sampling frequency of the

Alpinion ultrasound scanner used to acquire the experimental

phantom and in vivo data described in Sections II-G and II-H,

respectively) in order to improve the Field II simulation

accuracy [40], [41].

A total of 80% of the 22 230 simulated examples were

reserved for training, and the remaining 20% were used

for network testing. Considering that cysts were purposely

simulated to reside on the left side of the phantom (see

Table I), data augmentation was implemented by flipping the

simulated channel across the x = 0 axis to incorporate right-

sided cysts in our training and testing.

To investigate the impact of depth-dependent attenuation

on network training sensitivity, half of the 22 230 simulated

Field II examples were simulated with an attenuation coef-

ficient of 0.5 dB/cm-MHz, and the remaining half did not

include attenuation. One DNN was trained with attenuated

data, a second DNN was trained with nonattenuated data,

and a third DNN was trained with the combined data set.

Each network was trained for 27 625 iterations. Therefore, for

this investigation, one epoch was considered to be either one

pass over the combined data set (i.e., for the third DNN) or

two passes over either data set with or without attenuation

(i.e., for the first or second DNN, respectively), as each of

these data sets is half the size of the combined data set.

Using these updated definitions, the three networks were

trained for 25 epochs. Unless otherwise stated (i.e., when

not investigating the impact of depth-dependent attenuation),

results are reported for networks trained with the combined

data set.

G. Phantom Data Sets

Channel data from a cross-sectional slice of two anechoic

cylinders in a CIRS 054GS phantom located at depths of 40

and 70 mm were acquired using an Alpinion L3-8 linear array

ultrasound transducer attached to an Alpinion E-Cube 12R

research scanner. Two independent 80-frame sequences were

acquired. The anechoic targets were consistently in the left or

right half of the image for each acquisition sequence, achieved
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by manually flipping the ultrasound probe. In addition, the

channel data corresponding to each of the 80 frames in

each sequence were flipped from left to right, producing a

data set consisting of 320 total images in order to test the

generalizability of the trained networks. The ground truth for

this phantom data set was specified by manually annotating

pixels in the beamformed ultrasound image as cyst or tissue.

When quantitatively evaluating these phantom examples, the

mean result for the two anechoic cysts in the same image is

reported, unless otherwise stated.

H. In Vivo Data

An 80-frame sequence of in vivo data from a simple

anechoic cyst surrounded by breast tissue (denoted as Cyst #1)

was acquired using an Alpinion L3-8 linear array transducer

with parameters summarized in Table II. Each plane wave

acquisition was flipped from left to right to double this in vivo

test data set size. The ground truth for this in vivo data set was

specified by manually annotating pixels in the beamformed

ultrasound image as cyst or tissue. In addition, the channel data

input Id was cropped to minimize the presence of bright reflec-

tors that were not included during training. Because bright

reflectors were not similarly prevalent after subaperture beam-

forming, the channel data input Ifds was not cropped until after

images were created in order to match the field of view for

more direct comparisons to the results obtained with input Id .

To highlight the versatility of the DNN trained with Ifds,

this DNN was evaluated with a ten-frame sequence of an

in vivo simple cyst surrounded by breast tissue (denoted as

Cyst #2), which was originally acquired for the separate study

reported in [45]. These data were acquired with focused (rather

than plane wave) transmissions, using an Alpinion L8-17

linear array transducer with parameters for the acquisition

listed in Table II. We include this acquisition in this article to

demonstrate that plane wave input data are not a requirement

for the DNN trained with focused data. The ultrasound probe

also has a range of different parameters (including transmit

frequency) when compared with the L3-8 linear array, which

was simulated and used to train the DNN, as reported in

Table II.

In addition to the channel data described earlier, clinical

screenshots of the two in vivo cysts were additionally acquired

with the Alpinion E-Cube 12R to assist with manual annota-

tions of the cyst boundaries for ground-truth segmentations.

For Cyst #1, a noticeable deformation occurred between

the acquisitions due to the sequential acquisition of clinical

reference images followed by plane wave data acquisitions.

Therefore, the clinical B-mode image was stretched and scaled

and only used to help guide the segmentation boundary

definition. The acquisition of all in vivo data was performed

after informed consent with approval from the Johns Hopkins

Medicine Institutional Review Board.

I. Comparison With Sequential Approaches

Results obtained with the trained DNNs were compared

against four alternative and sequential approaches, namely

DAS beamforming followed by nonlocal means (NLM), binary

thresholding, NLM combined with binary thresholding, and a

baseline U-Net architecture. The NLM [46], [47] and binary

thresholding algorithms were implemented in MATLAB on

an Intel Xeon E 5645 CPU with a clock speed of 2.40 GHz.

NLM served as a baseline image smoothing algorithm. Most

hyperparameters were set to their default values (i.e., the

“SearchWindoSize” hyperparameter was set to 21 and the

“ComparisonWindowSize” hyperparameter was set to 5), with

the exception of the “DegreeOfSmoothing” hyperparameter,

which was set to 0.1.

Binary thresholding followed by morphological filtering

(abbreviated as BT) was implemented as described in [6], [48],

[49] to compare the DNN segmentations. To summarize our

BT implementation, the mean of the normalized DAS B-mode

image (In) was calculated, and the binarization decision thresh-

old value was set as 0.70 times the mean pixel value. Pixels

above and below the threshold were labeled as tissue and

cyst, respectively. Connected components labeled as cyst tissue

smaller than 50 pixels (i.e., an area of approximately 3 mm2)

were removed to eliminate false positives. Morphological

closing (i.e., a dilation followed by an erosion) was then

performed with a disk element of radius 1 pixel to fill in

gaps in the segmentations. Morphological dilation was then

performed using a disk element of radius 2 pixels to expand the

cyst segmentations (considering that previously implemented

steps tend to underestimate cyst size). Hyperparameter tuning

was performed to choose the baseline hyperparameters.

DAS beamforming followed by NLM and then BT (i.e.,

DAS + NLM + BT) was implemented to produce sequential

segmentation and speckle reduced images for comparison

to the parallel outputs produced by the DNN from raw IQ

channel data. Finally, to compare the results with the current

state of the art for ultrasound image segmentation, a baseline

U-Net [35] network with a single encoder and a single decoder

was implemented. This network was trained to predict a seg-

mentation mask Sp(In; θ) from input In using St as the ground

truth. We employed the same FCNN described in Section

II-B with the exception of a modified input layer, a single

decoder module, and updated trainable parameters θ to learn

the optimal mapping of In → Sp. Specifically, the first layer of

the architecture shown in Fig. 2 was modified to accept one

feature channel rather than two feature channels due to the

input being the normalized DAS B-mode image In . In addition,

as only the DNN segmentation is being produced, only one

decoder module is needed. This modified network was trained

using the DSCLoss described by (3), after replacing Sp,i (Id ; θ)

with Sp,i (In; θ). The same baseline settings and computer

reported in Section II-D were used during training.

J. Evaluation Metrics

1) Dice Similarity Coefficient (DSC): DSC quantifies

overlap between two segmentation masks [50]. The

DSC between the predicted DNN segmentation, denoted

by Sp and the true segmentation, denoted by St , is

defined as

DSC(Sp, St ) = 2
|Sp ∩ St |

|Sp| + |St |
. (5)
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A perfect DNN segmentation produces a DSC of 1. Prior

to display and evaluation, the predicted segmentation

mask was binarized using a threshold of 0.5, considering

that a predicted pixel value >0.5 indicates that the

network is more confident that the pixel is cyst than

tissue (and vice versa for pixel values <0.5).

2) Contrast: Contrast is fundamentally a measure to

quantify the differences between the minimum and

maximum values in an image, particularly for regions

inside and outside an anechoic cyst, respectively. This

metric is defined as

Contrast = 20 log10

(

Si

So

)

(6)

where Si and So represent the mean of individual uncom-

pressed signal amplitudes si and so in selected regions of

interest (ROIs) inside and outside the cyst, respectively,

taken from the normalized image In [see (1)]. The ROI

inside the cyst was automated as a 2-mm-radius circular

region centered at the cyst center for the simulated and

phantom examples and a 1.5-mm-radius circular region

for the more irregularly shaped in vivo examples. The

choice to automatically use a small circular region about

the cyst center was made to avoid manual ROI selection

across the thousands of simulation and phantom test sets,

yet still ensure that the results would be a meaningful

assessment of the difference in signal amplitude inside

and outside the detected cyst region. This automated

ROI selection is additionally intended to prevent the

inclusion of misclassifications (e.g., cyst pixels at the

cyst boundary detected as tissue and vice versa), which

are instead evaluated with the gCNR metric [51]. The

ROI outside of the cyst was the same size as the inside

ROI and was located at the same depth as the cyst.

These ROIs were used to calculate the contrast of DNN,

DAS beamformed, and enhanced beamformed images.

Because the desired DNN output image was log-

compressed with a chosen dynamic range of 60 dB, an

uncompressed signal s was first calculated as

s = 10sdB/20 (7)

where s refers to si or so (i.e., the subscripts were

removed for simplicity) and sdB is the log-compressed

equivalent of s. The values of s were then used to

calculate Si and So in (6). Note that the maximum

dynamic range of our network is 60 dB, which translates

to a maximum possible contrast of 60 dB in the DAS

beamformed and enhanced beamformed images.

3) Signal-to-Noise Ratio (SNR): Tissue SNR quantifies the

smoothness of the background region surrounding the

cyst, which is defined as

SNR =
So

σo

(8)

where σo represents the standard deviation of individual

uncompressed signal amplitudes so in the selected

ROI outside the cyst [i.e., the same ROI used to

calculate contrast in (6)]. The enhanced beamformed

image contains the same tissue background as the DAS

beamformed image and therefore has an identical SNR

to the DAS beamformed image.

4) Generalized Contrast-to-Noise Ratio (gCNR): The

gCNR was recently introduced as a more accurate

measure of lesion detectability in comparison to CNR

[51], and it calculated as

gCNR = 1 −

1
∑

x=0

min
x

{pi(x), po(x)} (9)

where pi(x) and po(x) are the probability mass

functions of si and so, respectively. Considering that

gCNR is intended to measure cyst detection probability,

choosing the ROIs defined for contrast would bias

gCNR toward better results by only providing a subset

of pixels within the cyst region. Therefore, si for the

gCNR metric was updated to be the ground-truth cyst

segmentation within St , and so was expanded to be the

same size and located at the same depth as si .

5) Peak SNR (PSNR): PSNR quantifies the similarity of the

generated DNN image to the reference enhanced beam-

formed image, considering the pixel values both inside

and outside the cyst in order to provide a single value

defining a global quality estimate, which is defined as

PSNR(D, E) = 10 log10

(

MAX2
E

MSE

)

(10)

= 10 log10

(

1
||D−E ||2

2
N

)

(11)

where || · ||2 is the `2 norm, D and E are the vectorized

DNN image and the reference enhanced beamformed

image, respectively, N is the number of pixels in the

images, and MSE is the mean square error between D

and E . Because E ∈ [0, 1], MAXE (i.e., the maximum

absolute pixel value of image E) is equal to 1.

6) Coefficient of Variation (CV): To study the effect of

minimal (e.g., due to hand tremors) to no perturbations

in the phantom data across a given acquisition sequence,

the CV of the contrast, SNR, and gCNR metrics was

calculated as

CV =
σ

µ
× 100% (12)

where µ is the mean metric value across multiple

acquisitions and σ is the standard deviation of the

metric across the same acquisitions. CV was calculated

for both DNN and beamformed images.

7) Processing Times: Processing times for DAS

beamforming, DNN performance, and NLM, BT, and

U-Net comparisons were calculated. The processing

time to perform DAS beamforming with a single plane

wave was approximated from the GPU beamformer

processing times for 25 plane waves reported in [52]. We

included the times to perform the DAS operations (i.e.,

FocusSynAp and ChannelSum, respectively) and divided

the summation of the reported processing times for these

operations by 25 to achieve a processing time estimate

for a single plane wave. The reported processing times

were implemented on an NVIDIA Titan V GPU.
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Fig. 4. Simulation result showing, from left to right, raw IQ channel data (displayed with 60-dB dynamic range after applying envelope detection
and log compression), a DAS beamformed ultrasound image, a DNN image produced by our network, the known segmentation of the cyst from
surrounding tissue, the DNN segmentation predicted by our network, and an image with a red transparent overlay of the DNN segmentation over
the true segmentation.

The processing times for NLM and BT were calculated

after applying these algorithms to the entire test set of

4554 simulated B-mode images. The total processing

time was then divided by the total number of images

processed to provide an estimate of the time to produce

a single image. This time was added to the time per

image reported for DAS beamforming to estimate the

times for DAS+NLM, DAS+BT, and DAS+NLM+BT.

To calculate the processing times for U-Net

segmentation, a mini batch of 512 tensors of simulated

In were input 100 times into the trained network,

and the total processing time was divided by the total

number of images processed (i.e., 51 200 images). This

time was added to the time per image reported for DAS

beamforming to estimate the times for DAS+U-Net.

To calculate the processing time per image during

DNN testing, a mini batch of 512 tensors of simulated

Id or Ifds were input 100 times into the DNN trained

with unfocused or focused data, respectively. The total

processing time for each DNN was then divided by the

total number of images processed (i.e., 51 200 images)

to provide an estimate of the time that it would take to

process a single image for each DNN.

Calculated processing times were then inverted to

provide the expected frame display rates. Although

these reports combine the CPU and GPU performances,

we only perform the direct comparisons of CPU-to-CPU

and GPU-to-GPU processing times implemented on the

same computer.

K. Exclusion Criteria

As demonstrated in our previous work [25], higher DSCs

are achieved with larger cysts compared with smaller cysts.

In addition, small cysts have a greater potential to be missed,

which is quantified as a DSC of approximately zero. Based on

this knowledge, we prioritize a fair comparison of the multiple

network parameters, which we define as a minimum DSC

≥0.05. This criterion was required for the network trained

with the baseline settings reported in Section II-D, and test

cases that did not meet this basic criterion with this baseline

test set were excluded from the results reported in this article.

Note that our exclusion criteria were only applied to one of

several test sets, and the excluded images from this test set

TABLE III

DETECTION RATE OF SIMULATED TEST SET AFTER TRAINING WITH

THE BASELINE PARAMETERS LISTED IN SECTION II-D AND

IMPLEMENTING THE EXCLUSION CRITERIA LISTED IN SECTION II-K

analysis were then excluded in the subsequent test sets (i.e.,

the exclusion criteria were not repeated for each test set).

The resulting detection rate is listed for each cyst radius

in Table III. Overall, no experimental phantom or in vivo

data met our exclusion criteria, and the network successfully

detected the simulated cysts in 4274 out of 4554 test

examples. Table III also indicates that segmentation failure

primarily occurs with 2-mm-radius cysts. The remaining

cyst examples were successfully detected, and we prefer

to limit our methodology feasibility assessments to these

cases. Therefore, the results in Section III-A are reported for

this subset of the simulated test set. This information can

additionally be used to avoid applications of our approach to

cysts smaller than 2 mm radii, which are challenging for the

DNN to detect, likely due to the presence of acoustic clutter

in the single plane wave image.

III. RESULTS

A. Simulation Results

Fig. 4 shows an example simulated test case from the DNN

architecture shown in Fig. 2 using the baseline settings noted

in Section II-D. From left to right, this example shows the

simulated raw IQ channel data, the corresponding DAS beam-

formed ultrasound and DNN image, the known segmentation

of the cyst from surrounding tissue, the DNN segmentation

predicted by our network, and the DNN segmentation overlaid

on the true segmentation. This example produces a DSC of

0.98, a contrast of −42.11 dB, an SNR of 3.06, a gCNR of

0.99, and a PSNR of 20.32 dB. The test set (excluding the

cases noted in Section II-K) produced mean ± one standard

deviation DSC of 0.92 ± 0.13, contrast of −40.07 ± 11.06 dB,

SNR of 4.29 ± 1.26, gCNR of 0.95 ± 0.08, and PSNR of

20.19 ± 0.40 dB.
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Fig. 5. Aggregated mean (from top to bottom) DSC, contrast, SNR, gCNR, and PSNR ± one standard deviation as a function of (from left to right)
variations in r, c, z, and x for simulated and experimental phantom results. Experimental phantom results are displayed using unfilled circle markers.
“Enhanced” indicates the performance of the enhanced B-mode images that were used for DNN training, as described in Section II-C, and they
represent the limits to an ideal DNN performance.

Fig. 5 shows the aggregated mean DSC, contrast, SNR,

gCNR, and PSNR ± one standard deviation as a function of

(from left to right) variations in r , c, z, and x for simulated

results and phantom results. The simulation results in Fig. 5

reveal that the smaller, 2-mm radii cysts yield the worst DNN

segmentations with a mean DSC of 0.70. The DSC rises

to 0.99 for 8 mm cysts. Similarly, as r increases, contrast

improves from −18.12 to −44.20 dB, gCNR improves from

0.83 to 0.97, and PSNR improves from 19.95 to 20.42 dB.

Unlike DSC, contrast, gCNR, and PSNR, SNR does not

change as r increases. The DSC, contrast, SNR, and gCNR

results are otherwise relatively constant as functions of the

remaining parameters (i.e., c, z, and x).

Focusing on the contrast results in Fig. 5, the contrast of

the DNN images approaches that of the enhanced beamformed

image as r increases and is consistently superior to the contrast

of the traditional DAS beamformed images, with a mean

contrast improvement measuring 20.71 dB. In addition, Fig. 4

shows that the tissue texture is smoother in the DNN images

when compared with the DAS beamformed images. The

quantitative SNR results in Fig. 5 support this observation, and

the mean SNR improvement is 2.30. These two improvements
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Fig. 6. Experimental phantom result showing, from left to right, raw IQ channel data (displayed with 60-dB dynamic range after applying envelope
detection and log compression), a DAS beamformed ultrasound image, a DNN image produced by our network, the known segmentation of the cyst
from surrounding tissue, the DNN segmentation predicted by our network, and an image with a red transparent overlay of the DNN segmentation
over the true segmentation.

combine to produce a mean gCNR improvement of 0.19 when

DNN images are compared with DAS beamformed images.

B. Phantom Results

Fig. 6 shows an example test case from the phantom data

set. From left to right, this example shows raw phantom

IQ channel data, a DAS beamformed ultrasound image and

corresponding DNN image, the known segmentation of the

cyst from surrounding tissue, the DNN segmentation predicted

by our network, and the DNN segmentation overlaid on the

true segmentation. This example produces a DSC of 0.92, a

contrast of −40.69 dB, an SNR of 4.96, a gCNR of 0.93,

and a PSNR of 18.97 dB. The entire test set produced mean

± one standard deviation DSC of 0.92 ± 0.03, contrast of

−39.13 ± 5.86 dB, SNR of 4.96 ± 1.84, gCNR of 0.93 ± 0.08,

and PSNR of 19.33 ± 0.83 dB.

The aggregated results of this entire data set as functions of

r , c, z, and x are shown in Fig. 5 as unfilled circles overlaid on

the previously discussed simulation results. The color of each

circle corresponds to the color-coded data type listed in the

legend. Fig. 5 shows that the mean DSC, contrast, and gCNR

measurements for the phantom results are generally within the

range of the standard deviations of these same measurements

for the simulation results. However, the SNR and PSNR of the

phantom results are outliers when compared with those of the

simulation results because of the differences in tissue texture

achieved with the DNN image.

Note that the phantom test data set consists of 160 total

plane wave insonifications. Half of these acquisitions contain

the two anechoic cysts on the left side of the image, and

the other half (acquired with the probe physically flipped)

contain the same anechoic cysts on the right side of each

image. The raw data from each acquisition were then flipped,

yielding a data set with a total of 320 plane waves and a total

of eight individual “cyst templates.” CV was calculated for

each individual cyst template, and the mean of these eight

CVs was 0.12%, 2.38%, and 0.36% for DNN image contrast,

SNR, and gCNR measurements, respectively. These results

are comparable with those of the DAS beamformed images

(i.e., contrast, SNR, and gCNR CVs of 1.19%, 0.63%, and

0.82%, respectively). This result indicates that there were

minimal variations in the acquired phantom results, which

were purposely acquired with minimal to no perturbations to

the acquisition setup. The implication of this result is discussed

in more detail in Section IV.

C. Incorporating Attenuation

Fig. 7 (top) shows example test cases from the three

networks trained with, without, and both with and without

attenuation combined. From left to right, the first column

of images in Fig. 7 displays the DAS beamformed image

along with the true segmentation, the second column displays

the output of the network trained without attenuation, the

third column displays the output of the network trained with

attenuated data, and the fourth column displays the output

of the network trained with the combined data set of both

attenuated and nonattenuated data. The example output from

the network trained with nonattenuated data produced DSC,

contrast, SNR, gCNR, and PSNR of 0.66, −41.64 dB, 3.08,

0.64, and 14.16 dB, respectively. The network trained with

attenuated data produced DSC, contrast, SNR, gCNR, and

PSNR of 0.86, −40.27 dB, 4.79, 0.85, and 18.16 dB, respec-

tively, representing improved DSC, SNR, gCNR, and PSNR

with similar contrast. Additional improvements were achieved

when training with both attenuated and nonattenuated data,

producing DSC, contrast, SNR, gCNR, and PSNR of of 0.92,

−40.69 dB, 4.96, 0.93, and 18.97 dB, respectively.

Fig. 7 (bottom) shows the aggregated mean DSC, contrast,

SNR, gCNR, and PSNR ± one standard deviation as a function

of the number of epochs for the networks trained with atten-

uated data and with the combined data set of both attenuated

and nonattenuated data. When trained with the combined data

set, it is remarkable that the addition of nonattenuated data

does not significantly impact the performance of the network

in spite of the test phantom data set having tissue attenuation.

Instead, the inclusion of nonattenuated data seems to be

responsible for a subtle boost in performance. For example,

when the measured DSC is averaged over epochs 11–25, this

average improves from 0.88 when the network is trained with

the attenuated data set to 0.92 when the network is trained with

the combined data set. Similarly, when each metric result is

averaged over all epochs, SNR improves from 5.26 to 5.73,

gCNR improves from 0.88 to 0.92, and PSNR improves from

18.38 dB to 18.98 dB. Contrast results are similar between

the two networks.

D. Comparisons Between Focused and Unfocused Input
Data

Fig. 8 shows the phantom images comparing unfocused

input data Id to focused input data Ifds. The contrast, SNR,
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Fig. 7. Top: attenuation results showing, from left to right, the DAS beamformed image and ground-truth segmentation reference pair, the
corresponding outputs of the network trained with nonattenuated data, attenuated data, and the combined data set of both attenuated and
nonattenuated data. Bottom: aggregated attenuation results, showing mean DSC, contrast, SNR, gCNR, and PSNR ± one standard deviation
as a function of epoch.

Fig. 8. Comparison of Id and Ifds input experimental phantom data showing, from left to right, the DAS beamformed image and ground-truth
segmentation reference pair, the unfocused and focused IQ channel data envelopes of the input data Id and Ifds, respectively, and the corresponding
outputs of the two DNNs. For the focused IQ channel data envelope image, a subaperture input near the center of the probe is displayed as a
representation of the input to one channel of the DNN.

and gCNR of the image created with the focused input are

−36.22 dB, 1.63, and 0.94, respectively. The correspond-

ing values for the image created with unfocused data are

−38.41 dB, 5.61, and 0.98, respectively. Therefore, these

metrics are improved with unfocused data in this particular

example. However, the PSNR and DSC are 20.14 dB and

0.94, respectively, with the unfocused input, compared with

22.63 dB and 0.94, respectively, with the focused input. While

the higher PSNR with the focused input is due to tissue SNR

that more closely resembles that of the DAS B-mode images,

the similar DSC results demonstrate that the similar segmen-

tation performance can be achieved with DNNs regardless of
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TABLE IV

PERFORMANCE COMPARISONS OF DAS BEAMFORMING, NLM SPECKLE REDUCTION, BINARY THRESHOLDING SEGMENTATION FOLLOWED BY

MORPHOLOGICAL FILTERING (ABBREVIATED AS BT), U-NET SEGMENTATION, AND DNN RESULTS WITH FOCUSED AND UNFOCUSED INPUT DATA.

PROCESSING TIMES FOR NLM AND BT WERE CALCULATED ON A CPU WITH REMAINING PROCESSING TIMES CALCULATED ON GPUS

Fig. 9. Comparison of Id and Ifds input in vivo data from Cyst #1 showing, from left to right, the clinical image obtained from the scanner with an
8-MHz transmit frequency focused at a depth of 20 mm, the DAS beamformed image of Cyst #1 obtained using a single 0◦ incidence plane wave
transmitted at 4 MHz and the corresponding ground-truth segmentation reference pair, the unfocused and focused IQ channel data envelopes (with
the latter showing the envelope of a single subaperture) of the input data Id and Ifds, respectively, and the corresponding outputs of the two DNNs.

the inclusion of focusing. Table IV summarizes these metrics

for the acquired phantom images and also compares the time

required to create each DNN image.

Table IV additionally demonstrates that similar speckle

SNR to the reference B-mode image is achieved when the

input data are focused to include receive time delays. However,

this focusing approach requires an updated network input layer

with 30 additional input channels (to accept the increased

input data size), as well as the additional step of subaperture

beamforming, which both reduce the overall frame rates. Note

that the additional step associated with subaperture beamform-

ing is not included in the processing time results reported in

Table IV, as subaperture beamforming could be implemented

in hardware.

Fig. 9 shows the in vivo images of Cyst #1 comparing

unfocused input data Id to focused input data Ifds. The DSC,

contrast, SNR, gCNR, and PSNR of the outputs created with

the unfocused input are 0.83, −34.89 dB, 4.57, 0.90, and

15.85 dB, respectively. Although the DSC and gCNR results

are lower than the majority of examples previously shown, it

is important to note that the size of Cyst #1 is approximately

3 mm in radius, and the DSC and gCNR results of this cyst

are within the range of the means ± one standard deviation

obtained for the 2–4-mm radii results reported in Fig. 5 (i.e.,

0.70 ± 0.21 to 0.96 ± 0.2 and 0.83 ± 0.14 to 0.97 ± 0.03,

respectively). In addition, SNR starts at a lower value than

the phantom and simulated DAS results reported in Fig. 5;

therefore, the final value obtained with the DNN is also lower

than those shown in Fig. 5. Nonetheless, SNR and contrast

are still improved when this DNN image is compared to the

corresponding DAS B-mode image.

The DSC, contrast, SNR, gCNR, and PSNR of the outputs

created with the focused input Ifds, are 0.85, −21.89 dB, 0.93,

0.85, and 19.01 dB, respectively, for the example shown in
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Fig. 9. The DNN overestimates the proximal cyst boundary

in this example, likely due to large amplitude differences at

that boundary, which were not included during training. The

mean ± standard deviation of the evaluation metrics for the

entire 160 frames in the test data set for Cyst #1 are reported

in Table IV.

Figs. 8 and 9 show that more similar speckle SNR results

were obtained with phantom and in vivo data when Ifds was the

input, as summarized in Table IV. In particular, with Ifds as the

input, the SNRs of the phantom and in vivo data more closely

match the SNR results reported for the corresponding DAS B-

mode images. The higher tissue SNR of DNN images obtained

with Id as the input, when compared with corresponding

DAS images, occurs because of the smoother tissue texture

in these DNN images, despite both DNNs being trained with

data that fundamentally contain speckle, which is caused by

constructive and destructive interference from subresolution

scatterers [53], [54].

These SNR results demonstrate that the DNN with Id as

input is unable to learn the finer details associated with the

transformation from unfocused tissue texture to traditional

B-mode image speckle (which is included in the transforma-

tion Id → D), and therefore, ŷ is not a faithful representation

of y from this perspective. In contrast, considering that the

same network architecture was implemented after receive

focusing delays were applied to the input data (and after the

input layer was modified to accept this larger input data), the

transformation Ifds → D appears to be a simpler task for

this DNN, which can be explained by the transformation from

focused tissue texture to speckle being a more direct image-

to-image transformation (particularly after the downsampling

step described in Section II-D).

While the smoothing and higher SNRs observed in the

output DNN images created from the unfocused input data

Id may be viewed as a failure of the network from the per-

spective of faithful image reconstruction, from the perspective

of the proposed task and the DNN goals, the higher tissue

SNR and smoother tissue texture are viewed as a benefit.

These achievements are aligned with the goals of maximizing

achievable frame rates, deemphasizing unimportant structures,

and emphasizing structures of interest for the proposed task.

Fig. 10 shows an additional example of this expected trade-

off between preserving fidelity and achieving task-specific

image reconstruction goals with Cyst #2. This example was

obtained from focused transmissions and with a higher trans-

mit frequency than that used during training, thus highlighting

the versatility of the DNN with Ifds as input. This network

produces DNN images that have a closer match to the DAS

beamformed image, with remarkably higher contrast than that

otherwise achieved with a single plane wave transmission.

The contrast of this DNN image is qualitatively similar to

that obtained with the clinical screenshot (which was acquired

with focused ultrasound transmit beams). However, this DNN

image contains tissue structure and speckle that can potentially

confuse an observer who is not skilled with reading ultrasound

images (in addition to requiring more time to produce this

image in comparison to the image that would be produced with

an unfocused data input). The DSC, contrast, SNR, gCNR,

Fig. 10. In vivo clinical image of Cyst #2 obtained from the scanner
with a 12-MHz transmit frequency focused at a depth of 10 mm, DAS
beamformed image of Cyst #2, the corresponding DNN image, and the
corresponding DNN segmentation overlaid on the true segmentation.

and PSNR for this result are 0.82, −34.18 dB, 1.50, 0.97,

and 19.45 dB, respectively. The mean ± standard deviation of

these metrics for the entire 20 frames in the test data set for

Cyst #2 are reported in Table IV.

When comparing the presented DNN performance to

more standard methods, Table IV demonstrates that although

B-mode alone produces the fastest frame rates (i.e., 4000 Hz

on a GPU), frame rates are expected to be reduced after

image formation followed by either speckle reduction (i.e.,

DAS + NLM results in 75 Hz on GPU + CPU), segmentation

(i.e., DAS + BT results in 455 Hz on GPU + CPU), or both

speckle reduction and segmentation (i.e., DAS + NLM + BT

results in 64 Hz on GPU + CPU). The DNN that accepts

unfocused data has faster frame rates (i.e., 395 Hz) when

compared with the DNN that accepts focused data (i.e., 287

Hz). Although implementation on two different GPU config-

urations confounds direct processing time comparisons, the

sequential DAS + U-Net approach was faster than the parallel

DNN approaches. There is also room for improvement of the

parallel DNN approaches to achieve even faster frame rates

than currently reported [30], particularly when considering

that Table IV reports initial proof-of-principle results and

network optimization typically follows after demonstrations

of feasibility.

Table IV also demonstrates that the DNN that accepts

unfocused data achieves consistently higher DSC and contrast

when compared with DAS + NLM + BT. The DNN that

accepts focused data consistently achieves similar or better
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DSC results when compared with the state of the art (i.e.,

DAS + U-Net) and consistently improves image quality (i.e.,

contrast, gCNR, and PSNR) when compared with DAS +

NLM, DAS + BT, DAS + NLM + BT, and DAS + U-Net.

These improvements were achieved in parallel rather than

sequentially, due to our task-specific training on enhanced B-

mode images for simultaneous detection, visualization, and

segmentation of anechoic cysts.

IV. DISCUSSION

The results presented in this article describe our initial

successes and challenges with using deep learning to provide

useful information directly from a single plane wave insoni-

fication. Overall, the proposed task-specific DNN approach is

feasible. It is remarkable that acceptable images were achieved

prior to the application of receive time delays to compensate

for time-of-arrival differences. In particular, the contrast and

gCNR of anechoic regions were improved with DNN images

over DAS B-mode images created with a single plane wave,

tissue SNR was either improved or similar depending on the

inclusion of receive delays with subaperture beamforming,

and DSC values were similar, regardless of the presence of

receive delays. Therefore, the benefits of this approach are that

we can train exclusively on simulations of single plane wave

transmissions, successfully transfer the trained networks to

experimental single plane wave ultrasound data, and produce

B-mode images of anechoic targets with superior contrast

and gCNR (i.e., two metrics representing improved image

quality) and either similar or smoother tissue texture compared

with DAS beamforming. An additional benefit is that these

image quality improvements were achieved while concurrently

extracting segmentation information directly from the raw

ultrasound channel data, resulting in similar or better segmen-

tation performance with focused input data when compared

with the current state of the art (see Table IV).

Typically, image formation is followed by segmentation, and

this sequential process for singular plane wave transmissions

generally has the limitations of reduced throughput, as well

as poor image quality (which generally produces poor image

segmentations). Increasing the number of plane wave transmis-

sions further reduces throughput yet improves image quality at

the expense of frame rates. In addition to parallelizing image

formation and segmentation, the proposed DNNs offer real-

time feasibility (with frame rates of 287–395 Hz based on

our hardware and network parameters) as well as improved

image quality with a single plane wave transmission. There is

additional room for improvement by optimizing the proposed

implementation to increase real-time frame rates [30] and to

increase in vivo segmentation accuracy by including more fea-

tures during training, which will be the focus of future work.

There are four key observations and insights based on the

presented results of applying DNNs to the challenging task

of reconstructing sufficient quality images from single plane

wave channel data acquisitions. First, we successfully achieved

one of the primary goals of our network training, which was

to only display structures of interest and otherwise ignore (or

deemphasize) surrounding structures. For example, the higher

SNR and smoother tissue texture with the unfocused input data

align with our goal of deemphasizing unimportant structures

for robotic automation. It is additionally advantageous that

this network produced images with smoother tissue texture

without relying on computationally expensive methods, such

as NLM [55] or anisotropic diffusion [56], to generate training

data. If speckle is truly desired, we previously demonstrated

that a GAN, rather than the FCNN employed in this article,

has the potential to produce speckle and provide simultaneous

DNN images and segmentation maps from a single input of

unfocused plane wave channel data [26].

Similar to the FCNN deemphasis of speckle, the −6-dB cyst

in Fig. 6 is poorly visualized in the DNN image. Although

the network was trained with anechoic cysts and was not

trained to detect hypoechoic cysts, this result suggests that

the decoder for the DNN image is somewhat sensitive to

echogenicity. However, the hypoechoic cyst in Fig. 6 does not

appear in the DNN segmentation output, which suggests that

the decoder for the segmentation is selective to the detection of

anechoic regions in the input data. Similar task-specific DNN

approaches may be devised and implemented to emphasize

(as demonstrated with anechoic regions) or deemphasize (as

demonstrated with speckle and the low-contrast cyst) other

structures of interest for ultrasound-based interventions (e.g.,

needle tips).

The second insight is that the results of the attenuation study

(see Fig. 7) indicate that the DNN trained without simulated

depth-dependent attenuation learns to be sensitive to the ampli-

tude of received echoes in order to determine whether a given

region is cyst or tissue. However, tissue attenuation confounds

this particular network and causes performance deeper into

the tissue to drop, as the network confuses the decrease in

echo intensity due to tissue attenuation with a decrease in

echo intensity due to an anechoic cyst. Counterintuitively, we

noticed that performance rises when unrealistic data in the

form of the data set without attenuation (in addition to data

containing attenuation) is included in the training data set

provided to the network. This rise in performance highlights

the importance of diversity in the data set—more diverse data

yields better generalization. It also showcases that the network

has the potential to automatically learn what is useful (e.g., the

location-dependent spatial response of the cysts) and discard

what is not useful (e.g., the unrealistic lack of attenuation)

with additional training data.

Third, although the DNNs were trained with circular, ane-

choic, cyst-like structures, there was some ability to gener-

ally distinguish tissue from cyst in the presence of irregular

boundaries (see Fig. 9), although the boundaries themselves

seemed to be estimated by the DNN as smooth and circular

like the training data. The DNNs also generalized reasonably

well to cyst sizes that were not included during training.

The network that accepted focused data was additionally

able to generalize to data acquired with focused rather than

plane wave transmissions, as shown in Fig. 10. There were

also generalizations across transmit frequencies and other

parameters that differ when comparing the Alpinion L3-8

and L8-17 ultrasound transducer parameters in Table II. In

addition, although the DNN that accepts focused data was

trained with data containing mostly homogeneous tissue, it

was able to generalize to the heterogeneities of the majority

of breast tissue surrounding Cysts #1 and #2. One possible
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reason for poorer performance with Cyst #1 is the presence

of bright reflectors in the channel data, which were not

included during training. Future work will include additional

modeling of heterogeneous tissue. Nonetheless, the observed

generalizations are promising for translation to other organs

of interest for the proposed DNN (e.g., kidney calyces and

ovarian follicles), as well as to other anatomical structures

with similar characteristics.

The fourth observation is that the <2.5% mean CV values

reported in Section III-B indicate stability and robustness when

there is minimal to no perturbations in the input over time. This

minimal CV also demonstrates that similar results were pro-

duced over the acquisition sequences. Stability and robustness

are desirable properties of DNNs [57], which are particularly

necessary for biomedical imaging tasks, as imperceptibly small

perturbations to the input can often significantly alter the

output.

Aside from the common limitations of pilot testing (includ-

ing few in vivo test cases and questions about generalizability

to other cases), one limitation observed from the presented

results is that smaller cysts presented a greater challenge than

larger cysts. This observation is based on the worse DSC,

contrast, and gCNR with smaller cysts compared with larger

cysts in Fig. 5 and the lower cyst detection ratio for smaller

cysts compared with larger cysts in Table III. It is known that

the DSC penalizes errors obtained with smaller cysts more

severely than errors obtained with larger cysts [58]. While

the lower DSCs with smaller cysts are consistent with DSCs

achieved with other segmentation approaches [1], [2], the

degraded contrast and gCNR with decreased cyst size might be

linked to the context–detail tradeoff inherent to deep learning.

Prior work [59] demonstrated that CNNs rely on sufficient

context to make successful predictions. Linearly interpolating

the data to a reduced grid size of 256 × 128 pixels provides

each neuron in the CNN with greater context as each neuron

sees more of the neighborhood of a particular pixel to make a

prediction. However, downsampled data have reduced detail,

with the same 2-mm cyst now occupying fewer input pixels

in the input to a given neuron. We hypothesize that linearly

downsampling to a larger grid size is one possible solution

toward addressing the poorer performance with smaller cysts.

The success of the presented results has implications for

providing multiple (i.e., more than two) DNN outputs from a

single network input. For example, in addition to beamforming

and segmentation, deep learning ultrasound image formation

tasks have also been proposed for sound speed estimation [60],

speckle reduction [43], reverberation noise suppression [61],

and minimum-variance directionless response beamforming

[62], as well as to create ultrasound elastography images

[63], CT-like ultrasound images [64], B-mode images from

echogenicity maps [65], and ultrasound images from 3-D

spatial locations [66]. We envisage the future use of parallel

networks that output any number of these or other mappings to

provide a one-step approach to obtain multimodal information,

each originating from a singular input of raw ultrasound data.

One example of a specific future application possibility

from this perspective, which is also supported by the results

presented in this article, is high-frame-rate decision support

without requiring multiple different transmit sequences to

obtain multiple different output images. More specifically, the

parallel B-mode and segmentation information can possibly be

extended to include parallel B-mode, segmentation, elastogra-

phy, sound speed estimation, and CT-like ultrasound images.

One could also envision periodically interspersing the more

accurate focused DNN results (compared in Fig. 8) among

the faster unfocused results to increase the confidence of

system performance. These possibilities open new avenues

of research to explore the benefits of producing multiple

outputs from a single input for parallel clinical, automated,

and semiautomated decision making.

V. CONCLUSION

This article demonstrates a possible use of DNNs to cre-

ate ultrasound images and cyst segmentation results directly

from raw single plane wave channel data. This approach

is a promising alternative to traditional DAS beamforming

followed by segmentation. A novel DNN architecture was

developed and trained with Field II simulated data containing

anechoic cysts insonified by single plane waves. The feature

representations learned by the DNN from simulated data were

successfully transferred to real phantom and in vivo data. This

success has future implications for task-specific ultrasound-

based approaches to emphasize or deemphasize structures of

interest and for producing more than two output image types

from a single input image of raw IQ channel data, opening up

new possibilities for ultrasound-based clinical, interventional,

automated, and semiautomated decision making.
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