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Deep learning under H2O framework: A novel approach

for quantitative analysis of discharge coefficient in

sluice gates
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ABSTRACT
Gates in dams and irrigation canals have been used for the purpose of controlling discharge or water

surface regulation. To compute the discharge under a gate, discharge coefficient (Cd) should be first

determined precisely. From a novel point of view, this study investigates the effect of sill shape under

the vertical sluice gate on Cd using four artificial intelligence methods, which are used to estimate Cd,

(i) random forest (RF), (ii) deep learning (DL), (iii) gradient boosting machine (GBM), and (iv) generalized

linear model (GLM). A sluice gate along with twelve different forms of sills was fabricated and tested

in the University of Tabriz, Iran. Different flow rates were considered in the hydraulic laboratory with

four gate openings. As a result, a total of 180 runs could be tested. The results showed that the

installation of sill under the vertical gate has a positive effect on flow discharge. Sill shapes can be

characterized by their hydraulic radius (Rs). Sensitivity analysis among the dimensionless parameters

proved that Rs/G (the ratio of the hydraulic radius of the sills with respect to the gate opening) has a

significant role in the determination of Cd. A semi-circular sill shape has a more positive effect on the

increase of Cd than the other shapes.

Key words | deep learning, discharge coefficient, free flow, generalized linear model, gradient

boosting machine, random forest
HIGHLIGHTS

• To compute the discharge under a gate, discharge coefficient (Cd) should be first determined

precisely. From a novel point of view, this study investigates the effect of sill shape under the

vertical sluice gate on Cd using four artificial intelligence methods.

• A sluice gate along with twelve different forms of sills were fabricated and tested in the

University of Tabriz, Iran.

• The installation of sill under the vertical gate has a positive effect on flow discharge.

• Sill shapes can be characterized by their hydraulic radius (Rs).

• Sensitivity analysis among the dimensionless parameters proved that Rs/G (the ratio of the

hydraulic radius of the sills with respect to the gate opening) has a significant role in the

determination of Cd. A semi-circular sill shape increases Cd at least 12%. Comparison of artificial

intelligence models showed that the DL model appeared to be superior in the estimation of Cd

with respect to RF, GBM, GLM models.
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INTRODUCTION
Gated structures are used to control discharge or water sur-

face regulation in irrigation canals, rivers and water released

from the dams (Alhamid ). Gates are extensively used in

irrigation canals, the crest of dam spillways and the flow

outlet from the lake to a river. Two common gate types

are sluice (vertical or slide) and radial. Flow under the

gate is either free surface flow or submerged flow, each

having different discharge equations. In the case of free

flow conditions, the upstream head is an important factor

and in submerged conditions, both upstream and down-

stream heads are essential for discharge determination

(Henry ). Estimation of the flow discharge under gates

is an essential issue in many water engineering projects.

The accurate estimation of such a flow discharge requires

a rational discharge coefficient selection.

Characteristics of the flow under the gates have been

extensively studied by many researchers, among others

Henry (), Henderson (), Rajratnam & Subramanya

(), Rajratnam (), Swamee () and Ohatsu &

Yasuda (). Figure 1 shows a longitudinal cross-section

of a vertical sluice gate with a circular sill in free flow con-

dition. Shivapur & Shesha Prakash () experimentally

showed that the use of an inclined sluice gate can increase

flow discharge from the sluice gates. They applied four

angles for inclination starting from 0 (vertical), 15, 30, and

45� with the vertical axis. These gates inclined in the

upstream direction and were installed in the laboratory

flume. This result occurs because more contraction of flow

under the inclined gate with respect to commonly vertical

gates takes place in the upstream.

Rajaratnam & Humphries () carried out an exper-

imental study on the characteristics of the flow immediately

upstream of a vertical sluice gate located perpendicularly

across the full width of a rectangular channel. In that study,

the geometrical properties of the surface eddy, the pressure

defect on the bed and the velocity field in the converging

or jet forming region were studied. Sarhan () conducted

an experimental study in a laboratory flume to study sub-

merged flow passing the opening between the sill and the

gate. Four different heights of trapezoidal sill models were

used and one without a sill, the five groups were run with
om http://iwaponline.com/jh/article-pdf/22/6/1603/782138/jh0221603.pdf
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four different gate openings. The value of Cd ranges from

0.34 to 0.77, with a standard error of 0.0064. Nasehi

Oskuyi & Salmasi () employed energy and momentum

equations to calculate unknown parameters for sluice gates.

They solved these nonlinear equations simultaneously and

generated 5,200 data points. Then, by comparing the results

with Henry’s () diagram, they found a mean absolute per-

centage error (MAPE) equal to 21.54%.

Salmasi & Abraham () conducted a series of labora-

tory experiments to determine the discharge coefficient (Cd)

for inclined slide gates. These tests and models were used to

evaluate both free and submerged flows. Experiments with

inclination angles of 0, 15, 30 and 45� were studied with

different gate openings. The collected data are used to

develop equations for predicting Cd. Results show that incli-

nation of slide gates has a progressive effect on Cd and

increases capacity under the gate. The increase in Cd relates

to the convergence of the flow through the gate opening.

The produced equation via genetic programming (GP)

with R2 and RE of 0.9431 and 0.0014 had optimal efficiency

compared to classical multiple regression models. A com-

parison with other studies for inclination angles of 45 and

60� was also conducted.

In addition, some recent studies showed that the pres-

ence of a sill under the gate can improve discharge flow

(e.g. Saad ; Salmasi et al. ). This is due to not only

the occurrence of more flow contraction under the gate,

but also the aerodynamic shapes of these sills that leads

the flow of water under the gate.

It can be stated that the mentioned reference by Salmasi

et al. () is about a laboratory study of the effect of sills for

radial gate (and not vertical gate) discharge coefficients.

However, the present study deals with discharge coefficient

in sluice/vertical gates, not radial gates.

Figure 1 illustrates a sluice gate with free flow condition

in the usual state or without a sill (in the first panel) and

with a sill just under the gate (in the second panel). Applying

the energy equation between upstream and downstream of a

gate, the discharge (q) is calculated as Equation (1):

q ¼ Cd:G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g(H � Z)

p
(1)



Figure 1 | Sluice gate with free flow condition: (a) without sill and (b) with a sill. (a) Sluice gate without sill. (b) Sluice gate with a semi-circular sill.
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where q is the discharge per unit width of canal; Cd is the

discharge coefficient;G is the gate opening; g is the accelera-

tion due to gravity; H is the upstream water depth; and Z is

the sill height.

A review of the previous studies demonstrates that the

determination of discharge coefficient (Cd) for vertical/

sluice gates are provided in charts. The most well-known

chart includes Henry’s () work. This complexity and

non-linearity increases when a sill is placed under the

gate. In this case, the geometric variables of the sill are

also another parameters in addition to the previous par-

ameters. Thus the drawback of the classic methods for

determination of Cd is providing charts instead of equations

and this increases errors or mistakes in finding Cd from

charts because in most cases interpolation techniques are

needed.

Known as a breakthrough in artificial intelligence

techniques, deep learning demonstrates outstanding

performance in various applications of speech recognition,

image reconditions, natural language processing
://iwaponline.com/jh/article-pdf/22/6/1603/782138/jh0221603.pdf
(e.g. translation, understanding, test questions and answers),

multimodal image-text, and games (e.g. Alphago). The H2O

model is an open source machine learning framework

including deep learning, distributed random forest, gradient

boosting machine and a generalized linear model for classi-

fication and regression (Candel et al. ). The generalized

linear model (GLM) is a generalization of standard linear

regression and one of the scalable machine learning algor-

ithms. H2O’s GLM algorithm fits GLMs to the data by

maximizing the log-likelihood (Nykodym et al. ).

In this study, we aimed to investigate the effects of the

shape of sills on the coefficient of discharge (Cd) in vertical

slide gates under free-flow conditions. The existence of sills

under the gate complicates its hydraulic behavior, Cd will

thus depend on flow hydraulic characteristics as well as

the geometry of the sills. In estimating the Cd for both sill

and non-sill gate conditions, four artificial intelligent

methods were selected to be applied, namely: (i) deep learn-

ing (DL), (ii) random forest (RF), (iii) gradient boosting

machine (GBM), and (iv) generalized linear model (GLM).
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The applicability of novel machine learning techniques using

the H2O method is of primary interest in our study. Therefore,

we first employed deep learning to determine the discharge

coefficient (Cd) for gates in dams and irrigation canals. It

was then powered by deep neural networks to deliver signifi-

cant results. Deep learning requires high-end machines

contrary to traditional machine learning algorithms. It is a

term for artificial hierarchical neural networks that has

recently proven remarkably robust and includes effective

algorithms in various domains. Second, we adopted RF, a

powerful classification and regression tool, which is currently

an active research interest in many studies. RF is an ensemble

learning technique in which the performance of several weak

learners is boosted via a voting scheme. It refers to a classifier

that uses multiple trees to train and predict the samples (Tian

et al. ). Third, we applied GBM, which is a hybrid method

that incorporates both boosting and bagging approaches. It is

also an ensemble learning method, combining a set of weak

learners and delivering a predictive performance. Last, the

novelty of this study is the evaluation of Cd in a vertical slide

gate comprising sills under the gate and estimation of Cd by

means of deep learning under the H2O framework method.
MATERIAL AND METHODS

Experimental setting

Fluid mechanics is more heavily involved with experimental

testing than other disciplines because the analytical tools

currently available to solve the momentum and energy

equations are not capable of providing accurate results.

This is particularly evident in turbulent, separating flows.

The solutions obtained by utilizing techniques from compu-

tational fluid dynamics with the largest computers available

yield only fair approximations for turbulent flow problems,

hence the need for experimental evaluation and verification.

A scale model in hydraulic engineering (as opposed to ana-

logue and mathematical models) uses the method of direct

(physical) simulation of (hydraulic) phenomena, (usually)

in the same medium as in the prototype. Models are

designed and operated according to scaling laws, i.e. con-

ditions that must be satisfied to achieve the desired

similarity between model and prototype. The ratio of a
om http://iwaponline.com/jh/article-pdf/22/6/1603/782138/jh0221603.pdf
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variable in prototype to the corresponding variable in the

model is the scale factor (Novak & Cabelka ).

In the vast majority of cases, design problems associated

with hydraulic structures are investigated on geometrically

similar scale models, operated according to the Froude

law of similarity. The Reynolds number for smooth models

should be such that it corresponds to the fully turbulent

hydraulically rough prototype value to obtain the correct

friction losses.

The experiments were conducted in a flume with Plexi-

glas walls in the hydraulic laboratory at the University of

Tabriz, Iran. The length of the flume was 9.4 m with a

width of 0.3 m. The depth of the flume was set to 0.8 m

for the first 4 m length and 0.5 m for the remaining 5.4 m

length. The flume was equipped with two control gates,

one relating to the vertical gate on the section studied and

the other at the end of the flume to control downstream

water depth. The flow was equipped with a pump with a

maximum capacity of 50 L/s and flow was measured by a

calibrated triangular weir at downstream. Flow depths

were measured with point gauge with a precision of

±0.1 mm (Figure 2).

In addition to non-sill cases, 12 different forms of sills

were studied in this study. These sill cross-sections have

five different shapes: triangular, trapezoidal, circular, semi-

circular and rounded upstream faces with a triangular

downhill (Figure 3).

Nine of these sills were 5 cm high and the circular sills

were 2.35, 3.3, and 8 cm in diameter. A group of varied

flow values were considered between 12 and 26 L/s with

four gate openings. As a result, it was possible to test a

total of 180 runs.

In a dimensionless analysis, it is thought that Cd is a

function of the following parameters:

F1(ρ, Q, b, g, μ, H, Z, G, ∅) ¼ 0 (2)

where ρ is the specific mass of water (kg/m3), Q is the dis-

charge (m3/s), b is the gate width (m), g is the acceleration

due to gravity (m/s2), μ is the dynamic viscosity of water

(N.s/m2), H is upstream water depth, Z is sill height, G is

gate opening and φ is sill shape factor. In addition, φ can

be related to the sill wetted perimeter (p) and sill hydraulic



Figure 2 | Schematic of flow circulation in the flume including the vertical slide gate.
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radius (Rs) as Equation (3):

∅ ¼ F2(Rs, p) (3)

The hydraulic radius of sill is defined by Rs¼A/p, where

A is the cross-sectional area of the flow and P is its wetted
Figure 3 | Different geometric tested sills (all units are in centimeters).

://iwaponline.com/jh/article-pdf/22/6/1603/782138/jh0221603.pdf
perimeter. After some simplification and neglecting Rey-

nolds number, Equation (4) can be obtained as follows for

the calculation of discharge coefficient:

Cd ¼ F4
H1

p
,
Z
G

,
Rs

G
,
Rs

H1

� �
(4)
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The main advantages of a dimensional analysis of a pro-

blem are:

• It reduces the number of variables in the problem by com-

bining dimensional variables to form non-dimensional

parameters, thus reducing the amount of experimental

data required to make correlations of physical phenom-

ena to scalable systems.

• To change units from one system to another.

• Scaling laws: that allows testing models instead of

expensive large full-scale prototypes. There are rules for

finding scaling laws or conditions of similarity. According

to the principles of dimensional analysis, any prototype

can be described by a series of Pi terms or groups that

describe the behavior of the system. Common dimension-

less groups in fluid mechanics include: Reynolds number,

Froude number, Euler number and Mach number.

In an effort to avoid scale effects to determine weir

head–discharge relationships, various recommendations

have been provided to limit minimum model size (weir

height, thickness, and crest radius), flow depth, or dimen-

sionless similitude numbers. For example, when

considering scaled models in the laboratory, Castro-Orgaz

& Hager () recommended a minimum crest radius (R)

of 10 mm. Curtis () recommended that the weir height

(P) be greater than 76 mm. Falvey () recommended

that P be greater than 300 mm, and that ratios of piezo-

metric head to P (h/P) less than 0.3 would result in

discharge estimate errors exceeding þ5%.

As mentioned previously, in this study the width of

sluice gate along with all sills is 0.3 m. The Reynolds

number (Re) is high enough and thus Re can be neglected

from the calculations. Similarity is based on Froude

number (Fr) and it is anticipated that the prototype-to-

model length ratios (scale ratios) of 5–10 (based upon

Froude modeling) can be accepted for this sluice gate phys-

ical study comprising sills under the sluice gate.
Deep learning

The DL algorithm (deep learning as an alternative to shal-

low networks) is an architecture similar to classical

multilayer perceptron (MLP), an iteratively optimized classi-

fier, usually with sigmoidal transfer function. An artificial
om http://iwaponline.com/jh/article-pdf/22/6/1603/782138/jh0221603.pdf
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neural network (ANN) is an information processing

system, which consists of a directed graph with activation

functions associated to each node. The H2O framework is

based on high-level artificial neural networks whose par-

ameters are optimized via back-propagation techniques.

Tuning H2O parameters was carried out by 5-fold cross-vali-

dation on the learning data using the H2O package. A multi-

layer DL model was implemented by considering a number

of multiple hidden layers and ‘tanh’ activation function was

used. Thus, our model was subjected to training with sto-

chastic gradient descent using the back-propagation. As

such, each neuron receives a weighted combination α of

the nl output of the neurons in the previous layer l as

input, with wi denoting the weight of the output xi and b

the bias. The weighted combination of Equation (5) is trans-

formed via some activation function f, so that the output

signal f(α) is relayed to the neurons in the subsequent

layer. The multilayer feed forward neural network function

is denoted by α:

α ¼ �
Xnl

i¼1

wixi þ b (5)

The tanh or hyperbolic tangent activation function and

range are defined as:

f(α) ¼ eα � e�α

eα þ e�α

f(:) ϵ [�1, 1] (6)

Each distribution has a primary association with a par-

ticular loss function. Since we deal with a regression

problem, the loss function can be considered as Gaussian

with mean squared error and denoted as:

L(W , Bjj) ¼ 1
2
jjtj � ojjj2

2
(7)

W is the collection {Wi }1:N�1, where Wi denotes the

weight matrix connecting layers i and iþ 1 for a network

of N layers. Similarly B is the collection of {bi}1:N�1, where

bi denotes the column vector of biases for layer iþ 1. tj is

the targeted value and oj is the observed value.
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A Gaussian distribution defined by the continuous prob-

ability density is known to be a function for continuous

targets. In this study, our DL model consists of three

hidden layers and a varied number of hidden units were

implemented. The following six parameters were considered

to set up the model having the activation function: tanh,

sparse as true, hidden layers: three layers using (10, 10,

10) hidden neurons, epochs: 500, nfolds¼ 5, and Gaussian

distribution.
Random forest

The RF algorithm is one of the decision forest algorithms,

which is a fusion of bagging and random subspace. It is con-

sidered as one of the most accurate classifiers and is

explored for feature selection. Both classification and

regression take the average prediction over all of their

trees to make a final prediction, whether predicting for a

class or numeric value. The number of trees is abbreviated

as ntree. In the regression context, Breiman () rec-

ommended setting mtry to be one-third of the number of

predictors. For regression models, the prediction error is

returned as a mean squared error (MSE). Three tuning par-

ameters are used, i.e. the number of trees ntree¼ 100, their

maximum depth¼ 10, and nfold¼ 5.
Generalized linear models

The GLM extends the concept of the well understood linear

regression model. It estimates models for outcomes from the

exponential family and it is used for both regression and

classification. The estimation of the model is obtained by

maximizing the log-likelihood over the parameter vector β

for the observed data.

maxβ (GLM Log� likelihood) (8)

The linear regression with gamma family is useful for

modeling a positive continuous response variable, where

the conditional variance of the response grows with its

mean but the coefficient of variation of the response

σ2(yi)=ui remains constant. It is usually used with the log

link g(ui) ¼ log(ui), or the inverse link g(ui) ¼ 1
ui
, which is
://iwaponline.com/jh/article-pdf/22/6/1603/782138/jh0221603.pdf
equivalent to the canonical link. However, the value of par-

ameters for GLM model such as family¼ ‘gamma’,

link¼ ‘inverse’, nfolds¼ 5 are considered.

The model was fitted by maximization using the follow-

ing expression:

maxβ,βo �
1
N

XN
i¼1

yi
xTi β þ βo

þ log(xTi β þ βo)

� λ αjjβjj1 þ
1
2
(1� α)jjβjj 2

2

� �
(9)

where β is used for parameter vector, βo is an intercept term,

xi and yi represent observed and response variable, respect-

ively, inverse link g(ui) ¼ 1
ui
, λ is the regularization strength.
Gradient boosting machine

The GBM is a machine learning technique that combines

two powerful tools: gradient-based optimization and boost-

ing. GBM is used for predictive results for regression or

classification. It is an ensemble of tree models and provides

considerably accurate results. GBM applies weak classifi-

cation algorithms to incrementally change data and create

a series of decision trees. We set six parameters: the

number of trees, the learning rate, stopping rounds, distri-

bution, depth of the tree, and nfold. The parameter values

are ntrees¼ 100, learn_rate¼ 0.01, stopping_rounds¼ 5,

distribution¼ ‘gamma’, max_depth¼ 20, nfolds¼ 5.
H2O framework

The R software (Team ) was implemented in this analy-

sis using the H2O package, which is nothing more than a

parallel machine learning package written in Java. It pro-

vides bindings via its representational state transfer

application programming interface (RESTful API) to Java,

Python, and R as well as the web interface. It provides

fast, scalable and strong machine learning algorithms

including deep learning, random forest, gradient boosting

model and a generalized linear model for regression and

classification. The three-step (Cd-H2O) model is illustrated

in Figure 4 and is described below:



Figure 4 | Flow chart for representation of the independent variables and a dependent variable (Cd) via four models: DL-MLP, RF, GBM and GLM.
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Data collection and inputs

This initial step is to focus on understanding the study of work

and requirements of hydraulic structures. Experiments were

performed in a rectangular flume with Plexiglas walls having

a length of 9.4 m with 0.3 m width. This phase begins with

data collection and proceeds to designing the model for the

Cd for both sill and non-sill gates. In this study, the four

input parameters (Z/G, H1/P, Rs/G, and Rs/H1) were used

to calculate the Cd value. This phase includes all activities in

constructing the final dataset from the initial raw data.
Data modelling

In this phase we divided our dataset into training, validation

and testing datasets. The training set consists of 60% as the
om http://iwaponline.com/jh/article-pdf/22/6/1603/782138/jh0221603.pdf
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validation set includes 25% and the testing set consists of

15% of the entire dataset. A variety of modeling techniques

were applied such that their parameters were calibrated to

optimal values. The DL, RF, GBM and GLM models were

trained with the training dataset until reaching a satisfying

accuracy. After receiving the best accuracy from the training

dataset, the validation dataset is applied to evaluate the

model accuracy. After achieving the best accuracy from train-

ing and validation datasets, the model is applied to the testing

dataset.
Data analysis

In this phase, the prediction values can be evaluated.

We performed our experiments with a five-fold cross-

validation approach in order to train our models with



Figure 5 | Discharge coefficient for vertical slide gate in two types (with circular sill under the gate and without sill).
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the training, validation and testing data. A discussion con-

cerning the experimental results will be presented in the

Results and discussion section below. Some experimental

runs were carried out to determine the best combination

of a number of activation function and randomly

selected parameters in order to avoid overfitting and

underfitting.
Model performance assessment

In order to measure the accuracy of the models, five

common statistical metrics, namely root mean square

errors (RMSE), mean absolute error (MAE), Nash–Sutcliffe

coefficient (NSE) (Nash & Sutcliffe ), Willmott’s Index

(WI) (Willmott et al. ) and Legate and McCabe’s Index

(LMI) (Legates & Mccabe ) were taken into consider-

ation with their respective mathematical expressions given
Table 1 | Assessments of DL, RF, GBM and GLM methods in term of training, validation and t

Accuracy criteria Training phase Validation phase Testing

Deep Learning

RMSE 0.012 0.015 0.020

MAE 0.009 0.011 0.011

GBM

RMSE 0.021 0.024 0.023

MAE 0.018 0.020 0.019

://iwaponline.com/jh/article-pdf/22/6/1603/782138/jh0221603.pdf
in Equations (10)–(14):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 (Pi �Oi)
2

N

s
(10)

MAE ¼ 1
N

XN
i¼1

jOi � Pij (11)

NSE ¼ 1�
PN

i¼1 (Oi � Pi)
2PN

i¼1 (Oi � Pi)
2

" #
(12)

WI¼ 1�
PN

i¼1 (Oi�Pi)
2PN

i¼1 (jPi�Oijþ jOi�Oij)2
" #

, 0�WI� 1 (13)

LMI ¼ 1�
PN

i¼1 jOi � PijPN
i¼1 jOi � Pij

" #
(14)

where Oi is the observed value for Cd from fabricated phys-

ical models. In addition, Pi is the estimated value for Cd
esting phases

phase Training phase Validation phase Testing phase

Random Forest

0.015 0.017 0.023

0.012 0.013 0.015

GLM

0.028 0.028 0.034

0.021 0.022 0.021
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from artificial intelligence (AI) models, �O is the average of

observed values, �P is the average of estimated values and

N is the number of observations.
Figure 6 | Scatter plot of the data points vs. four artificial intelligence methods: DL, RF,

GBM, and GLM. (a) Deep learning (DL). (b) Random forest (RF). (c) Gradient

boosting machine (GBM). (d) Generalized linear model (GLM).
RESULTS AND DISCUSSION

In all experiments the addition of a sill under the slide gate

showed an increase in discharge coefficient (Cd). For

instance, Figure 5 shows the discharge coefficient of the

gate with a circular sill of 5 cm in diameter with a compari-

son of the non-sill type. The circle sill has an increased

discharge coefficient of at least 23% and a maximum of

31%. In addition, in Figure 5, two equations with determi-

nation coefficients (R2) equal to 0.87 and 0.91 were fitted

for a gate with and without a sill respectively.

For brevity, the relation between (H–Z)/G vs. Cd for

other sill shapes was not present here. This is because the

main focus of this study is an assessment of artificial intelli-

gence performance in the prediction of Cd. Details of the

hydraulics of flow under the vertical slide gate including a

sill need computational fluid dynamic (CFD) simulation

that is beyond this study.

The total number of observed data is 180, comprising 12

gates with and without sills. The hydraulic conditions (H, G,

andZ) andgeometric characteristicsof sills (Rsandp) create rig-

orous interaction of dimensionless parameters with each other.

Thus in this study, the performance of the DL, RF, GBM and

GLMmodels were investigated for prediction of Cd.

In terms of the observed values in the training, vali-

dation and testing phase, the sluice gate demonstrated the

following range of Cd values: 0.5462–0.7818, 0.53715–

0.7851 and 0.5739–0.7833. However, the modeled values

of Cd using the DL model were in the range of 0.5833–

0.7828, 0.5718–0.7791 and 0.5993–0.7838 in the training,

validation and testing phase.

It is observed that the RF model Cd range varies during

the training, validation and testing phase, i.e. 0.5636–0.7640,

0.5635–0.7600 and 0.5902–0.7615, respectively. Similarly,

the GBM model results show that the values of Cd are

between 0.6134–0.7379, 0.6134–0.7323 and 0.6134–0.7379

in the training, validation and testing phases respectively.

The GLM model showed that the values of Cd are

between 0.5464–0.7938, 0.5595–0.7970 and 0.5730–0.7950
om http://iwaponline.com/jh/article-pdf/22/6/1603/782138/jh0221603.pdf

022



Table 2 | Performance comparison of calculated and predicted Cd using NS, WI, and LMI

metrics in the testing phase

Accuracy
criteria

Nash–Sutcliffe
coefficient (NS)

Willmott’s Index of
agreement (WI)

Legate and
McCabe’s Index
(LMI)

DL 0.848 0.999 0.982

RF 0.800 0.998 0.650

GBM 0.803 0.958 0.557

GLM 0.588 0.969 0.509

Figure 7 | Taylor’s diagram for comparing the performance of the four DL, RF, GBM and

GLM methods in training, validation and testing phases. (a): Taylor’s diagram for

the training phase. (b): Taylor’s diagram for the validation phase. (c): Taylor’s

diagram for the testing phase. Please refer to the online version of this paper to

see this figure in color: http://dx.doi.org/10.2166/hydro.2020.003.
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in the training, validation and testing phase, respectively.

However, our results clearly showed that the DL model esti-

mated Cd values came out closer to the range of the

observed values as compared to those acquired from the

other models.

Table 1 presents the five criteria for the assessment of

DL, RF, GBM and GLM methods. The performance of the

DL method is superior to the others in term of RMSE and

MAE. For example, RMSE for DL, RF, GBM and GLM

methods are 0.02071, 0.02380, 0.02364 and 0.03418, respect-

ively. To further confirm the accuracy in forecasting Cd,

Table 1 displays the other metrics of the best DL model

with (RMSE¼ 0.01281, MAE¼ 0.00976) of training, while

for the validation dataset metrics they are RMSE¼ 0.01565,

MAE¼ 0.01118 and RMSE¼ 0.02071, MAE¼ 0.01192

during the testing dataset, respectively. Furthermore, the

results corroborated the superiority of the RF model as com-

pared to the GBM and GLM models. The accuracy of the RF

model in terms of RMSE and MAE for the testing dataset

phase are 0.02380 and 0.01560 respectively.

However, it is worth noting that the GBM model pre-

sented the best performance of training and testing

datasets in comparison to the validation dataset. The train-

ing dataset had slightly better performance than the testing

dataset, and was demonstrated as RMSE¼ 0.02166,

MAE¼ 0.01807 and RMSE¼ 0.02364, MAE¼ 0.01976, for

training and testing, respectively. Moreover, the perform-

ance of the GLM model using training, validation and

testing phase, with RMSE¼ 0.02892, MAE¼ 0.02200 and

RMSE¼ 0.03418, MAE¼ 0.02190 shows lower accuracy

among the considered models.

The scatter plot of the data points against four artificial

intelligence methods including DL, RF, GBM, and GLM is
://iwaponline.com/jh/article-pdf/22/6/1603/782138/jh0221603.pdf
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provided in Figure 6. Observation data points are close to

the line of y¼ x in the DL, RF, GBM methods, while in

the GLM method, the data points are not close to the line

of y¼ x and a high fluctuation of data sets can be observed.

Table 2 summarizes the NS (Nash–Sutcliffe coefficient), WI

(Willmott’s Index of agreement) and Legate and McCabe’s

Index (LMI) performance metrics for DL, RF, GBM and

GLM models using a testing dataset.

For comparison, the performance of the four DL, RF,

GBM and GLM methods (Taylor’s diagram) (Taylor )

is provided in Figure 7. Based on Figure 7, for further analy-

sis, Taylor’s diagram (TD) is examined for the developed

predictive models for Cd estimation. The best model is the

one with the highest correlation (r¼ 1) near the blue color

circular symbol on the x axis. In fact TD relates to three stat-

istical parameters, i.e. contours of constant standard

deviation (SD), root mean square error (RMSE) and corre-

lation (r). Figure 7 shows that in training phase DL the

model is nearer to the blue point of observed data than

the other three points GBM, GLM, and RF. For validation

and testing phases, the performance of the two DL and

GBM models are approximately similar based on their dis-

tances from the blue point of observed data. Thus, both of

the DL and GBM models are successful in validation and

testing phases in the prediction of Cd.

Figure 8 shows the point density plots for observed and

estimated values of Cd using the deep learning (DL) model.

The figure shows that the main body of density plot for the

values obtained using the DL model is more similar to the

observed ones compared to that obtained using the RF,

GBM and GLM methods.

The violin plot (Ruskeepaa ) was also employed to

assess the model performance in estimating the values of

discharge coefficient. The violin plot is categorized as a

box plot with the integration of a kernel density plot. Figure 9

shows the violin plots for observed and estimated values of

Cd using the DL, RF, GBM and GLM models. The figure

clearly shows that the discharge coefficient estimated

using DL resembles the observed relative discharge coeffi-

cient more than that obtained using the RF, GBM and

GLM models.

Figure 10 presents a 3D plot indicating the relative

absolute error of observed and estimated Cd values using

the DL, RF, GBM and GLM models in three phases: (1)
om http://iwaponline.com/jh/article-pdf/22/6/1603/782138/jh0221603.pdf
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training, (2) validation and (3) testing stages. Figure 10

shows the relative absolute error (RAE) that is defined as

the absolute value of the difference between the estimated

value and the observed value using the RF, DL, GBM and

GLM models. The minimum values of RAE for DL indicate

many similarities of DL estimates with the observed data

compared to the RF, GBM and GLM estimates.

Computational complexity theory is the study of the

scalability of algorithms, both in general and in a problem-

solving sense. Scalability is a characteristic of an organiz-

ation, system, model, or function that describes its

capability to cope and perform well under an increased or

expanding workload or scope. Scalability is the measure of

a system’s ability to increase or decrease in performance

and cost in response to changes in application and system

processing demands. All the computational complexity of

models is represented by Big O notation. However, the

amount of memory needed for H2O to run efficiently

depends on the hidden layer numbers.

The model complexity of deep learning is O (m ×

hiddenlayer1þ hiddenlayer1 × hiddenlayer2þ hiddenlayer2 ×

hiddenlayer3þ hiddenlayer3 × bias). Consider a hidden layer

10 × 10 × 10, with four numeric inputs and one output. It

has (4 × 10þ 10 × 10þ 10 × 10þ 10þ 1)¼ 250 K weights in

the modeling process and this shows the complexity of

deep learning.
CONCLUSION AND FUTURE WORK

In the present study, a total of 12 sills with different geo-

metric sections were tested under a vertical slide gate.

Their geometric sections were selected as being circular,

semicircular, triangular, trapezoidal and rounded upstream

face with a triangular shape in the downstream face. The

dependent variable is discharge coefficient and the total

number of the laboratory data was 180. The performance

of the four artificial intelligent methods including random

forest (RF), deep learning (DL), gradient boosting machine

(GBM) and generalized linear model (GLM) were investi-

gated. Our analysis results showed that the presence of the

sill under the vertical gate has a positive effect on the flow

characteristics. This means that it increases the coefficient

of discharge. The performance of the DL method is better



Figure 8 | Point density plots of observed and estimated discharge coefficient using DL, RF, GBM, and GLM during model training, validation and testing phases. (a): Point density plots for

the training phase. (b): Point density plots for the validation phase. (c): Point density plots for testing phase.
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Figure 9 | Violin plots of observed and estimated discharge coefficient using DL, RF, GBM, and GLM during model training, validation and testing phases. (a): Violin plots for the training

phase. (b): Violin plots for the validation phase. (c): Violin plots for testing phase.
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Figure 10 | 3D plot indicating the relative absolute error of observed and estimated Cd values using DL, RF, GBM, and GLM models. (a): Relative absolute error for the training phase.

(b): Relative absolute error for the validation phase. (c): Relative absolute error for the testing phase.
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than the RF, GBM and GLM models. Moreover, the DL

model has avoided the overfitting and underfitting issue by

giving more accuracy on training, validation, and testing,

respectively. It has shown higher robustness than conven-

tional approaches. The main contribution of this paper is

the development of innovative deep learning using an

H2O framework to predict the coefficient of discharge. To

the best of our knowledge, this is one of the few comprehen-

sive studies that examine the efficiency of deep learning,

random forest, gradient boosting machine and a generalized

linear model for Cd analysis and prediction. As a direction

for further research, we will apply a more novel framework

of H2O based Driverless AI and sparkling water techniques

using this study.

The novelty of this study is that it explores the application

of machine learning with Deep Learning (DL), for key pro-

blems in hydraulics. Study of the previous literature review

demonstrated that the application of DL in estimation of dis-

charge coefficient (Cd) has not been carried out yet.

It can be noted that sill shapes are characterized by their

hydraulic radius defined by Rs¼A/p, where A is the cross-

sectional area of the flow and P is the wetted perimeter.

Thus the proposed models can be useful for other shapes

too. Meanwhile, this work can be extended for more

shape of sills in future.
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