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Abstract: Rice is considered one the most important plants globally because it is a source of food for
over half the world’s population. Like other plants, rice is susceptible to diseases that may affect
the quantity and quality of produce. It sometimes results in anywhere between 20–40% crop loss
production. Early detection of these diseases can positively affect the harvest, and thus farmers
would have to be knowledgeable about the various disease and how to identify them visually. Even
then, it is an impossible task for farmers to survey the vast farmlands on a daily basis. Even if this is
possible, it becomes a costly task that will, in turn, increases the price of rice for consumers. Machine
learning algorithms fitted to drone technology combined with the Internet of Things (IoT) can offer a
solution to this problem. In this paper, we propose a Deep Convolutional Neural Network (DCNN)
transfer learning-based approach for the accurate detection and classification of rice leaf disease.
The modified proposed approach includes a modified VGG19-based transfer learning method. The
proposed modified system can accurately detect and diagnose six distinct classes: healthy, narrow
brown spot, leaf scald, leaf blast, brown spot, and bacterial leaf blight. The highest average accuracy is
96.08% using the non-normalized augmented dataset. The corresponding precision, recall, specificity,
and F1-score were 0.9620, 0.9617, 0.9921, and 0.9616, respectively. The proposed modified approach
achieved significantly better results compared with similar approaches using the same dataset or
similar-size datasets reported in the extant literature.

Keywords: deep learning; transfer learning; plant leaf disease detection; rice leaf disease detection;
convolutional neural networks; VGG19

1. Introduction

Rice is one of the most consumed foods globally as it is a main source of diet for
many countries, including the most populated countries such as China, India, Pakistan,
and others. The classification of Rice is under the class Orza type, which includes within
that family other grain foods such as wheat, corn, and cereal. The reason why it is popular
is that it is rich in supplements, minerals, and nutrition. It is estimated that it is a basic
diet choice for more than three billion people [1]. Rice is a very general term because there
are many types of rice around the globe and even the way they are grown varies as well.
However, it should be mentioned that all rice plants share some commonalities in their
development which are specifically three phases of development before harvest. A total of
15% of agricultural farm areas around the world are used for rice farming [2].

The main production of rice is in the east of India and Pakistan. Recently, there has
been a noticeable reduction in rice production for various reasons. One of the main causes
is rice plant disease or maladies. One of the most unwanted maladies is what is referred to
as sheath blight, leaf blasts, and brown spots because they greatly affect rice production or
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grain quality. The maladies, though different, in effect, share the commonality of having
spots on the plant leaves. Like many diseases, early detection can reduce or prevent the
associated damage. The fundamental issue is the absence of constant observation of the
plants. Other factors can be that farmers new to the field are not attentive and cognizant of
the diseases that can occur to the plants and their seasons. Normally, these maladies can
infect plants at any time. Yet, constant observation of plants and their growth period can
restrain disease contagion [3].

Manually patrolling the vast rice field daily by farmers is an impossible task due
to the vast sizes of the farms, and even, if possible, a human cannot look at each plant
individually and examine it. Having farmers routinely check on rice plants daily, even
if possible, would be a costly task, prone to human error, causing damage to rice plants
in their path, and many other factors that will end up causing more harm than good.
Classifying or diagnosing an issue is a very challenging task to be performed physically,
as it involves different parameters to be observed, such as conditions, surroundings, and
so forth. With the advancement of technology, one of the newest trends that researchers
are looking into is the use of Artificial Intelligence (AI) and Machine Learning (ML) to
assist farmers and researchers in various fields of agriculture in the early detection of rice
plant disease [4–6]. The ongoing improvement in digital image processing and recognition
methods has made it feasible and easier to detect infected crops and classify the disease
that a crop has [5,6]. However, AI and ML alone will not be enough; thus, some researchers
propose the use of drone technology, the Internet of Things (IoT), and cloud computing,
among others, to have a complete system that can properly assist farmers in achieving
good results and reducing cost [7]. However, still, the main component would be a
highly efficient ML algorithm, technique, or process that can detect and properly diagnose
rice disease. Therefore, researchers are still in search of the optimal ML solution for
plant disease detection and diagnosis. Though research has been performed in this field
recently, however, the optimal and most accurate solution is still an open research topic,
and researchers are constantly working towards this goal. Researchers in agriculture are
looking into the use of machine learning in plant breeding in vitro culture [8,9], stress -
phenotyping [10], stress physiology [11], plant biology [12], plant–pathogen interaction [13],
and plant identification [14].

The motivation for a system that can assist rice farmers in the early detection of rice
disease is very clear from the above, which will not only increase production and quality
but also reduce cost, which will benefit both the farmers and consumers. Technology
research performed in the field of agriculture is mainly concerned with the enhancement
of production and quality. The case has been made to what sets the rice plant aside from
others in the field of agriculture, which requires special attention from researchers to
target rice plant diseases and assist in the prevention of early detection. Research in this
field is imperative, whether for the rice grains consumed by three billion people or other
agricultural products that are as significant or even more popular.

The main aim of this work is to develop a system utilizing novel optimized ML and
deep learning (DL) techniques that will accurately detect, classify, and diagnose rice disease
automatically without human intervention. The ultimate aim is also to propose novel
methods that can achieve higher diagnostic accuracy than other techniques in the extant
literature that use similar datasets or similar-size datasets.

The rest of this work is organized as follows: Section 2 details the literature with
regards to machine learning, deep learning in the field of agriculture, mainly rice disease,
and other areas where machine learning is used. The proposed method is detailed in
Section 3. Section 4 shows all the experimental results with discussion. We conclude in
Section 5 and highlight the future work.

2. Recent Studies

Image processing is one of the main recipes in ML algorithms for the correct classifica-
tion of images into their respective classes based on common features. ML algorithms usu-
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ally consist of three phases: preprocessing, feature extraction, and classification. Classifiers
are divided into either supervised or unsupervised algorithms. Recently, DL algorithms
have been heavily used in research where proposed images are input into DL algorithms
that extract features and classify images. Both ML and DL algorithms are used to tackle
research problems in various fields. In Education [15], healthcare [16,17], smart cities [18],
and all other areas relevant to humans. The ultimate goal is to automate tasks usually
performed by humans with the added value of these tasks being performed by machines.

In [6], the authors propose the use of the Support Vector Machines (SVM) classifier
for the classification of three rice crop diseases; brown spots, false smuts, and bacterial leaf
blight. They proposed the extraction of features using Scale-Invariant feature transform
(SIFT), Bag of Word (BoW). They additionally proposed the use of K-means clustering and
Brute-Force (BF) matcher followed by SVM for classification. They used a dataset of 400 im-
ages gathered from various sources, including the American Psychopathological Society
(APS), Rice Knowledge Bank (RKB), and Rice Research Institute (RRI). They reported an
average accuracy of 94.16%, recall of 91.6%, and precision of 90.9%. However, their dataset
was extremely small, especially when proposing multiclass classification, and SVM is a
classifier that is susceptible to overfitting. In [19], the authors propose a deep convolutional
neural network (CNN) for the recognition of rice blast disease. They used a dataset of
5812 divided equally between infected and non-infected rice plants, which are publicly
available. Their method uses CNN for feature extraction and SVM for classification, and
they reported an average accuracy of 95.83% for binary classification. In [20], the authors
propose the use of image processing in controlling and monitoring rice disease. They target
four rice diseases, namely rice sheath, rice brown spots, rice blast, and rice bacterial blight.
They propose the use of engineered features based on shape and color. They also propose
the use of standard classifiers such as k-Nearest Neighbor (k-NN) and Minimum Distance
Classifier (MDC) for classification. They use a dataset consisting of only 115 images for
these diseases and divide the dataset into 30% testing and 70% training. They reported an
overall accuracy of 87.02% for k-NN and 89.23% for MDC. Their dataset is relatively small
for multiclass classification, and they do not address the overfitting problem in their work.
In [21], the authors propose ML techniques for rice leaf disease. They address three main
types of rice leaf diseases, namely bacterial leaf blight, leaf smut, and brown spot. They use
the dataset provided in [4], which consists of 120 images divided equally among the three
diseases. For classifiers, they proposed traditional classifiers, which are Decision Tree (DT),
Logistic Regression (LR), Naïve Bayes (NB), J48 DT, and K-nearest neighbor (K-NN). They
reported an accuracy of 97.9% when using the J48 DT. This result is not surprising due to
the limited size of the dataset. In [4], the authors propose the segmentation of the infected
portion of the leaf using k-mean clustering and extracting the features based on texture,
shape, and color. They used SVM and reported an average accuracy of 93.33% on training
data and 73.33% on testing data. In [22], the authors use color features for rice plant disease
classification. They analyzed 14 color spaces and extracted four color features from each
channel with a total of 172 features. They used a dataset that consisted of 619 images with
four classes: rice blast, bacterial leaf blight, healthy leaves, and sheath blight. They then
used seven different classifiers to test their method, which are LR, Random Forest (RF), DT,
NB, K-NN, SVM, and discriminant classifier (DC). They report the highest accuracy using
SVM, with an average accuracy of 94.65%.

A detailed review of AI and ML methods for rice disease detection is performed in [23].
They review various methods in AI, ML, and even deep learning strategies for rice disease
recognition due to the importance of the rice plant globally. In [24], the authors propose
a faster region-based CNN (Faster R-CNN) for the detection of rice leaf disease in real
time. Their proposed Faster R-CNN is enhanced with the use of the regional proposal
network (RPN). RPN is able to precisely locate the object location and thus generate the
candidate regions. They used both publicly available datasets and generated their dataset
as well. They had a combined 2400 images divided into 500 images for hispa, 650 images
for brown spots, 600 images for rice blast, and 650 images for healthy leaves. Concentrating
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on three classes: hispa, brown spot, and rice blast; they recorded an accuracy of 99.17%,
98.85%, and 98.09%, respectively. The healthy rice leaf was accurately identified with an
average accuracy of 99.25%. In [25], the authors propose the use of CNN for detecting and
identifying rice leaf disease. Their study included six classes of rice disease, namely ragged
stunt virus disease, bacterial leaf streak, narrow brown spot, brown spot, bacterial leaf
blight, and blast. They used pre-trained models such as Mask RCNN, YOLOv3, RetinaNet,
and Faster RCNN. They used a dataset of 6330 images. They reported that YOLOv3
achieved the best average precision of 79.19%. In [26], the authors propose the use of
models from ANN and Deep Neural Networks (DNN) for feature-based datasets and CNN
for image-based datasets for the classification of rice grains because there are different rice
grains. Though they do not necessarily target rice disease, their study is relevant to rice
grains of various types because they can detect healthy leaves from their varieties. They
collected 75,000 images, 15,000 for each of the five different varieties of rice in their study,
which are Karacadag, Jasmine, Ipsala, Basmati, and Arborio. They additionally formed a
feature-based dataset by extracting 106 features from the image-based dataset set, which
includes 90 color features, four shape features, and 12 morphological features. They report
a grain average classification accuracy of 100% for CNN, 99.95% for DNN, and 99.87% for
ANN. In [27], the authors propose the use of the deep recurrent neural network (Deep RNN
or DRNN) trained using their proposed RideSpider Water Wave (RSW) and enhanced by
integrating the RWW in the spider monkey optimization (SMO). They used a publically
available dataset [28], which consists of three classes of diseases, namely bacterial leaf blight
100 images, blast 80 images, and brown spot 96 images. They performed segmentation after
preprocessing using segment network (SegNet) and extracted features from the segments:
texture features, CNN features, and statistical features. They reported that their proposed
RWS-based DRNN achieved the highest accuracy of 90.5%. In [29], the authors proposed
an attention-based depthwise separable NN with Bayesian optimization (ADSNN-BO)
for the detection and classification of rice disease. Their proposed algorithm is based on
the MobileNet structure combined with an augmented attention mechanism. Bayesian
optimization is mainly used for tuning the hyper-parameters of the system. They used a
dataset consisting of 2370 images [30] divided into 503 images of healthy leaves, 779 leaf
blasts, 565 rice hispa damage, and 523 brown spots. They reported a test accuracy of 94.65%.
In [31], the authors propose new CCNN-based inception with Residual Networks (ResNet)
v2 combined with an optimal weighted extreme learning machine (WELM) they refer to
as the CNNIR-OWELM-based algorithm for rice disease classification. Their integrated
system combines IoT for capturing images and histogram segmentation for segmenting
the infected regions. Then features are extracted using the deep learning inception with
ResNet v2. The WELM is optimized using the flower pollination algorithm (FPA) for the
classification. They used the publicly available dataset [32], which of 38 images of leaf
smut, 37 images of brown spots, and 40 images of bacterial leaf blight. They reported an
average accuracy of 94.2%. A review of deep learning algorithms for rice leaf classification,
detection, and diagnosis is presented in [33]. As mentioned earlier, ML and DL are now
used to automate complex tasks usually performed by specialized individuals with the
added benefit of reducing cost and eliminating human errors. The section highlighted
some of the recent work performed for rice leaf detection and diagnosis using DL and ML.
However, after developing a robust algorithm for rice leaf detection, it should be integrated
with other technologies such as IoT, cloud computing, and real-time processing to make
them applicable in real-life scenarios similar to the work presented in [34,35]. Table 1
summarizes the latest studies on rice disease classification with their accuracies.
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Table 1. Summary of different latest studies on rice disease classification with their accuracies.

Reference Method Dataset Used Performance (Accuracy %)

Sowmyalakshmi et al.
(2021) [31]

CNNIR-OWELM-based deep
learning 115 images 94.2%

Wang et al. (2021) [29] attention-based NN with
Bayesian optimization 2370 images 94.65%

Bashir et al. (2019) [6] SVM image processing-based
technique 400 images 94.17%

Liang et al. (2019) [19] Convolutional Neural System
(CNN). 5808 samples 95%

Prajapati et al. (2018) [4] K-means clustering and
Support Vector Machines NA 73.33%

Kaur et al. (2018) [36] k-NN and SVM NA 95.16%

Ramesh et al. (2018) [37] L*a*b, HSV and Texture
Features with ANN classifier 300 images 90%

Lu et al. (2017) [38] Convolutional Neural
Networks 500 images 95.48%

Joshi et al. (2016) [20] Minimum Distance Classifier
(MDC) and k-NN 115 images 89.23%

3. Research Methodology

In this work, we propose a novel model for the classification of rice leaf disease. The
proposed system as shown in Figure 1 will be able to detect and classify six distinct classes;
healthy, narrow brown spot, leaf scald, leaf blast, brown spot, and bacterial leaf blight.
The proposed system is one of few in the extant literature able to classify 6 distinct classes.
Most papers in the extant literature contain between 2–4 classes. In the proposed deep
CNN transfer learning-based approach, the images will go through preprocessing stages,
where images will be subjected to background removal, resizing, and enhancement. Data
augmentation is also performed to increase the size of the dataset. As discussed in the
literature review, most of the papers in the extant literature use small size datasets, which
can cause overfitting even though the authors did not address the overfitting problems
that may occur. In this work, we apply data augmentation, which simply applies minor
changes to the original images to produce new distinct images. The minor changes can
include rotation, scale-in/scale-out, and translation. The features are then extracted using
VGG19. The feature reduction is performed using the flatten, dense, and softmax layers in
VGG19. The last layers of the VGG19 perform the classification. We evaluate our proposed
approach using the following metrics; accuracy, precision, and F1-measure. The proposed
deep VNN transfer learning based-approach is detailed below.

3.1. Experimental Data

The dataset used in this research includes five rice leaf diseases, bacterial leaf blight,
leaf scald, brown spot, narrow brown spot, and leaf blast, along with the healthy rice
leaf [39]. Figure 2 shows the distribution of train and test rice leaf images for different rice
diseases. The first dataset label represents one of the most dangerous diseases that can leave
a destructive impact on a growing rice crop, which is a brown spot. The disease results
from a fungus named “Bipolaris oryzae”. It starts with the appearance of brownish to
grayish spots in the center of the leaf, surrounded by yellow tips. As the disease progresses,
the color and size of the spots might change correspondingly; however, its shape will be
mostly round.
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Figure 2. Distribution of train and test rice leaf images for different rice diseases.

Therefore, it can develop to its extreme, in which the whole leaf color would turn
yellow and die. Thus, brown spot disease leads to quantitative and qualitative losses in
crops [40]. On the other hand, the healthy labeled dataset shows healthy rice with no
diseases detected. Moving on to Hispa, which is a disease that initiates from an average-
sized, black-colored insect named “Dicladispa armigera”. This type of insect is dangerous,
regardless of whether it is an adult or a grub. This disease begins when the female insect
first places her eggs separately at the abdominal part of the leaf end. After some time, when
the grub comes out, the nature of the grub is that they excavate the leaf to reach the tissues
in between its layers, which they feed on. Due to this excavating, the leaf turns out to be
white, membranous, and therefore dies. Lastly, the dataset displays a disease that initiates
from “Magnaporthe Oryzae” fungus named leaf blast. This disease leaves a destructive



Plants 2022, 11, 2230 7 of 17

impact on all the segments of a rice plant that is visible above the ground. Its effect firstly
shows on the leaf as white to gray marks that are bordered with red color. Their shape is
typically diamond with pointy edges. As the spots enlarge, they can end up killing the
whole leaf. Figure 3 shows the sample images of rice leaf diseases.

Plants 2022, 11, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 3. Sample Images of rice leaf diseases. 

3.2. Preprocessing (Enhancement and Augmentation) 
Image Enhancement was applied to enhance the quality of the original dataset, and 

augmentation was applied to increase the dataset size. Smoothing and increasing image 
detail results in flattening and enhancement of the contract of the images. This is per-
formed through the manipulation of the edge-aware local contrast. By using this tech-
nique, the strong edges stay intact by defining a minimum intensity amplitude that serves 
as a threshold value. In this paper, the threshold was set as 0.15, and the enhancement 
value of 0.5. An anisotropic diffusion filter is used in the process for smoothing the con-
trast. Shifting the zero-frequency component to the center of the spectrum is achieved us-
ing the Fourier transform. 

It is extremely important in any machine learning research that the researchers try to 
ensure that overfitting is prevented. In [41], the authors proposed several approaches to 
address such issues, including L1 regularization, L2 regularization, stochastic pooling, 
dropout technique, early stopping, and augmentation. In this paper, we propose the use 
of data augmentation, which will increase the dataset size, which in return reduces the 
chances of overfitting. Data augmentation is a simple process of applying minor changes 
to the original images to produce new images. We use the following methods in this work 
to include rotation, translation, and scale-in/scale-out approaches. These are three simple 

Figure 3. Sample Images of rice leaf diseases.

3.2. Preprocessing (Enhancement and Augmentation)

Image Enhancement was applied to enhance the quality of the original dataset, and
augmentation was applied to increase the dataset size. Smoothing and increasing image
detail results in flattening and enhancement of the contract of the images. This is performed
through the manipulation of the edge-aware local contrast. By using this technique, the
strong edges stay intact by defining a minimum intensity amplitude that serves as a
threshold value. In this paper, the threshold was set as 0.15, and the enhancement value
of 0.5. An anisotropic diffusion filter is used in the process for smoothing the contrast.
Shifting the zero-frequency component to the center of the spectrum is achieved using the
Fourier transform.

It is extremely important in any machine learning research that the researchers try
to ensure that overfitting is prevented. In [41], the authors proposed several approaches
to address such issues, including L1 regularization, L2 regularization, stochastic pooling,
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dropout technique, early stopping, and augmentation. In this paper, we propose the use
of data augmentation, which will increase the dataset size, which in return reduces the
chances of overfitting. Data augmentation is a simple process of applying minor changes
to the original images to produce new images. We use the following methods in this work
to include rotation, translation, and scale-in/scale-out approaches. These are three simple
methods that produce new images that are closely related to the original images. Rotation,
from its name, indicates a process of rotating the original image. We rotate the images by
+15 to −15 degrees. Scale-in/scale-out is a zoom-in and zoom-out process. Here we scale
by 105–115% for both height and width, and finally, translation means shifting the image
across the x and y-axis. Here, the images are translated between −5 to +15.

3.3. Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN or ConvNet), a class of deep neural networks
specialized in image recognition, have developed tremendously in recent years in various
fields, including agriculture. CNN uses multiple blocks of convolutional layers, pooling
layers, and fully connected layers to create conceptual spatial-temporal hierarchies of
features using backpropagation in an adaptive and self-optimizing manner [42]. The main
idea of CNN is to build a deeper network with a much smaller number of parameters.

Like any typical neural network model, CNN is based on neurons organized in layers,
starting with an initial input layer and ending with the final output layer, connected by
learned biases and weights. In between are hidden layers that transform the feature space
of the input to match the output with at least one convolutional layer as a hidden layer,
which is required in a CNN to form patterns. On the other hand, unlike other primitive
methods where feature extraction is hand-engineered, CNN does not require manual
feature extraction. It can learn these characteristics automatically.

As its name implies, the convolutional layer plays a crucial role in the operation of the
CNN, using adaptive kernels (number, size, and padding) that have a small size but can
propagate throughout the depth of the entire network. This layer performs a convolution
operation on the input layer and passes the result to the next layer and the nonlinear
function such as ReLU (Rectified Linear Unit).

Furthermore, the pooling layer, known as downsampling, simply performs a dimen-
sional reduction of the number of convolved features in the input. This action minimizes the
computational power during data processing (i.e., reducing the image size by decreasing
the number of pixels). Therefore, the effectiveness of the training must remain useful and
accurate, and non-overfitted despite the spatial reduction. Last, the fully connected layer
(FC) contains neurons that are directly connected, with no other intermediate layers. It
generates a class score that is used in the classification process.

Moreover, before the training process involving the convolutional layer and the pool-
ing layer, all the parameters used in the CCN must be fixed, while the kernel weights
are learned during training, which means that a good activation function leads to a faster
learning process and a reduction of the loss function quantifying the difference between the
true and the predicted outputs. The weights are updated using optimization algorithms
such as gradient descent or different variants of gradient descent derived from the loss
function. In contrast, increasing the size of the data set as well as regularizing the data (i.e.,
randomly omitting some activations) results in less possibility of overfitting.

3.4. Fine-Tuned CNN Transfer Learning-Based Model

The key steps of training and testing require computational resources and a large
amount of storage, especially when metadata is involved. Conversely, the fine-tuning
technique of the transfer learning-based model is a useful approach to adjusting resource
usage by performing feature extraction using “network surgery.” Fine-tuning modifies the
actual architecture and optimizes memory usage. Building and validating a CNN model by
selecting the most appropriate parameters using trial-and-error methods to determine the
learning rate, number of layers, number of nodes, etc., can indeed be a complicated task.



Plants 2022, 11, 2230 9 of 17

There are several methods for fine-tuning the CNN, including updating the architec-
ture, re-training the model, and partially freezing layers to use some of the weights already
trained. Principally, the process of fine-tuning consists of four main steps:

1. The CNN model is pre-trained.
2. The last output layer is truncated, and all model designs and parameters are copied

to generate a new CNN.
3. The head of the CNN is replaced with a set of fully connected layers. Then the model

parameters are initialized randomly.
4. The output layer is trained from scratch, with all parameters fine-tuned based on the

initial model.

Visual Geometry Group (VGG) is a deep CNN architecture with multiple layers.
VGG-16 and VGG-19 consist of 16 and 19 convolutional layers, respectively [43]. These
architectures are constructed using very small convolutional filters to increase the network
depth. Both VGG16 and VGG19 take as input an image of size 224 × 224 with three color
channels. The input is passed to convolutional layers with the smallest possible receptive
field of size 3 × 3 and max-pooling layers. In the VGG network, the ReLU activation
function then reduces the training time of the first two VGG sets having conv3-64 and
conv3-128, respectively. ReLU is a feature used in AlexNet, an extension of LeNet, to
speed up the learning process, apply max-pooling instead of average, reduce the size of the
network by overlap pooling filters, reduce overfitting, and improve generalization. The
architecture of AlexNet consists of 8 layers: 5 convolutional networks and 3 FC layers. The
last three sets with the same activation function use conv3-256, conv3-512, and conv3-512,
respectively.

A max-pooling layer follows each set of convolutional layers with stride 2 (number
of pixels shifts across the input matrix) to maintain spatial resolution, resulting in a 2 × 2
window. Furthermore, the number of channels used in the convolutional layers differs
between 64 and 512. DenseNet, an extension of Res-Net, adopts multilayer feature concate-
nation for all subsequent layers, which facilitates the training process of deep networks by
reducing the number of parameters in the learned model. This avoids direct summation
of the preceding layers, which decreases the efficiency of the model. In this study, the
DenseNet-201 architecture with 201 deep layers is executed, which contains 4 dense blocks
with sets of 1 × 1 and 3 × 3 convolutional layers. Each dense block is followed by a
transition block with a 1 × 1 convolutional layer and a 2 × 2 pooling layer, except for the
last block, which is followed by a classification layer with a 7 × 7 global average pool. This
last block is followed by a fully connected network with 4 outputs.

The VGG19 network has 16 convolutions with ReLUs between them and five max-
pooling layers. The number of filter maps of the convolutions starts at 64 and grows until
512. After the convolutions, there is a linear classifier made-up of three fully-connected
(FC) layers with a 50% dropout between the first FC and second FC layers. The first two
have 4096 features while the last one has 6. Learning Rate 1 × 10−4, batch size 200.

In addition, the GoogleNet architecture allows the network to choose between multiple
convolutional filter sizes in each block by using inception modules and operating at the
same layer, which improves computational efficiency. The architecture consists of 22 layers
of parameters and 9 stacked inception modules, giving a total of 27 layers. GoogleNet takes
as its base layer the inception module, which is then stacked on top of the other layers,
where parallel filtering of the input layer from the previous layer is applied. SoftMax loss
functions work as classifiers for the 4 classes.

In this work, two levels of fine-tuning were applied. Figure 4 shows the proposed
fine-tuned transfer learning for the VGG19 model for rice leaf disease identification. The
first consists of freezing all layers of feature extraction and unfreezing the FC levels at
which classification is performed. Conversely, the second stage involves freezing the first
layer of feature extraction and unfreezing the last feature extraction along with the fully
connected layers. This second stage requires more training and time; nonetheless, it is



Plants 2022, 11, 2230 10 of 17

excepted to give better results. In this latter level, only the initial 10 layers of VGG16 are
frozen, while the remaining layers are re-trained for fine-tuning.
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3.5. Evaluation Metrics for the Experiments

There are various metrics to evaluate different machine learning methodologies’ per-
formance. The most common seven metrics, accuracy, precision, recall, specificity, F1
score, loss function, and confusion matrix, are used to evaluate the proposed method’s
performance [44]. The recognition accuracy of the framework is determined by mean
Average Precision (mAP). It is the basic measurement used to perceive objects for every
class. Mean Average Precision is calculated by dividing the number of correct detections
for every one of the classes over the aggregate of several correctly detected and the number
of incorrectly detected images. Mean average precision is observed for different types
of parameters. These parameters include minimum batch size, the picture scale that is
additionally the short edge of the picture, and the scaled input picture’s maximum pixel
size. Mean average precision is calculated for each class/object detected in the image.
Average precision calculates the average precision over 0 to 1 esteem for recall value using
the following formula.

P =
No o f True detection

No o f True detections + No o f False detections
(1)

The loss function is another metric that plays a major role while evaluating CNN’s
performance. The classification loss function is used when you have to predict from a
limited set of outcomes called classes. Cross-Entropy that is also known as logarithmic loss,
is a classification loss function.

Table 2 shows the equations and explanations for the various metrics used in this
work. It should be noted that TP represents True Positive, TN represents True Negative, FP
represents False positive, and FN represents False Negative.



Plants 2022, 11, 2230 11 of 17

Table 2. Metric Equations and explanation.

Metric Equation Measure

Accuracy TP+TN
TP+TN+FP

A measure of the ratio of all correct classifications to the
total number of the classifications

Precision TP
TP+FP

The ratio of the true positive cases over the total classified
positive cases

Recall TP
TP+FN

(Sensitivity) The measure of the proportion of the actual
positive cases that were classified correctly

Specificity TN
TN+FP

The measure of the proportion of the actual negative cases
that were classified correctly

F1-Score 2TP
2TP+FP+FN

The harmonic mean of the precision and recall

4. Results and Discussion

Initially, the experiments were performed using the well-known CCN models for
the non-normalized dataset, normalized and augmented dataset, and non-normalized
augmented dataset. The well-known CNN models explored include GoogleNet, VGG16,
VGG19, DenseNet201, and AlexNet. DenseNet201 achieved the best accuracy among the
well-known CNN models. Table 3 shows the results. For the non-normalized dataset,
DenseNet201 achieved an average accuracy of 89.86%. For the normalized augmented
dataset, DenseNet201 achieved an average accuracy of 88.33%, and for the non-normalized
augmented dataset, DenseNet201 achieved an average accuracy of 83.41%. For the non-
normalized dataset, GoogleNet achieved the lowest average accuracy of 83.87%, while in
the normalized augmented dataset and the non-normalized augmented dataset, AlexNet
achieved the lowest average accuracy of 82.38% and 79.72%, respectively.

Table 3. Comparison of experimental results using different well-known CNN architectures with
their trained weights.

CNN Model Accuracy Precision Recall Specificity F1_score

Non-
Normalized

GoogleNet 83.87% 0.8373 0.8404 0.9677 0.8379
VGG16 88.71% 0.8885 0.8889 0.9774 0.8835
VGG19 87.10% 0.8674 0.8725 0.9742 0.8681

DenseNet201 89.86% 0.9005 0.9005 0.9797 0.8986
AlexNet 86.18% 0.8764 0.8629 0.9722 0.8554

Normalized
Augmented

GoogleNet 85.24% 0.8492 0.8524 0.9705 0.8480
VGG16 87.14% 0.8723 0.8714 0.9743 0.8677
VGG19 85.00% 0.8465 0.8500 0.9700 0.8454

DenseNet201 88.33% 0.8795 0.8833 0.9767 0.8797
AlexNet 82.38% 0.8588 0.8238 0.9648 0.7975

Non-
Normalized
Augmented

GoogleNet 82.03% 0.8235 0.8219 0.9640 0.8158
VGG16 82.72% 0.8515 0.8279 0.9653 0.8202
VGG19 81.11% 0.8128 0.8120 0.9622 0.7920

DenseNet201 83.41% 0.8460 0.8364 0.9668 0.8368
AlexNet 79.72% 0.8100 0.8004 0.9594 0.7899

After applying the transfer learning-based optimized weights, the experiments were
repeated using the same well-known CNN models. The results are shown in Table 4. Using
the non-normalized dataset, VGG19 achieved the highest average accuracy of 96.01%,
and GoogleNet was the lowest performing with an average accuracy of 89.63%. For the
normalized augmented, VGG16 achieved the highest average accuracy of 94.76%, while
GoogleNet achieved the lowest average accuracy of 86.9%. When using the non-normalized
augmented dataset, VGG19 achieved the highest average accuracy of 96.08%, while AlexNet
achieved the lowest average accuracy of 85.71%.
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Table 4. Comparison of experimental results using transfer learning-based optimized weights with
well-known CNN architectures.

CNN Model Accuracy Precision Recall Specificity F1_Score

Non-
Normalized

GoogleNet 89.63% 0.8964 0.8976 0.9792 0.8967
VGG16 95.62% 0.9570 0.9571 0.9912 0.9570
VGG19 96.01% 0.9626 0.9614 0.9921 0.9609

DenseNet201 94.24% 0.9433 0.9435 0.9885 0.9431
AlexNet 92.63% 0.9306 0.9272 0.9852 0.9251

Normalized
Augmented

GoogleNet 86.90% 0.8721 0.8690 0.9738 0.8675
VGG16 94.76% 0.9501 0.9476 0.9895 0.9475
VGG19 92.38% 0.9255 0.9238 0.9848 0.9233

DenseNet201 92.86% 0.9277 0.9286 0.9857 0.9280
AlexNet 88.81% 0.8868 0.8881 0.9776 0.8857

Non-
Normalized
Augmented

GoogleNet 86.64% 0.8681 0.8677 0.9732 0.8639
VGG16 94.93% 0.9529 0.9499 0.9898 0.9503
VGG19 96.08% 0.9620 0.9617 0.9921 0.9616

DenseNet201 88.71% 0.8983 0.8897 0.9774 0.8887
AlexNet 85.71% 0.8584 0.8597 0.9714 0.8555

Figure 5 shows the training and validation accuracies for the various model setups
using the VGG19-based transfer learning model proposed in this paper. It can be seen
that the training and validation accuracies start with accuracies in the range of 80–85%
for the freeze non-normalized, freeze normalized augmented, and freeze non-normalized
augmented. The range then increases to between 90–95% for non-freeze normalized, non-
freeze non-normalized, and non-free non-normalized augmented data. In all cases, the
training and validation accuracies have the same trend, which shows that the over-fitting
problem was accounted for. Since the validation accuracies are following the trend of the
training accuracies, this proves that the model is working as designed for new data with
the same accuracy for the data that it was trained for.

Figure 6 shows the validation loss and training loss for the various model setups using
the VGG19-based transfer learning approach. It can be observed that the loss curves follow
the same trend of continuously decreasing and ultimately reaching a stability point with a
small difference between the training and validation losses. This shows that the proposed
approach is a good fit that is neither over-fitting nor under-fitting. The continuous decrease
in the loss accuracies towards zero and then reaching stability with a small gap between
the training and validation trend is an indication of a good fit approach.

The confusion matrix comparison of the rice disease class identification and diagnosis
for the various models using the VGG19-based transfer learning is shown in Figure 7. The
confusion matrix shows that the classification accuracies are high for all classes; however, C4
shows higher misclassification in all models. C2 is showing the next higher misclassification
in all models. However, in general, all classes show high classification accuracies.

The complete dataset used in this work, along with its enhanced and augmented
images, has not been used by other researchers; thus, a direct comparison of results is
not possible. However, Table 1 shows a summary of studies performed on other datasets,
most of which are considered small datasets compared to the dataset used in this work.
It should be noted that most of these works did not target classifying the number of rice
diseases that are targeted in this study. The approach proposed in this study produced
higher performance accuracy than those reported in the extant literature, even though we
are targeting a larger number of classes of rice disease, which makes the problem more
complex. This study also accounts for problems of overfitting and underfitting, which is not
a claim that other previous studies can account for, especially those that use small datasets.
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Once a system can be deployed within rice fields to take real-time images and process
them immediately or send them to a home base where the images can be processed and
proper decisions are taken, only then can we measure the exact benefit of such a system.
Training is required for only one individual who will be operating the system as opposed
to training a large number of farmers to visually diagnose rice plant diseases. As these
systems are researched, we will be able to someday achieve an optimal solution of a
complete system that can diagnose all rice diseases and be deployed for field tests.

5. Conclusions

Leaves are among the main parts of plants where diseases are visibly apparent. Dif-
ferent diseases affect the leaves in different ways that make them distinct from each other.
Rice plants are very important because it is a source of food for over half the population
of the world. Diseases that infect rice plants greatly affect the quality and quantity of rice
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produced. It is estimated that rice disease can cause 20–40% production loss annually. The
manual detection of these diseases requires disease knowledge from farmers and requires
extensive work to visually observe vast farmlands with individual rice crops to achieve the
task of early diagnosis. This seems to be an impossible task, and even if it was possible,
this would be a very expensive task that would end up increasing the price of rice for
consumers. The alternative would be to find an automated method that will be able to
perform early detection and decrease the cost. With the recent advances in computing,
computer vision technology is gaining momentum. The features of rice leaf disease that
are visually distinct can be used as features for computer vision-based systems. In this
paper, we propose a modified approach of a VGG19-based transfer learning method for the
accurate detection and diagnosis of six classes, which include the healthy rice leaf meaning
five rice diseases can be accurately diagnosed based on leaf images. The rice leaf dataset
consists of healthy leaves and five diseases, including narrow brown spots, leaf scalds,
leaf blasts, brown spots, and bacterial leaf blight. The highest average accuracy using the
modified proposed method is 96.08% using the non-normalized augmented dataset. The
corresponding precision, recall, specificity, and F1-score were 0.9620, 0.9617, 09921, and
0.9616, respectively. Fitted onto drone technology and combined with IoT technology, the
system is able to diagnose rice disease in real time.

Future work will include a complete drone technology-based IoT Technology based
deep learning system that can be practically tested in real-life real-time scenarios. In
addition, work will continue in our pursuit of the optimal deep learning technique able
to diagnose all the rice leaf diseases that exist. In addition, and related to the field of
agriculture, we plan to explore other plant leaf diseases of plants that are similarly important
to humankind.
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