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Deep learning versus human graders for classifying diabetic
retinopathy severity in a nationwide screening program
Paisan Ruamviboonsuk1, Jonathan Krause2, Peranut Chotcomwongse1, Rory Sayres2, Rajiv Raman3, Kasumi Widner2,
Bilson J. L. Campana2, Sonia Phene2, Kornwipa Hemarat4, Mongkol Tadarati 1, Sukhum Silpa-Archa1, Jirawut Limwattanayingyong1,
Chetan Rao3, Oscar Kuruvilla5, Jesse Jung6, Jeffrey Tan 7, Surapong Orprayoon8, Chawawat Kangwanwongpaisan9,
Ramase Sukumalpaiboon10, Chainarong Luengchaichawang11, Jitumporn Fuangkaew12, Pipat Kongsap13, Lamyong Chualinpha14,
Sarawuth Saree15, Srirut Kawinpanitan16, Korntip Mitvongsa17, Siriporn Lawanasakol18, Chaiyasit Thepchatri19,
Lalita Wongpichedchai20, Greg S. Corrado2, Lily Peng2 and Dale R. Webster2

Deep learning algorithms have been used to detect diabetic retinopathy (DR) with specialist-level accuracy. This study aims to
validate one such algorithm on a large-scale clinical population, and compare the algorithm performance with that of human
graders. A total of 25,326 gradable retinal images of patients with diabetes from the community-based, nationwide screening
program of DR in Thailand were analyzed for DR severity and referable diabetic macular edema (DME). Grades adjudicated by a
panel of international retinal specialists served as the reference standard. Relative to human graders, for detecting referable DR
(moderate NPDR or worse), the deep learning algorithm had significantly higher sensitivity (0.97 vs. 0.74, p < 0.001), and a slightly
lower specificity (0.96 vs. 0.98, p < 0.001). Higher sensitivity of the algorithm was also observed for each of the categories of severe
or worse NPDR, PDR, and DME (p < 0.001 for all comparisons). The quadratic-weighted kappa for determination of DR severity levels
by the algorithm and human graders was 0.85 and 0.78 respectively (p < 0.001 for the difference). Across different severity levels of
DR for determining referable disease, deep learning significantly reduced the false negative rate (by 23%) at the cost of slightly
higher false positive rates (2%). Deep learning algorithms may serve as a valuable tool for DR screening.
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INTRODUCTION
Deep learning (DL) is a field of artificial intelligence which has
been applied to develop algorithms for the detection of diabetic
retinopathy (DR) with high (>90%) sensitivity and specificity for
referable disease (moderate non-proliferative diabetic retinopathy
(NPDR) or worse).1–3 In addition to high screening accuracy, DL
also has advantages in terms of resource consumption, consis-
tency, and scalability, and has the potential to be deployed as an
alternative to human graders for classifying or triaging retinal
photographs in DR screening programs.
In Thailand, there are 1500 ophthalmologists, including 200

retinal specialists, who provide ophthalmic care to approximately
4.5 million patients with diabetes. Half of the ophthalmologists
and retinal specialists practice in Bangkok, the capital of the
country, while a majority of patients with diabetes live in areas

100 km or more from provincial hospitals, where ophthalmologists
typically practice. The latest Thailand National Survey of Blindness
conducted in 2006–20074 showed that 34% of patients with
diabetes had low vision or blindness in either eye. DR was and
continues to be the most common retinal disease that causes
bilateral low vision.4,5

A national screening program for DR was set up by the Ministry
of Public Health of Thailand in 2013. The screening was conducted
in each of the 13 health regions with an initial target of screening
at least 60% of diabetic patients in each region. Unfortunately,
Ministry data indicate that less than 50% of the diabetic patients
were screened every year since the inception of the program.
Because this was in part due to the lack of trained graders,
deploying DL in the screening program for DR in Thailand has the
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potential to solve some of these problems.6 Similar issues have
been observed in the United Kingdom.7

Several DL algorithms for DR have shown promise in popula-
tions with multiethnic diabetic patients.1–3 However, before the
deployment of DL for screening DR, additional large-scale
validation on screening populations that are distinct from the
original developmental datasets will be critical. In addition, the use
of rigorous reference standards that are adjudicated by retinal
specialists is important for robust evaluation of the algorithm and
human graders.2 Lastly, the diagnostic accuracy of DL algorithms
should be compared with human graders who routinely grade
retinal images in a screening population.
This study was conducted to assess the screening performance

of the DL algorithm compared to real-world graders for classifying
multiple clinically relevant severity levels of DR in the national
screening program for DR in Thailand.

RESULTS
Participant demographics
The characteristics of the images and patients included in this
study are described in Table 1. This cohort consisted of 7517
patients, of whom 67.5% were women. The average age was 61.13
(SD= 10.96) years.

Image gradability
Out of 29,943 images, 4595 were deemed not gradable for DR by
either the regional grader, the DL algorithm, or both (Supple-
mentary Table 1, Supplementary Figs. 1 and 2). A sample of
images where the regional grader disagreed with the DL
algorithm on image gradability underwent adjudication and the
results of the adjudication are presented in the Supplementary
Tables 2 and 3. Adjudicators were approximately 2.5 times more
likely to agree with the algorithm than regional graders about the
gradability of images for DR. For this difficult image subset,
adjudicators agreed with the regional grader 29.0% of the time vs
70.9% of the time with the algorithm. For diabetic macular edema
(DME) gradability, they were just as likely to agree with the
algorithm as the regional graders.

Manual grading and algorithm performance
A comparison of the performance of regional graders in Thailand
and the algorithm compared to the reference standard for all
gradable images is summarized in Supplementary Table 4. Out of
all the gradable images, the composite sensitivity (i.e., generated
by pooling all patients and then computing the metric) of the
graders for detecting moderate or worse NPDR was 0.734 (ranging
from 0.4071 to 0.914 across regional graders) and the specificity
was 0.980 (range: 0.939–1.000). The DL algorithm had a sensitivity
of 0.968 (range: 0.893–0.993), specificity of 0.956 (range:
0.983–0.987), and area under the curve (AUC) of 0.987 (range:
0.977–0.995) (Fig. 1). These differences in sensitivity (24% absolute
percentage points) and specificity (−2.5%) between the algorithm
and regional graders were statistically significant (p < 0.001). The
algorithm’s performance was better than or equal to that of
composite grading of regional graders for severe or worse NPDR
and proliferative diabetic retinopathy (PDR), with AUC values of
0.991 (range: 0.978–0.997) and 0.993 (range: 0.974–0.995),
respectively (Fig. 1). Using moderate or worse NPDR as the
referral threshold, regional graders did not refer 73 out of the 602
(12.1%) severe NPDR or worse images and 56 out of the 398 PDR
images (14.1%). The algorithm would have missed 20 out of the
602 (3.3%) severe NPDR or worse images and 18 out of 398 PDR
images (4.5%).
Results for DME were similar. The sensitivity for regional graders

for detecting referable DME was 0.620 (range: 0.450–0.803 across

regions) and the specificity was 0.992 (range: 0.973–0.998). For the
DL algorithm, sensitivity was measured at 0.953 (range:
0.859–1.000), specificity was measured at 0.982 (range:
0.944–0.991), and AUC of 0.993 (range: 0.980–0.998; 95%
confidence interval (CI) 0.993–0.994).
Our approach to evaluating grader performance involved

adjudicating a subset of our image set—cases with disagreement
and a sub-sample of cases where the algorithm and human
graders agreed. While this is a common reference standard used
in previous studies,3,8 and allows us to analyze a large
representative dataset, it may overestimate the accuracy of both
deep learning and human graders. We therefore ran additional
analyses to estimate the impact of our adjudication strategy. We
subsampled 5% of the cases with agreement between the
algorithm and graders randomly for adjudication. We found that
the adjudication panel agreed with the algorithm and regional
grader 96.2% of the time for moderate or worse NPDR and 87.5%
of the time for referable DME. By extrapolating these measured
agreement rates to unadjudicated images, we could compute
adjusted performance metrics of algorithm and graders as if all
images had been adjudicated. For moderate or worse NPDR, the
regional grader would have 0.611 sensitivity and 0.959 specificity
and the algorithm would have 0.862 sensitivity and 0.934 speci-
ficity. For referable DME, the regional grader would have
0.491 sensitivity and 0.989 specificity, and the algorithm would
have 0.875 sensitivity and 0.977 specificity.
Because more rapid referral is warranted for cases with severe

or worse NPDR and/or DME, the performance of the algorithm for
these cases was also examined. At this threshold, regional graders
had a sensitivity of 0.635 (range: 0.475–0.831) and specificity of
0.997 (range: 0.967–0.998), while the algorithm had a sensitivity of
0.936 (range: 0.852–0.984) and specificity of 0.982 (range:
0.948–0.993). Using PDR and/or DME as the threshold yields
similar performance metrics as severe or worse NPDR and/or DME
because the number of DME cases outnumbers that of PDR cases
(Figure S1). Additional results for using individual DR severity
levels as the threshold are summarized in Supplementary Fig 3.
The performance of the graders cannot be directly compared to

each other because they each graded a different set of images
that correspond to their region. However, the algorithm’s
performance for images from each region could be compared
directly to the regional grader from that region (Fig. 2). In nearly all
regions, the algorithm’s sensitivity was significantly higher than
that of the respective regional grader for moderate or worse NPDR
and for DME. In one of the regions, the algorithm’s sensitivity was
lower than that of the regional grader for moderate or worse
NPDR, but the difference was not statistically significant (p= 0.98).
The overall agreement between the regional graders and

algorithm in comparison to the reference standard for DR and
DME is shown in a confusion matrix presented in Fig. 3.
Furthermore, to compare the agreement for the entire range of
DR severities (no/mild, moderate, severe, and proliferative) and for
each region, quadratic-weighted Cohen’s kappa was used
(Supplementary Table 5). Regional graders were measured at
0.773 (range: 0.624–0.875 across regions) and 0.844 (range:
0.736–0.870), p < 0.001 for the difference.
In addition to per image metrics, we also calculated the

performance of the regional grader and algorithm on a per visit
basis (2 images per visit), including both visits, and on a first visit
per patient basis. For moderate or worse NPDR, the regional
grader sensitivity increased ~3% when going from per image basis
to per visit basis, while specificity decreased ~1%. For the
algorithm, sensitivity and specificity stayed roughly the same
(within ~1%). For referable DME, the regional grader average
sensitivity increased ~6% while specificity decreased less than 1%.
The algorithm’s sensitivity remained roughly unchanged while
specificity decreased ~1%. Details of performance by region are
shown in Supplementary Tables 4 and 5.
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Algorithm performance based on confidence score
While the output of the algorithm is ultimately distilled in a
categorical call (e.g., severe NPDR vs PDR), the algorithm originally
returns a value between 0 and 1 for each level of DR and DME,
indicating a confidence for each severity level. Analysis of the
model’s performance based on the maximum score of both the
DR and DME predictions showed that the algorithm was more
sensitive than regional graders at all ranges of confidence score.
However, when the algorithm was uncertain (maximum score <
0.7), the specificity of the algorithm was much lower than that of
the regional grader at this particular operating point (Figure S2).

DISCUSSION
This study represents one of the largest clinical validations of a
deep learning algorithm in a population that is distinct from which
the algorithm was trained. In addition, this external validation was
conducted in direct comparison with the actual graders in the
screening program of the same population. This is pivotal since
many countries in the world adopted trained graders for their
screening programs for DR. These include the United States,9,10

United Kingdom,11 India,12 Malaysia,13 South Africa,14 Singapore,15

and China16 among others. Furthermore, according to the
statement by American Academy of Ophthalmology (AAO),14,17

there is a strong (level 1) evidence that single-field retinal
photography with interpretation by trained graders can serve as
a screening tool to identify patients with DR where ophthalmol-
ogists are not readily available for referral for further ophthalmic
evaluation and management.
Most algorithms in previous studies of DL for DR screening have

simplified the various levels of DR into binary predictions, either
referable and non-referable or with and without sight-threatening
DR. However, in real-world situations, patient management can be
different at each level of DR. For example, patients with PDR may
require higher urgency for referral for panretinal photocoagulation
or intravitreal injections compared to another severity level, such
as severe NPDR without DME. On the other hand, patients with
moderate NPDR without DME, although labeled as referable, may
not require treatment but still require periodic close monitoring
by ophthalmologists or retinal specialists. Identifying the referable
group of patients requiring treatment accurately may save
community resources. Validation of the performance of DL for
classifying severity levels of DR would therefore be essential for
real-world screening of DR.
Recently, one of the largest head-to-head comparisons between

deep learning and human graders was performed by Ting et al.3

The study included 10 secondary validation sets (e.g. validation
sets that were drawn from a population that is distinct from the
one in which the model was trained), the largest consisting of over
15,000 images. The algorithm validated in this study extends some
(but not all) aspects of this body of work. For example, the
algorithm, which has been previously validated in populations
from the United States and India, showed excellent generalization
on a national level in Thailand across different cameras (Supple-
mental Table 6) and different levels of expertise (ophthalmologists
or trained non-ophthalmologists) of graders. It also showed high
accuracy when measured on both binary and multi-class tasks.
Grading on a more granular 5-point grade is advantageous,
especially on a global scale, where follow-up and management
guidelines among the many different guidelining bodies may vary
at each of the 5 levels and in the presence of possible macular
edema.18 For example, while the follow-up recommended by the
AAO14,17,19 can be up to 12 months for moderate NPDR with no
macular edema, that recommendation changes to 3–6 months if
there is macular edema and 1 month when there is clinically
significant macular edema.17Ta
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The threshold level for referral in a screening program for DR
may be dependent on the resources of the program. In a lower
resource setting where ophthalmologists only see severe cases,
the referral threshold may be higher. In a higher resource setting
where ophthalmologists prefer to see mild cases, the referral
threshold may be lower. There has been some work in the
literature to address the importance of this 5-severity levels
grading of DR and an adjudicated reference standard.20 However,
this work was not validated on a dataset from a different
population until this present study. External validation of a deep
learning system for accuracy of a 5-point grade should not only
give an advantage for selecting an appropriate threshold with
acceptable accuracy for a screening system, but also act as a
feedback loop to tune the accuracy of the deep learning system
itself.
There are some limitations to this study. First, adjudication was

performed largely for moderate NPDR or worse cases where there
was disagreement between the grader and algorithm. For patients
with no retinopathy, screening every 2 years may be appropriate,
while those with mild NPDR should be screened once a year.21

Therefore, future studies should include adjudication for cases
where there is disagreement between no and mild DR.
In addition, the exclusion images with other retinal diseases and

images deemed ungradable by either the algorithm or grader may
also have inflated algorithm performance. These limitations need
to be addressed before deploying the algorithms, particularly in a
stand-alone fashion. Future work should include the extension of

the algorithm to detect other common comorbid eye diseases like
age-related macular degeneration (AMD) and glaucoma. Com-
pared to the regional graders, the algorithm was more likely to
agree with adjudication for gradability. However, more work
should be done to study the integration of an image quality
algorithm prospectively to see (1) how immediate feedback about
image quality may motivate camera operators to re-image the
patient for high-quality photos and (2) the disease distribution for
images that algorithm considered gradable with no or mild grade
but are actually ungradable images with referable disease.
Furthermore, the algorithm’s performance could be improved

upon for difficult cases. For example, if we used the moderate or
worse NPDR operating point, the algorithm would have failed to
refer approximate 18 out of 398 cases (4.5%). However, if we used
the PDR operating point for referral, the algorithm would have
only missed 112 out of 398 cases (28.1%). While the manual
grading would have missed even more cases and it is unlikely the
PDR operating point would be used for referral instead of the
moderate or worse NPDR operating point, there is still room for
improvement. Even though the algorithm did miss a few cases
with obscure neovascularization picked up by the retinal
specialists, it primarily missed cases with inactive fibrous tissue
without neovascularization at the optic disc or elsewhere or cases
with panretinal photocoagulation scars. Additional training could
help improve the algorithm for these cases in the future. Some
examples of cases with PDR that were missed by deep learning
and the human graders are shown in Figure S3. Given these

Fig. 1 Comparison of manual grading and algorithm performance. Receiver operating characteristic (ROC) curve of model (blue line)
compared to grading by regional graders (red dot) for varying severities of diabetic retinopathy (DR) and diabetic macular edema (DME). The
performance represented by the red dot is a combination of all of the grades from the regional graders on all gradable images, since regional
graders only graded images from their own region
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Fig. 2 Comparison of algorithm and individual regional grader performance. Grader performances are represented as blue diamonds
(ophthalmologists) and red dots (nurse or technician) for a moderate or worse non-proliferative diabetic retinopathy (NPDR), b diabetic
macular edema (DME), and c severe NPDR, proliferative diabetic retinopathy (PDR), and/or DME. Analysis is performed on all gradable images
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findings, if this algorithm were to be deployed in a real-world
setting, any image the algorithm grades as moderate or above or
severe and above will be immediately referred to manual review
to ensure high sensitivity for PDR.
While the regional graders were 80–85% accurate (since

regional grader specificity was quite high), the sensitivity of some
of the graders was lower than expected for trained graders in a
screening program. This not only highlights the necessity of
regular audits for human graders, but also an opportunity for
algorithms to serve in training, education, and auditing.

In addition, in a real-life screening setting, grading may be
performed with a combination of automated and manual grading.
A preliminary analysis was performed to look at the relationship
between algorithm confidence and performance of both algo-
rithm and manual grading. Future studies could further explore
how to combine the algorithm and manual grading to achieve
better performance than either alone, while minimizing manual
grading workload. In addition, the reference standard for DME in
this study was based on monoscopic fundus photos. For DME,
optical coherence tomography is now considered the clinical
standard, and incorporating this in the reference standard would

Regional Grader Label

No/Mild
NPDR

Moderate
NPDR

Severe
NPDR

Proliferative
DR

Reference
Standard

No/Mild NPDR 21,828 380 13 33

Moderate NPDR 744 1,699 13 14

Severe NPDR 15 81 100 9

Proliferative DR 55 85 13 241

Quadratic-Weighted Kappa: 0.774 [0.756-0.791]

Algorithm Label

No/Mild
NPDR

Moderate
NPDR

Severe
NPDR

Proliferative
DR

Reference
Standard

No/Mild NPDR 21,281 919 38 16

Moderate NPDR 78 1,851 523 18

Severe NPDR 1 5 195 4

Proliferative DR 17 17 75 285

Quadratic-Weighted Kappa: 0.844 [0.834-0.855]

Regional Grader
Label

No DME DME

Reference
Standard

No DME 22,206 170

DME 699 1,144

Algorithm Label

No DME DME

Reference
Standard

No DME 21,975 401

DME 88 1,755

A

B

C

D

Fig. 3 Agreement on the image level between the reference standard and regional graders. Comparison of diabetic retinopathy (DR) and
diabetic macular edema (DME) performance between the reference standard and a, c regional graders or b, d the algorithm. Adjudication was
performed only for images where either the regional grader or the algorithm identified as moderate and above. Thus, for DR, non-referable
cases (no/mild) are combined into a non-referable bucket
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be ideal.22 Lastly, DR screening programs generally also refer
patients at high suspicion for other non-DR eye diseases such as
AMD or glaucoma. The ability to detect other eye diseases would
further increase the utility of these algorithms.
This study represents an early milestone in the implementation

of a DL algorithm in a large-scale DR screening program. The
demonstration of the algorithm’s performance and general-
izability compared to actual graders in a screening program lays
the groundwork for other prospective studies—to further validate
the algorithm’s performance in real screening workflows and to
study its impact on DR screening as a whole. While it is critical that
a DL algorithm is accurate, it is equally important to study how the
algorithm may affect clinical workflow and outcomes of patients,
such as clinician and patient satisfaction and patient adherence to
follow-up recommendations, and ultimately impact on disease
prevention, progression, and outcomes.

METHODS
This study was approved by the Ethical Review Committee for Research in
Human Subjects of the Ministry of Public Health of Thailand and the Ethical
Committees of hospitals or health centers from which retinal images of
patients with diabetes were used. Patients gave informed consents
allowing their retinal images to be used for research. This study was
registered in the Thai Clinical Trials Registry, Registration Number
TCTR20180716003.

Data acquisition
Diabetic patients were randomly identified from a national registry of
diabetic patients, representing hospitals or health centers in each of the 13
health regions in Thailand. Patients were included if they had fundus
images of either eye captured using retinal cameras in both the years 2015
and 2017, as part of a 2-year longitudinal study on DR. Retinal images of
the patients were single-field, 45-degree field of view, and contained the
optic disc and macula, centered on the macula. A variety of cameras were
used for image acquisition including ones manufactured by 3nethra,
Canon, Kowa, Nidek, Topcon, and Zeiss (Supplementary Table 6). Images
were retrieved from the digital archives from retinal cameras utilized in the
Thailand DR national screening program. Images were excluded from
analysis if they were from patients who had other retinal diseases that
precluded classification of severity of DR or DME, such as AMD and other
retinal vascular diseases.

Definition of DR severity levels and DME
Severity levels of DR and DME were defined according to the International
Clinical Classification of DR (ICDR) disease severity scale.20 In short, DR was
classified into no DR, mild NPDR, moderate NPDR, severe NPDR, and PDR.
DME was identified as referable DME when hard exudates were found
within the distance of 1 disc-diameter from the center of the fovea.23,24

Sample size estimation
According to previous community-based studies of DR in Thailand,25 the
prevalence of sight-threatening DR (PDR, severe NPDR, or DME) was
approximately 6% of patients with diabetes. With a margin of error of 10%,
type 1 error at 0.5 and type 2 error at 0.2, the sample size was estimated at
no less than 6112 patients with diabetes. A rate of ungradable images at
20% was estimated, and therefore at least 7450 patients with diabetes
were required. The distribution of diabetic patients included from each
region was in proportion with the distribution of diabetic patients from
each region. The numbers of patients from each of the 13 regions are listed
in Table 1.

Deep learning algorithm
The development of the deep learning algorithm for predicting DR and
DME is described in detail in Krause et al.2 Briefly, a convolutional neural
network was trained with an “Inception-v4”26 architecture that predicted a
5-point DR grade, referable DME, gradability of both DR and DME, and an
overall image quality score. The input to the neural network was a fundus

image with a resolution of 779 × 779 pixels. Through the use of many
stages of computation, parameterized by millions of numbers, the network
outputs a real-valued number between 0.0 and 1.0 for each prediction,
indicating its confidence. During training, the model was given different
images from the training set with a known severity rating for DR, and the
model predicted its confidence in each severity level of DR, slowly
adjusting its parameters over the course of the training process to increase
its accuracy. The model was evaluated on a tuning dataset throughout the
training process, which was used to determine model hyperparameters. An
“ensemble” of ten individual models was then created to combine their
predictions for the final output. To turn the model’s confidence-based
outputs into discrete predictions, a threshold on the confidence was used
for each binary output (DME, DR gradability, and DME gradability), and a
cascade of thresholds2 was used to output a single DR severity level.

Grading by regional graders
The DL algorithm was compared to 13 human regional graders who
actually grade retinal images for the screening program in each of the 13
health regions. In this study, each grader only graded images that have
been screened in his or her own region. Some of the graders were general
ophthalmologists and others were trained ophthalmic nurses or techni-
cians. Each grader had at least 2 years of experience grading retinal fundus
images for DR. Each grader received standard grading protocols for DR and
DME, including instructions for the web-based grading tool before the
commencement of the study, and each was required to use the same web-
based tool for online grading of the retinal images. A tutorial session was
conducted for all the graders before the commencement of grading.

Reference standard
There were two groups of retinal specialists who graded retinal images for
the reference standard. One group was assigned to grade for DR severity
level and another for referable DME.
For gradability, a subset of ~1000 images each for DR and DME where

the regional grader disagreed with the DL algorithm on image gradability
underwent adjudication. For the remainder of the analysis for both DR and
DME, images graded as ungradable by either the algorithm or regional
grader were excluded. Additionally, for images which were not adjudicated
but the DL algorithm and regional graders were in agreement about the
severity of DR, the agreed-upon grade was used as the reference standard.
A similar rule was applied for analysis of DME.
For grading DR severity levels the ICDR scale was used. In order to

reduce adjudication time for quality of grading, adjudicators were assigned
to grade a subset of the images. This subset included all images for which
the regional grader and the DL algorithm were in disagreement and at
least one graded as moderate NPDR or worse; a random sample of 75
images for which the algorithm and regional grader were in agreement
and graded as moderate NDPR or worse; and a random sample of 1175
images for which the algorithm and regional grader both graded as less
than moderate NPDR. This random sample represented 5% of all images
with agreement between the two modalities. The ratio of images with
moderate NPDR or worse to those with less than moderate NPDR in this
random sample was proportional to the entire population. For the
purposes of this study, no DR and mild NPDR were considered a single
category, and only images that both the algorithm and regional grader
deemed gradable for DR were adjudicated. For grading referable DME,
retinal specialists were assigned to grade all images for which the regional
graders and DL were in disagreement about the binary presence or
absence of DME, and 5% of the rest of the images were randomly assigned
from the subset of those images also determined to be gradable for DME
by both the regional grader and the algorithm. Most of the disagreement
occurred in cases that were graded as moderate or worse NPDR or
referable DME. Further review of the discrepancies revealed that most of
the cases were fairly ambiguous and adjudicators tended to err on the side
of increased sensitivity for a screening setting. Overall, for moderate or
worse NPDR, the regional grader and algorithm grade agreed with
adjudication 96.3% of the time. For DME, the agreement rate was 99.1%.
The retinal specialists that served as the reference standard in this study

were from Thailand, India, and the United States. There were two retinal
specialists per group. Each group graded the images independently, and
the same instructions for web-based grading that the regional graders
used were issued to them before grading. They were also required to use
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the same web-based grading tool as the regional graders. In addition, the
group that graded DR severity level had a teleconference and graded a
small set of images together to ensure congruence.
The adjudication process was as follows: First, both retinal specialists in a

group independently graded each image. Then, until consensus was
reached, the retinal specialists took turns revising their grades, each time
with access to their previous grade and the other retinal specialist’s grade,
as well as any additional comments about the case either retinal specialist
left. If there was still disagreement after each grader had graded the image
three times in this way, then the image’s reference standard was
determined independently by a separate, senior retinal specialist. For
grading DR severity levels, differences between no DR and mild NPDR were
not adjudicated in order to focus adjudication time on referable disease.

Statistical analysis
Primary metrics assessed were sensitivity, specificity, and area under the
receiver operating characteristic curve. Confidence intervals for sensitivities
and specificities were calculated using the Clopper–Pearson interval, and
CIs for the quadratic-weighted Cohen’s kappa were calculated using a
bootstrap, both calculated at the 95% level. All p values were calculated
using two-sided permutation tests.

DATA AVAILABILITY
The data that support the findings of this study may be available from DR screening
programs of Rajivithi Hospital, Lamphun Hospital, Somdejphrajaotaksin Maharaj
Hospital, Sawanpracharak Hospital, Nakhon Nayok Hospital, Photharam Hospital,
Prapokklao Hospital, Mahasarakham Hospital, Nongbualamphu Hospital, Pakchong-
nana Hospital, Mukdahan Hospital, Suratthani Hospital, Sungaikolok Hospital,
Bangkok Metropolitan Administration Public Health Center 7, but restrictions apply
to the availability of these data. These data, or a test subset of them, may be available
subject to ethical approvals.

CODE AVAILABILITY
Machine learning models were developed and deployed using standard model
libraries and scripts in TensorFlow. Custom code was specific to our computing
infrastructure and mainly used for data input/output and parallelization across
computers.
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