Deep Learning via Semi-Supervised Embedding

Jason Weston, Frederic Ratle and Ronan Collobert Presented by: Janani Kalyanam

Review Deep Learning

- Extract low-level features first.
- Extract more complicated features as we progress.
 Called pre-training.
- Perform supervised task at the end, and fine tune weights by back propagation.

Review Deep Learning, contd.

Review Deep Learning, contd.

• mimimize $||x - f_{dec}(f_{enc}(x))||^2$

Authors' point of view

- Shallow methods give nice insights to the problem, but are restrictive.
- Deep methods are complicated.
- Moreover, all the unsupervised methods proposed, like RBMs or auto-associators seem to be different from existing unsupervised learning techniques.

Authors' point of view

- Shallow methods give nice insights to the problem, but are restrictive.
- Deep methods are complicated.
- Moreover, all the unsupervised methods proposed, like RBMs or auto-associators seem to be different from existing unsupervised learning techniques.

Why not try to borrow the nice ideas from shallow methods and put it in a deep learning framework?

Proposition

► Choose an unsupervised learning algorithm (that already exists in shallow literature)

Choose a model with deep architecture

▶ The unsupervised learning is plugged into any layer of the architecture as an auxiliary task (as opposed to learning the unsupervised task first, and then performing fine-tuning, or back propagation)

Train supervised and unsupervised tasks simultaneously

Outline

Review some embedding algorithms

► Embedding algorithms used in a shallow architecure

How do the authors apply the embedding algorithm to a deep architecture?

Experiments

Outline

Review some embedding algorithms

► Embedding algorithms used in a shallow architecure

How do the authors apply the embedding algorithm to a deep architecture?

Experiments

Review: Embedding Algorithms

General formulation

$$\underset{\alpha}{\mathsf{minimize}} \quad \sum_{i,j=1}^{U} L(f(x_i,\alpha),f(x_j,\alpha),W_{ij})$$

- $f(x) \in \mathbb{R}^n$ is an embedding to be learned given $x \in \mathbb{R}^d$
- L is a loss function between pairs of example
- W is a matrix of similarity/dissimilarity

Review: Embedding Algorithm (contd.)

Multidimensional Scaling

► Preserves distances between points while embedding them into a lower dimensional space

$$L(f_i, f_j, W_{ij}) = (||f_i - f_j|| - W_{ij})^2$$

Review: Embedding Algorithm contd.

Laplacian Eigen Maps

Create a sparse, connected graph using some notion of neighbors.

► Create a weight matrix using k-nn or heat kernals: $exp^{-(x_i-x_j)/(\text{scaling})}$

Review: Embedding Algorithms contd.

Formulation:

$$\sum_{ij} L(f_i, f_j, W_{ij}) = \sum_{ij} W_{ij} ||f_i - f_j||^2$$

▶ Impose suitable constraints to prevent trivial solutions.

Review: Embedding Algorithm (contd.)

Margin based loss function for Siamese Networks

► Encourages similar examples to be close, and separates dissimilar ones at least by margin *m*

$$L(f_i, f_j, W_{ij}) = \begin{cases} ||f_i - f_j||^2 & \text{if } W_{ij} = 1 \\ max(0, m - ||f_i - f_j||^2) & \text{if } W_{ij} = 0 \end{cases}$$

Outline

Review some embedding algorithms

► Embedding algorithms used in a shallow architecure

► How do the authors apply the embedding algorithm to a deep architecture?

Experiments

Review: Embedding in shallow architecture

Label Propagation

$$\min \sum_{i=1}^{L} ||f_i - y_i||^2 + \lambda \sum_{i,j=1}^{L+U} W_{ij} ||f_i - f_j||^2$$

- Encourages examples with high similarity value to get the same label
- Due to transitivity, neighbors or neighbors also get the same label

Example

Example, contd

Example, contd

Review: Embedding in shallow architecture

LapSVM

$$\min ||w||^2 + \gamma \sum_{i=1}^{L} H(y_i, f(x_i)) + \lambda \sum_{i,j=1}^{L+U} W_{ij} ||f(x_i) - f(x_j)||^2$$

► First two terms are from SVM formulation, third term includes unlabeled data

Outline

Review some embedding algorithms

► Embedding algorithms used in a shallow architecure

► How do the authors apply the embedding algorithm to a deep architecture?

Experiments

Semi-supervised learning in Deep architecture

(c) Auxiliary

Semi-supervised learning in Deep architecture

- ▶ Deep learning set-up $f(x) = h^3(h^2(h^1(x)))$
- ▶ Supervised training is to minimize $L(f(x_i), y_i)$
- ► Can add unsupervised training to any of the layers
 - Output: $L(f(x_i), f(x_j), W_{ij})$
 - ► Intermediate: $L(h^2(h^1(x_i)), h^2(h^1(x_j)), W_{ij})$
 - Auxiliary: $L(e(x_i), e(x_i), W_{ii})$ where $e(x_i) = e(h^2(h^1(x)))$

Outline

Review some embedding algorithms

► Embedding algorithms used in a shallow architecure

► How do the authors apply the embedding algorithm to a deep architecture?

Experiments

Experiments

Small datasets

Train	g50c	Text	Uspst	
SVM	8.32	18.36	23.18	
TSVM	5.80	5.61	17.61	
LapSVM	5.4	10.4	12.7	
NN	10.6	15.7	25.1	
${\sf EmbedNN}$	5.66	5.82	15.49	

MNIST

- ▶ 2 layers, crossvalidate over the number of hidden units, and learning rate.
- $ightharpoonup W_{ij}$ is binary according to 10-nn criterion.

Train	1h	6h	1k	3k
SVM	23.44	8.85	7.77	4.21
TSVM	16.81	6.16	5.38	3.45
RBM	21.5	-	8.8	_
SESM	20.6	-	9.6	_
DBN-NCA	_	10.0	_	3.8
DBN-rNCA	-	8.7	-	3.3
NN	25.81	11.44	10.07	6.04
$EmbedNN ext{-}O$	17.05	5.7	5.7	3.59
Embedl-1	16.86	9.44	8.52	6.02
EmbedA-1	17.17	7.56	7.89	4.93

MNIST

- 50 hidden units on each layer.
- Classical NN compared to EmbedNN-O and EmberNN-ALL
- More sophisticated experiments on video data by taking images from consecutive streams for encoding W matrix.

Train	2	4	6	8	10	15
NN	26.0	26.1	27.2	28.3	34.2	47.7
EmbedNN-O	19.7	15.1	15.1	15.0	13.7	11.8
$EmbedNN ext{-}ALL$	18.2	12.6	7.9	8.5	6.3	9.3

Take away..

Unsupervised learning as an auxiliary tasks seems to work well.

The End

Thank you!