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Abstract

Deep learning neural networks are used for wavefront sensing and aberration

correction in atmospheric turbulence without any wavefront sensor (i.e.

reconstruction of the wavefront aberration phase from the distorted image of the

object). We compared and found the characteristics of the direct and indirect

reconstruction ways: (i) directly reconstructing the aberration phase; (ii)

reconstructing the Zernike coefficients and then calculating the aberration phase. We

verified the generalization ability and performance of the network for a single object

and multiple objects. What’s more, we verified the correction effect for a turbulence

pool and the feasibility for a real atmospheric turbulence environment.
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Introduction

In general, the wavefront aberrations induced by fluid (such as atmospheric turbu-

lence) or biological tissues in an imaging system can be corrected by a deformable mir-

ror (DM) or a spatial light modulator (SLM) [1]. To obtain the appropriate DM or

SLM control signal, there are two types of methods: optimization method and wave-

front sensing method. The former searches the appropriate control signal by stochas-

tic, local or global search algorithm [2], which is time-consuming because of the large

number of iterations and measurements. The latter restores the wavefront distortion

by a wavefront sensor (such as Hartmann–Shack sensor) to guide the control signal of

DM or SLM [3], which suffers from costly optical elements, multiple measurements

and strict calibration requirements.

For an imaging system without wavefront aberration, the object can be clearly im-

aged. When atmospheric turbulence or other wavefront-affecting media exists in the

imaging path, the image of the object would be distorted. Different wavefront aberra-

tions lead to different image distortions, which means that there is a mapping relation-

ship between them. Supervised deep learning has played an important role in

computer vision [4, 5]. For example, convolutional neural networks are used for
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classification and recognition [6, 7], that is, learning the mapping relationship from im-

ages to categories and locations; encoder-decoder-mode neural networks are used for

semantic segmentation [8, 9], that is, learning the mapping relationship from the image

to the category of each pixel. It is natural to ask: can the deep learning neural network

learn the mapping relationship from image distortion to wavefront aberration?

In fact, currently, deep learning has become a powerful tool to solve various inverse

problems in computational imaging by learning the corresponding mapping relation-

ship, such as digital holography (from hologram to phase and intensity images of ob-

jects) [10, 11], phase unwrapping (from wrapped phase to absolute phase) [12, 13],

imaging through scattering media (from speckle map to object image) [14, 15]. In

addition, the phase distribution of an object can be directly restored from a single in-

tensity image by the deep learning neural network [16, 17]. Similarly, from the distorted

intensity image, the deep learning neural network is also used to reconstruct the wave-

front aberration phase [18, 19] or its Zernike coefficients [20–28], called deep learning

wavefront sensing. As an end-to-end method, the deep learning wavefront sensing can

be done just from a camera without the need of traditional wavefront sensors, which

has great significance in free-space optical communications, astronomical observations

and laser weapons. But in these works [18–28], firstly, only one of the two ways of ab-

erration phase reconstruction or Zernike coefficients reconstruction was studied. on

the other hand, there are no real-environment experiments (either purely numerical

simulations [18, 20, 21, 25–27], or use SLM or Lens movement to simulate aberration

phases [19, 22–24, 28]).

In this paper, we test the generalization ability for single and multiple objects cases

by employing deep learning neural network, and compare the performance of using the

wavefront aberration phase or its corresponding Zernike coefficients as ground truth

(GT) in simple and complex cases. What’s more, the correction effect in the turbulent

pool and the feasibility in real atmospheric turbulence are verified.

Method

As shown in Fig. 1(a), due to the atmospheric turbulence, a wavefront aberration ϕ( x,

y) is induced into the object field O(x, y), where x and y represent transverse spatial co-

ordinates. Then the distorted intensity distribution I(x, y) is given by

Fig. 1 Schematic diagram of the deep learning wavefront aberration correction. a Production of distortion;

b wavefront aberration reconstruction and correction
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where FT{} represents the Fourier transform. That is, there exists a mapping relation-

ship between the distorted wavefront aberration, the object field and the intensity

distribution:

ϕ¼f ðO; IÞ: ð2Þ

The deep learning neural network can learn this mapping relationship from a large

number of datasets, and reconstructs the wavefront aberration phase (or its corre-

sponding Zernike coefficients) from the intensity distribution, just as the red part in

Fig. 1, which is the main pursuit of this paper. Then DM or SLM can be used to correct

the wavefront aberration by the guidance of the network output, as shown in Fig. 1(b).

The convolution neural network (CNN) architectures are inspired by U-Net [8], Re-

sidual block [29] and Inception module [30], as illustrated in Fig. 2. The CNN1 consists of

an encoding path (left), a decoding path (right) and a bridge path (middle). The encoding

and decoding paths each contain four Residual blocks, while the Residual block of the en-

coding path is followed by max pooling for downsampling and the Residual block of the

decoding path is preceded by transposed convolution for upsampling. The CNN2 consists

of an encoding path and two fully connected layers. The numbers in Fig. 2(a) and (b) rep-

resent the number of channels in the convolutional layer and the number of neurons in

the fully connected layer. We add the idea of the Inception module to the Residual block,

as shown in Fig. 2(c), where the four right paths separately use one, two, three, and four

3 × 3 convolutions for more effective extraction of the features in different scales. The

concatenations in Fig. 2(a) transmit gradient and information to improve the convergence

speed of the CNN, while the concatenations in Fig. 2(c) merge the feature in different

scales. The CNN1 and CNN2 are used to reconstruct the wavefront aberration phase and

its Zernike coefficients from the intensity distribution, respectively. The parameter quan-

tity of CNN2 is approximately equal to half of CNN1.

Fig. 2 CNN architectures. a CNN1 for aberration phase reconstruction; b CNN2 for Zernike coefficients

reconstruction, in which ‘M’ indicates the number of neurons; c residual block, in which ‘N’ and ‘N/4’

indicate the number of channels
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The adaptive moment estimation (ADAM) based optimization is used to train all the

networks. The batch size is 64 and the learning rate is 0.01 (75 % drop per epoch if the

learning rate is greater than 10− 7). The epoch size is 200 for 10,000 pairs of datasets.

The L2 norm and cross-entropy loss functions are used for CNN1 and CNN2,

respectively.

All the networks are implemented by Pytorch 1.0 based on Python 3.6.1, which is

performed on a PC with Core i7-8700 K CPU (3.8 GHz) and 16 GB of RAM, using

NVIDIA GeForce GTX 1080Ti GPU. The training time is about 6 h for CNN1 and 4 h

for CNN2, while the testing time is about 0.05 s for CNN1 and 0.04 s for CNN2.

Three parameters are used to evaluate the accuracy of the neural networks:

i. SSIM: Structural similarity index.

ii. RMSE: Root mean square error.

iii. MAE: Mean absolute error (and its percentage of the aberration phase range).

Results and discussion

Simulation

In the simulation, the samples are distorted by the wavefront aberration phase gener-

ated by Zernike polynomials with 2–15 order coefficients. The coefficients are ran-

domly set within the range of [-5, 5]. The aberration phases (Zernike coefficients) and

corresponding distorted images are used as the GT and input, respectively.

For the mapping relationship in Eq. (2), there are two cases: the same object with dif-

ferent wavefront aberration phases (single object) or different objects with different

wavefront aberration phases (multiple objects). It is thus necessary to compare the per-

formance of the network in these two cases.

For the single object, we use a grid as the object to generate 11,000 pairs of data (10,

000 for training and 1,000 for testing), partially shown in Fig. 3. The shape of the grid

deforms correspondingly with the aberration phases, which guides the convergence of

the neural network.

For the multiple objects, Number (from EMNIST [31]) and LFW [32] datasets are

separately used as the object to generate 10,000 pairs of data for training and 1,000

pairs of data for testing, while Letter (from EMNIST) and ImageNet [33] are used as to

generate 1,000 pairs of data for testing. Note that the aberration phase used in generat-

ing the dataset is the same as that used for a single object.

Fig. 3 Examples of aberration phase and distorted image
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After training, the three CNN1s are tested. The accuracy evaluation of the networks

is shown in Table 1 and Fig. 4, from which the following can be observed:

i. Whether it is a single object or multiple objects, neural networks have the ability

to learn the mapping relationships among them.

ii. The accuracy of the neural network on a single object is higher than that of

multiple objects.

iii. The neural network trained with a type of dataset (Number or LFW) can also

work on another type of similar dataset (Letter or ImageNet).

iv. Note that when using the EMNIST-trained network to reconstruct the LFW or

ImageNet distorted image, wrong results will be obtained, and vice versa.

Therefore, in actual applications, it is recommended to use similar objects to create

dataset for the target objects.

In addition to directly reconstructing the aberration phase, it is also an option to re-

construct the Zernike coefficient which is then used to calculate the aberration phase.

We compare these two ways in two cases: aberration phase without details (simple)

and aberration phase with internal details (complex).

For the simple case, the Zernike coefficients of the aberration phase from the Grid

dataset in Sect. 3.2 are used as the GT of the CNN2 (M = 14). For the complex case, as

shown in Fig. 5, to generate the complex aberration phase as the GT of the CNN1, a

random phase is added into the sample aberration phase; then the Zernike coefficients

(2-101 orders) calculated from the complex aberration phase are used as the GT of the

CNN2 (M = 100).

Table 1 Accuracy evaluation of the single object and multiple objects.

Train Grid Number LFW

Test Grid Number Letter LFW ImageNet

SSIM 0.989 0.949 0.934 0.921 0.914

RMSE 0.262 0.561 0.642 0.982 0.991

MAE 0.217
(1.08 %)

0.525
(2.61 %)

0.601
(2.99 %)

0.927
(4.61 %)

0.941
(4.68 %)

Fig. 4 Demonstration of partial results of the single object and multiple objects
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After training, the three networks are tested, in which the coefficients from CNN2

are calculated to the phase to compare with CNN1. The accuracy evaluation of the net-

works is shown in Table 2 and Fig. 6, from which the following can be observed:

i. For the simple case, CNN1 and CNN2 have the same accuracy.

ii. For the complex case, the accuracy of CNN2 drops a lot, due to the loss of

detailed information (lower resolution).

iii. Given that SLM has a higher resolution than DM in general, CNN1 (direct

reconstruction of aberration phase) has a higher resolution which is more suitable

for SLM, while CNN2 (reconstruction of Zernike coefficient) has fewer network

parameter quantity but lower resolution which is more suitable for DM.

Correction experiment

In order to verify the correction effect of this method, we used the way of directly

reconstructing the wavefront aberration phase to train and test CNN1 in the turbulence

pool. As shown in Fig. 7, the setup contains five parts including the aberration phase

Fig. 5 Dataset generation for Zernike coefficients reconstruction. a Zernike coefficients (2–15 orders); b

simple aberration phase; c random phase, d complex aberration phase; e Zernike coefficients (2-101 orders).

a and b are from the Grid dataset in Sect. 3.2. For the simple case, (a) and (b) are used as the GT of the

CNN2 and CNN1, respectively. For the complex case, (d) and (e) are used as the GT of CNN1 and

CNN2, respectively

Table 2 Accuracy evaluation of the simple and complex cases.

Case Simple Complex

GT Phase Coefficient Phase Coefficient

Network CNN1 CNN2 CNN1 CNN2

SSIM 0.989 0.988 0.980 0.891

RMSE 0.262 0.264 0.274 1.397

MAE 0.217
(1.08 %)

0.219
(1.09 %)

0.226
(1.12 %)

1.305
(6.49 %)
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acquisition part, the distortion image acquisition part, the correction part, the calcula-

tion part and the turbulence generating part:

i. The distortion phase acquisition part includes a laser source (532nm), a Mach-

Zehnder interferometer for generating the hologram, a telecentric lens for conju-

gating the calibration plane and the CCD1 target plane, and a CCD1 for recording

the hologram.

ii. The distorted image acquisition part includes an ISLM (intensity-type SLM) with a

white LED for generating objects (grid), a double lens for adjusting the beam size

and a CDD2 with a lens (300mm) for imaging.

iii. The correction part includes a triplet lens for adjusting the beam size while

conjugating the calibration plane and the PSLM (phase-type SLM) target plane,

and a PSLM for correction.

Fig. 6 Demonstration of partial results of the simple and complex cases

Fig. 7 Setup for the correction experiment. TL: telecentric lens, CP: calibration plane, ISLM: intensity-type

SLM, PSLM: phase-type SLM
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iv. The calculation control part is a computer for reconstructing the phase from the

hologram, training the neural network, reconstructing the phase from the distorted

image and controlling the PSLM to achieve turbulence correction.

v. The turbulence generating part is a 1.5-meter-long turbulence pool with heating

and cooling at the bottom (200℃) and top (20℃), respectively.

When collecting the dataset, a constant plane is loaded on the PSLM. We use CCD1

to record the hologram and reconstruct the aberration phase as GT, and use CCD2 to

record the distorted image loaded on the ISLM as input, which is partially shown in

Fig. 8.

After training, in real time, the computer controls the PSLM by the aberration phase

reconstructed from the network to correct the turbulence (correction frequency is

about 100HZ). In order to verify the correction effect, we use CCD1 to continuously

record the hologram (phase), and then turn on the correction system. As shown in

Fig. 9, we calculate the standard deviation (StdDev) of the phase recorded by CCD1,

and display the phases of the frames 1, 101, 201, 301, 401, 501, 601, 701, 801, 901

below. The average StdDev of the phase for the first 500 frames (before correction) is

7.51, while that of the phase for the next 500 frames (after correction) is 1.79.

To further test the correction effect, we blocked the reference light in the setup, re-

placed the TL with a convex lens, and moved the CCD1 to the focal plane of the

Fig. 8 Examples of aberration phase and distorted image for the turbulence pool

Fig. 9 Phase StdDev before and after correction
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convex lens. Then the focus spots before and after correction are recorded and com-

pared in Fig. 10. From Fig. 10(a) and (b), it can be found that the energy of the cor-

rected spot is more concentrated. To be more quantitative, in Fig. 10(c), we plot the

intensity across the horizontal lines of Fig. 10(a) and (b), from which we can find that

the maximum intensity of the focus spot after correction is about 2.5 times that before

correction.

Real atmospheric turbulence experiment

In order to verify the feasibility of this method in real atmospheric turbulence, we

transferred the setup in Fig. 7 to an open-air environment. Since the reference beam of

the holographic part is not stable enough at a long distance, a Hartmann–Shack sensor

is used to measure the wavefront aberration phase as GT. The focal length of the

CCD2 lens is increased to 600mm to photograph a stationary object near the Hart-

mann–Shack sensor as input. The length of the atmospheric turbulence is about

130 m. The Hartmann–Shack sensor and the camera are triggered synchronously using

a section of optical fiber at a frequency of 10HZ. 11,000 pairs of data are sampled to

train and test with the CNN1 (10,000 for training and 1,000 for testing).

The partial results of the networks are shown in Fig. 11, while the SSIM, RMSE and

MAE are 0.961, 2.912 and 2.419 (5.69 %), respectively, which means that the network

can reconstruct the real turbulent phase but the performance is lower than the single

sample case in Sect. 3.2. As indicated by the red arrow in the second column, there are

relatively large errors in the reconstruction results of individual samples (8 %). We attri-

bute this performance degradation to more constantly changing factors in the real en-

vironment, such as ambient light intensity, wind speed, humidity, etc. More in-depth

exploration will be carried out in our follow-up work.

Conclusions

In this paper, we have verified the feasibility of deep learning wavefront distortion

sensing for single and multiple objects. Compared with a single object, the network

performance of multiple objects will be a little reduced. We compared the two

ways of direct phase reconstruction or Zernike coefficient reconstruction by the

Fig. 10 Focus spots before and after correction. a Focus spot before correction; b Focus spot after

correction; c Intensity across the medium horizontal lines of (a) and (b)
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network, and found that the direct way is more accurate for the complex aberra-

tion phase. In addition, the correction effect of this method has been verified in a

turbulent pool environment, and the feasibility of the method has been verified in

a real atmospheric turbulent environment.
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