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Abstract—Unsupervised multilayered (“deep”) models are considered for imagery. The model is represented using a hierarchical

convolutional factor-analysis construction, with sparse factor loadings and scores. The computation of layer-dependent model

parameters is implemented within a Bayesian setting, employing a Gibbs sampler and variational Bayesian (VB) analysis that explicitly

exploit the convolutional nature of the expansion. To address large-scale and streaming data, an online version of VB is also

developed. The number of dictionary elements at each layer is inferred from the data, based on a beta-Bernoulli implementation of the

Indian buffet process. Example results are presented for several image-processing applications, with comparisons to related models in

the literature.
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1 INTRODUCTION

THERE has been significant recent interest in multilayered
or “deep” models for representation of general data,

with a particular focus on imagery and audio signals.
These models are typically implemented in a hierarchical
manner by first learning a data representation at one scale
and using the factor scores or parameters learned at that
scale as inputs for the next level in the hierarchy. Methods
that have been considered include deconvolutional net-
works [1], convolutional networks [2], deep belief networks
(DBNs) [3], hierarchies of sparse autoencoders [4], [5], [6],
and convolutional restricted Boltzmann machines (RBMs)
[7], [8], [9]. A key aspect of many of these algorithms is the
exploitation of the convolution operator, which plays an
important role in addressing large-scale problems, as one
must typically consider all possible shifts of canonical bases
or filters. In such analyses one must learn the form of the
dictionary, as well as the associated coefficients. Concern-
ing the latter, it has been recognized that a preference for
sparse coefficients is desirable [1], [8], [9], [10].

When taking the outputs of layer l and using them as
inputs for layer lþ 1, researchers have investigated several
processing steps that improve computational efficiency and
can also improve model performance. Specifically, research-
ers have pooled proximate parameters from layer l, and a
processing step is employed before the coefficients are

employed as inputs to layer lþ 1. It has been found
desirable to just keep the maximum-amplitude coefficient
within each pooled region; this is termed “max-pooling” [7],
[8]. Max-pooling has two desirable effects: 1) As one moves
to higher levels, the number of input coefficients di-
minishes, aiding computational speed; and 2) it has been
found to improve classification [11], [12], [13].

Some of the multilayered models have close connections
to overcomplete dictionary learning [14], in which image
patches are expanded in terms of a sparse set of dictionary
elements. The deconvolutional and convolutional networks
in [1], [7], [9] similarly represent each level of the
hierarchical model in terms of a sparse set of dictionary
elements; however, rather than separately considering
distinct patches as in [14], the work in [1], [7] allows all
possible shifts of dictionary elements for representation of
the entire image at once (not separate patches).

All of the methods discussed above, for “deep” models
and for sparse dictionary learning for image patches, require
one to specify a priori the number of dictionary elements
employed within each layer of the model. In many
applications, it may be desirable to infer the number of
required dictionary elements based on the data itself. Within
the deep models, for example, the dictionary-element
coefficients at layer l are used (perhaps after pooling) as
input features for layer lþ 1; this corresponds to a problem
of inferring the proper number of features for the data of
interest while allowing for all possible shifts of the
dictionary elements, as in the various convolutional models
discussed above. The idea of learning an appropriate
number and composition of features has motivated the
Indian buffet process (IBP) [15], as well as the beta-Bernoulli
process to which it is closely connected [16], [17]. Such
methods have been applied recently to (single-layer)
dictionary learning in the context of image patches [18].
Further, the IBP has recently been employed for design of
“deep” graphical models [19], although the problem con-
sidered in [19] did not consider multilayer feature learning.
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In this paper, we demonstrate that the idea of building
an unsupervised deep model may be cast in terms of a
hierarchy of factor-analysis models, with the factor scores
from layer l serving as the input (potentially after pooling)
to layer lþ 1. Of the various unsupervised deep models
discussed above, the factor analysis view of hierarchical
and unsupervised feature learning is most connected to
[1], where an ‘1 sparseness constraint is imposed within a
convolution-based dictionary expansion (equivalent to a
sparseness constraint on the factor scores). In this paper,
we consider four differences with previous deep unsu-
pervised models:

1. the form of our model at each layer is different from
that in [1] in that [1] performs optimization and here
we employ Bayesian learning with different types of
convolutional update equations;

2. the number of canonical dictionary elements or
factor loadings at each layer is inferred from the
data by an IBP/beta-Bernoulli construction;

3. sparseness on the dictionary-element coefficients
(factor scores) at each layer is imposed with a
Student-t prior (rather than ‘1 regularization);

4. fast computations are performed using Gibbs sam-
pling and variational Bayesian (VB) analysis, where
the convolution operation is exploited directly within
the update equations.

Furthermore, to address large-scale datasets, including those
arriving in a stream, online VB inference is also developed.

While the form of the proposed model is most related to
[1], the characteristics of our results are more related to [7].
Specifically, when designing the model for particular image
classes, the higher layer dictionary elements have a form
that is often highly intuitive visually. To illustrate this and

to also highlight unique contributions of the proposed
model, consider Fig. 1, which will be described in further
detail in Section 5; these results are computed with a Gibbs
sampler, and similar results are found with batch and
online VB analysis. In this example, we consider images
from the “car” portion of the Caltech 101 image database. In
Fig. 1a, we plot inferred dictionary elements at layer 2 in
the model, and in Fig. 1d we do the same for dictionary
elements at layer 3 (there are a total of three layers and the
layer-1 dictionary elements are simple “primitives,” as
discussed in detail in Section 5). All possible shifts of these
dictionary elements are efficiently employed, via convolu-
tion, at the respective layer in the model. Note that at layer 2
the dictionary elements often capture localized details on
cars, while at layer 3 the dictionary elements often look like
complete cars (“sketches” of cars). To the authors’ knowl-
edge, only the (very distinct) model in [7] achieved such
physically interpretable dictionary elements at the higher
layers in the model. A unique aspect of the proposed model
is that we infer a posterior distribution on the required
number of dictionary elements, based on Gibbs sampling,
with the numerical histograms for these numbers shown
in Figs. 1c and 1f for layers 2 and 3, respectively. Finally, the
Gibbs sampler infers that dictionary elements are needed
for expanding each layer, and in Figs. 1b and 1e the use of
dictionary elements is shown for one Gibbs collection
sample, highlighting the sparse expansion in terms of a
small subset of the potential set of dictionary elements.
These results give a sense of the characteristics of the
proposed model, which is discussed in detail in the
subsequent discussion.

The remainder of the paper is organized as follows:
In Section 2, we develop the multilayer factor analysis
viewpoint of deep models. The detailed form of the
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Fig. 1. Dictionary learned from the Car dataset. (a) Frequently used dictionary elements dddd
ð2Þ
k at the second layer, organized left-to-right and top-down

by their frequency of usage; (b) dictionary usage at layer 2, based on typical collection sample, for each of the images under analysis (white means
used, black means not used); (c) approximate posterior distribution on the number of dictionary elements needed for layer 2, based upon Gibbs
collection samples; (d) third-layer dictionary elements, dddd

ð3Þ
k ; (e) usage of layer-3 dictionary elements for a typical Gibbs collection sample (white

means used, black means not used); (f) approximate posterior distribution on the number of dictionary elements needed at layer 3. All dictionary
elements dddd

ð2Þ
k and dddd

ð3Þ
k are shown in the image plane.



Bayesian model is discussed in Section 3, and methods for
Gibbs, VB, and online VB analysis are discussed in Section 4.
A particular focus is placed on explaining how the
convolution operation is exploited in the update equations
of these iterative computational methods. Several example
results are presented in Section 5, with conclusions
provided in Section 6. An early version of the work
presented here was published in a conference paper [20]
which focused on a distinct hierarchical beta process
construction, and in which the batch and online VB
computational methods were not developed.

2 MULTILAYERED SPARSE FACTOR ANALYSIS

2.1 Single Layer

The nth image to be analyzed is Xn 2 IRny$nx$Kc , where Kc

is the number of color channels (e.g., for gray-scale images
Kc ¼ 1, while for RGB images Kc ¼ 3). We consider
N images fXngn¼1;N , and each image Xn is expanded in
terms of a dictionary, with the dictionary defined by
compact canonical elements ddddk 2 IRn0y$n0x$Kc , with n0x & nx

and n0y & ny. The dictionary elements are designed to
capture local structure within Xn, and all possible two-
dimensional (spatial) shifts of the dictionary elements are
considered for representation of Xn. For K canonical
dictionary elements, the dictionary is fddddkgk¼1;K . In practice,
the number of dictionary elements K is made large, and we
wish to infer the subset of dictionary elements actually
needed to sparsely render Xn as

Xn ¼
XK
k¼1

bnkWnk ' ddddk þ !!!!n; ð1Þ

where ' is the convolution operator and bnk 2 f0; 1g
indicates whether ddddk is used to represent Xn, and !!!!n 2
IRny$nx$Kc represents the residual; note that each dictionary
element ddddk is available for all images n, while bnk indicates
whether it is utilized in the representation of image n. The
matrix Wnk represents the factor score for factor loading
(dictionary element) ddddk for image Xn, and the support of
Wnk is ðny ( n0y þ 1Þ $ ðnx ( n0x þ 1Þ, allowing for all possi-
ble shifts, as in a typical convolutional model [7]. Let
fwnkigi2S represent the components of Wnk where the
set S contains all possible indexes for dictionary shifts. We
impose within the model that most wnki are sufficiently
small to be discarded without significantly affecting the
reconstruction of Xn. A similar sparseness constraint was
imposed in [1], [9], [10].

The construction in (1) may be viewed as a special class
of factor models. Specifically, we can rewrite (1) as

Xn ¼
XK
k¼1

bnk
X
i2S

wnkiddddki þ !!!!n; ð2Þ

where ddddki represents a shifted version of ddddk, shifted such that
the center of ddddk is situated at i 2 S, and ddddki is zero padded
outside the support of ddddk. The ddddki represent factor loadings,
and as designed these loadings are sparse with respect to
the support of an imageXn (because the ddddki have significant
zero-padded extent). This is closely related to sparse factor
analysis applied in gene analysis, in which the factor

loadings are also sparse [21], [22]. Here, however, the
factor loadings have a special structure: The sparse set of
factor loadings fddddkigi2S correspond to the same zero-padded
dictionary element ddddk, with the nonzero components shifted
to all possible locations in the set S. Details on the learning
of model parameters is discussed in Section 3, after first
developing the complete hierarchical model.

2.2 Decimation and Max Pooling

For the nth image Xn and dictionary element ddddk, we have a
set of coefficients (factor scores) fwnkigi2S , corresponding to
all possible shifts in the set S. A “max-pooling” step is
applied to each Wnk, with this employed previously in
deep models [7] and in recent related image-processing
analysis [11], [12]. In max pooling, each matrix Wnk is
divided into a contiguous set of blocks (see Fig. 2), with
each such block of size nMP;y $ nMP;x. The matrix Wnk is
mapped to Ŵnk, with the mth value in Ŵnk corresponding
to the largest magnitude component of Wnk within the
mth max-pooling region. Since Wnk is of size ðny ( n0y þ
1Þ $ ðnx ( n0x þ 1Þ, each Ŵnk is a matrix of size ðny ( n0y þ
1Þ=nMP;y $ ðnx ( n0x þ 1Þ=nMP;x, assuming integer divisions.

To go to the second layer in the deep model, let K̂ denote
the number of dictionary elements ddddk for which bnk 6¼ 0 for
at least one n 2 f1; . . . ; Ng. The K̂ corresponding max-
pooled images from fŴnkgk¼1;K are stacked to constitute a
datacube or tensor (see Fig. 2), with the tensor associated
with image n now becoming the input image at the next
level of the model. The max pooling and stacking is
performed for all N images, and then the same form of
factor modeling is applied to them (the original Kc color
bands is now converted to K̂ effective spectral bands at the
next level). Model fitting at the second layer is performed
analogously to that in (1).

After fitting the model at the second layer, to move to
layer 3, max pooling is again performed, yielding a level-
three tensor for each image, with which factor analysis is
again performed. Note that, because of the max-pooling
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Fig. 2. Explanation of max pooling and collecting of coefficients from
layer 1, for analysis at layer 2 (a similar procedure is implemented when
transiting between any two consecutive layers in the hierarchical model).
The matrix W

ð1Þ
nk defines the shift-dependent coefficients fw

ð1Þ
nkigi2Sð1Þ for

all two-dimensional shifts of dictionary element fdddd
ð1Þ
ki gi2Sð1Þ , for image n

(this same max-pooling is performed for all images n 2 f1; . . . ; Ng). The
matrix of these coefficients is partitioned with spatially contiguous blocks
(bottom left). To perform max pooling, the maximum-amplitude
coefficient within each block is retained and is used to define the matrix
Ŵ

ð1Þ
nk (top-left). This max-pooling process is performed for all dictionary

elements dddd
ð1Þ
k , k 2 f1; . . . ;Kð1Þg, and the set of max-pooled matrices

fŴ
ð1Þ
nk gk¼1;Kð1Þ are stacked to define the tensor at right. The second-layer

data for image n is X
ð2Þ
n , defined by a tensor like that at right. In practice,

when performing stacking (right), we only retain the K̂ð2Þ ) Kð1Þ layers
for which at least one b

ð1Þ
nki 6¼ 0, corresponding to those dictionary

elements dddd
ð1Þ
k used in the expansion of the N images.



step, the number of spatial positions in such images
decreases as one moves to higher levels. Therefore, the
basic computational complexity decreases with increasing
layer within the hierarchy. This process may be continued
for additional layers; in the experiments, we consider up to
three layers.

2.3 Model Features and Visualization

Assume the hierarchical factor-analysis model discussed
above is performed for L layers, and therefore, after max-
pooling, the original image Xn is represented in terms of
L tensors fXðlÞ

n gl¼2;Lþ1. The index l increases as one moves
up the hierarchy away from the image plane, with K̂ðlÞ

“spectral” bands at layer l, and X
ð1Þ
n correspond to the

original nth image, for which K̂ð1Þ ¼ Kc. It is of interest to
examine the physical meaning of the associated dictionary
elements (as shown in Fig. 1, for Layer-1 and Layer-2
dictionary elements).

A dictionary element at a layer l > 1 corresponds to a set
of (generally contiguous) max-pooled factor scores from
layer l( 1. One may sequentially map a dictionary element
from any layer l > 1 to a set of factor scores below, until at
the lowest level the factor scores correspond to dictionary
elements in the image plane. Because of the max-pool step,
when performing such a synthesis, a coefficient at layer l
must be associated with a location within the respective
max-pool subregion at layer l( 1. When synthesizing
examples in Section 5 of dictionary elements projected onto
the image plane, the coefficients are arbitrarily situated in
the center of each max-pool subregion. This is only for
visualization purposes, for illustration of the form of
example dictionary elements; when analyzing a given
image, the location of the maximum pixel within a max-
pool subregion is not necessarily in the center.

3 HIERARCHICAL BAYESIAN ANALYSIS

We now consider an inference framework whereby we may
perform the model fitting desired in (1), which is repeated
at the multiple levels of the “deep” model. We wish to do
this in a manner with which the number of required
dictionary elements at each level may be inferred during the
learning. Toward this end, we propose a Bayesian model
based on an IBP [15] implementation of factor analysis,
executed with a truncated beta-Bernoulli process [16], [17].

3.1 Hierarchical Model

We employ a model of the form

Xn ¼
XK
k¼1

bnkWnk ' ddddk þ !!!!n;

!!!!n * N
!

00; IP"
(1
n

"

;

bnk * Bernoullið#kÞ;

wnki * N ð0; 1=$nkiÞ;

#k * Betað1=K; bÞ;

dkj * N ð0; 1=%jÞ; j 2 f1; . . . ; Jg;

"n * Gammaðc; dÞ;$nki * Gammaðe; fÞ;%j * Gammaðg; hÞ;

ð3Þ

where J denotes the number of pixels in the dictionary
elements ddddk, and ddddkj is the jth component of ddddk. Since the

same basic model is used at each layer of the hierarchy, in
(3) we do not employ model-layer superscripts, for general-
ity. The integer P denotes the number of pixels in Xn, and
IP represents a P $ P identity matrix. The hyperparameters
ðe; fÞ and ðg; hÞ are set to favor large $nki and %j, thereby
imposing that the set of wnki will be compressible or
approximately sparse, which was also found useful for the
dictionary elements ddddk (which yields dictionary elements
that look like sparse “sketches” of images, as shown in
Fig. 1). The priors on ddddk and Wnk are also called automatic
relevance determination (ARD) models [23].

The IBP representation may be used to infer the number
of dictionary elements appropriate for representation of
fXngn¼1;N , while also inferring the dictionary composition.
In practice, we truncate K and infer the subset of dictionary
elements actually needed to represent the data. This
procedure has been found to be computationally efficient
in practice. One could alternatively directly employ the IBP
construction [15] in which the number of dictionary
elements is treated as unbounded in the analysis.

3.2 Computations

Recalling that S indexes the set of all possible shifts within
the image of any dictionary element ddddk, an important aspect
of this model construction is that, when implementing a
Gibbs sampler or VB analysis, all factor scores fwnkigi2S
may be updated efficiently using the convolution operator
(convolving ddddk with Xn), which may be implemented
efficiently via the FFT. Therefore, while the model appears
computationally expensive to implement, because all
possible dictionary shifts i 2 S must be considered, efficient
implementations are possible; this is discussed in detail in
Section 4, where both the Gibbs sampler and VB imple-
mentations are summarized.

3.3 Utilizing the Bayesian Outputs

The collection samples manifested by a Gibbs sampler yield
an ensemble of models, and VB yields a factorized
approximation to the posterior of all model parameters.
When performing max pooling, moving from layer l to layer
lþ 1, a single model must be selected, and here we have
selected the maximum-likelihood (ML) sample among the
collection samples, or the ML point from the VB analysis. In
future research, it will be of interest to examine fuller
exploitation of the Bayesian model. The main utility of the
Bayesian formulation in the applications presented here is
that it allows us to use the data to infer the number of
dictionary elements, with related ideas applied previously
in a distinct class of deep models [24] (that did not consider
shifted dictionary elements).

3.4 Relationship to Previous Models

In (3), recall that upon marginalizing out the precisions $nki

we are imposing a Student-t prior on the factor scores wnki

[23]. Hence, with appropriate settings of hyperparameters
ðe; fÞ, the Student-t imposes that the factor scores wnki

should be (nearly) sparse. This is closely connected to the
model in [1], [8], [9], [10], in which an ‘1 regularization is
imposed on wnki, and a single (point) estimate is inferred on
all model parameters. In [1], the authors also effectively
imposed a Gaussian prior on !!!!n, as we have in (3). Hence,
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there are two principal differences between the proposed
model and that in [1]: 1) Here, the beta-Bernoulli/IBP
construction allows one to infer the number of dictionary
elements (factor loadings) needed to represent the data at a
given layer in the hierarchy, while in [1] this number is set;
2) we infer the model parameters using both Gibbs
sampling and VB, which yield an ensemble of models at
each layer rather than a point estimate. As discussed above,
here the main advantage of difference 2 is as a means to
achieve difference 1 because in most of our results we are
not yet exploiting the full potential of the ensemble of
solutions manifested by the approximate posterior. Other
differences include that 1) sparseness is imposed on the
filter coefficients and filters themselves, via a Bayesian
generalization of the ‘1 regularizer; and 2) to handle
massive data collections, including those arriving in a
stream, we develop online VB.

4 EXPLOITING CONVOLUTION IN INFERENCE

In this section, we introduce two ways to infer the
parameters in the multilayered model, Gibbs sampling
and VB. An online version of VB inference is also developed
to allow the model to scale.

4.1 Gibbs Sampler

We may implement the posterior computation by a Markov
chain Monte Carlo (MCMC) method based on Gibbs
sampling. Samples are constituted by iteratively drawing
each random variable (model parameters and latent
variables) from its conditional posterior distribution given
the most recent values of all the other random variables. In
the proposed model, all conditional distributions used to
draw samples are analytic and relatively standard in
Bayesian analysis. Therefore, for conciseness, all conditional
update equations are presented in the supplemental
material, which can be found in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2013.19.

4.2 VB Inference

For layer l of the model, in VB inference we seek a
distribution Qð!l;"lÞ to approximate the exact posterior
pð!ljXXXXlÞ, where !

l + fbbbbl;WWWW l; ddddl;####l; """"l;$$$$l;%%%%lg. Our objective
is to optimize the parameters "

l in the approximation
Qð!l;"lÞ. Toward that end, consider the lower bound of the
marginal log likelihood of the observed data:

~F ð"lÞ ¼

Z
d!lqð!l;"lÞln

pðXXXXlÞpð!ljXXXXlÞ

qð!l;"lÞ

¼ ln pðXXXXlÞ (KLðqð!l;"lÞkpð!ljXXXXlÞÞ:

ð4Þ

Note that the term pðXXXXlÞ is a constant with respect to "
l,

and therefore, ~F ð"lÞ is maximized when the Kullback-
Leibler divergence KLðqð!l;"lÞkpð!ljXXXXlÞÞ is minimized.
However, we cannot explicitly compute the KL diver-
gence because pð!ljXXXXlÞ is unknown. Fortunately, the
numerator term in ~F ð"lÞ may be computed because
pðXXXXlÞpð!ljXXXXlÞ ¼ pðXXXXlj!lÞpð!lÞ, and the prior pð!lÞ and
likelihood function pðXXXXlj!lÞ are available. To make
computation of ~F ð"lÞ tractable, we assume qð!lj"lÞ has

a factorized form qð!l;"lÞ ¼ #mqmð!
l
m;"

l
mÞ. With appro-

priate choice of qm, the variational expression ~F ð"lÞ may
be evaluated analytically. The VB update equations are
provided in the supplemental material, available online.

4.3 Online VB Analysis

Since the above VB requires a full pass through all the
images each iteration, it can be slow to apply to very large
datasets and it is not naturally suited to settings where new
data are constantly arriving. Therefore, we develop an
online variational inference for the multilayered convolu-
tional factor analysis model, building upon a recent online
implementation of latent Dirichlet allocation [25]. In an
online variational inference, stochastic optimization is
applied to the variational objective. We subsample the data
(in this case, images), compute an approximation of the
gradient based on the subsample, and follow that gradient
with a decreasing step size. The key insight behind efficient
online variational inference is that coordinate ascent
updates applied in parallel precisely form the natural
gradient of the variational objective function. Although the
online VB converges much faster for large datasets, the
practical algorithm is nearly as simple as the batch VB
algorithm. The difference is only the update of global
parameters, i.e., #k and ddddk in convolutional factor analysis.
Suppose we randomly subsample one image each iteration
and the total number of sampled images is D, the lower
bound of image n is defined as

~F l
n ¼ IEq

#

log
!

p
!

XXXXl
n

$

$bbbbln;
%

ddddlk
&Kl

k¼1
;WWWW l

n; "n
"

p
!

bbbblnj####
l
"

p
!

WWWW l
n

$

$$$$$l
n

"

p
!

$$$$l
n

$

$e; f
"

p
!

"ln
$

$c; d
""'

þH
!

q
!

bbbbln
""

þH
!

q
!

WWWW l
n

""

þH
!

q
!

$$$$l
n

""

þH
!

q
!

"ln
""

þ
1

D

#

IEq

#

log
!

pð####ljaÞp
!%

ddddlk
&Kl

k¼1

$

$%%%%l
"

p
!

%%%%l
$

$g; h
""'

þHðqð####lÞÞ þH
!

q
!%

ddddlk
&Kl

k¼1

""

þHðqð%%%%lÞÞ
'

;

ð5Þ

where Hð,Þ is the entropy term for the variational distribu-
tion. Now, our goal is to maximize the lower bound

~F l ¼
X
n

~F l
n ¼ IEn

#

D ~F l
n

'

; ð6Þ

where the expectation is taken over the empirical distribu-
tion of the dataset. The expression D ~F l

n is the variational
lower bound evaluated with D duplicate copies of image n.
Then, take the gradient of global parameters ð&&&&l;!l; '''' l1; ''''

l
2Þ

of D ~F l
n as follows:

@!l
kðnÞ ¼ 1-

!

D
(

"ln
)(

blnk
)(
*

*W
l
nk

*

*

2

2

)

þ
(

%l
k

)"

ð7Þ

@&&&&lkðnÞ ¼ D!l
k .

!(

blnk
)(

"ln
)!

X
l
(n '

(

W
l
nk

)

þ
(

ddddlk
)(
*

*W
l
nk

*

*

2

2

)""
ð8Þ

@' lk1ðnÞ ¼ D
(

blnk
)

þ
1

Kl
ð9Þ

@' lk2ðnÞ ¼ Dþ b(D
(

blnk
)

: ð10Þ
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The symbol . is the element-wise product operator, - is
the element-wise division operator, and h,i represents
expectation of the argument. Similarly to the natural
gradient algorithm, an appropriate learning rate (t is also
needed to ensure the parameters converge to a stationary
point in online inference. Then, the updates of &&&&l,!l, '''' l1,
and '''' l2 become

&&&&lk  ð1( (tÞ&&&&
l
k þ (t&&&&

l
kðnÞ; !

l
k  ð1( (tÞ!

l
k þ (t!

l
kðnÞ

' lk1  ð1( (tÞ'
l
k1 þ (t'

l
k1ðnÞ; ' lk2  ð1( (tÞ'

l
k2 þ (t'

l
k2ðnÞ:

ð11Þ

In our experiments, we use (t ¼ ð'0 þ tÞ(), where ) 2 ð0:5; 1/
and '0 > 0. The overall learning procedure is summarized in
Algorithm 1, provided in the supplemental material,
available online.

5 EXPERIMENTAL RESULTS

5.1 Parameter Settings

While the hierarchical Bayesian construction in (3) may
appear relatively complex, the number of parameters that
need to be set is not particularly large, and they are set in a
“standard” way [17], [18], [23]. Specifically, for the beta-
Bernoulli model a ¼ 1 and b ¼ 1, and for the gamma
distributions c ¼ d ¼ h ¼ 10(6, e ¼ g ¼ 1, and f ¼ 10(3.
The same parameters are used in all examples and in all
layers of the “deep” model. The values of P , J , and K
depend on the specific images under test (i.e., the image
size), and these parameters are specified for the specific
examples. In all examples we consider gray-scale images,
and thereforeKc ¼ 1. For online VB, we set the learning rate
parameters as '0 ¼ 1 and ) ¼ 0:5.

In the examples below, we consider various sizes for dddd
ðlÞ
k

at a given layer l, as well as different settings for the
truncation levels KðlÞ and the max-pooling ratio. These
parameters are selected as examples, and no tuning or
optimization has been performed. Many related settings
yield highly similar results, and the model was found to be
robust to (“reasonable”) variation in these parameters.

5.2 Synthesized and MNIST Examples

To demonstrate the characteristics of the model, we first
consider synthesized data. In Fig. 3, we show eight canonical
shapes, with shifted versions of these basic shapes used to
constitute 10 example images (the latter are manifested in
each case by selecting four of the eight canonical shapes, and
situating them arbitrarily). The eight canonical shapes are
binary and are of size 8$ 8; the 10 synthesized images are
also binary, of size 32$ 32 (i.e., P ¼ 1; 024).

We consider a two-layer model, with the canonical
dictionary elements dddd

ðlÞ
k of size 4$ 4 (J ¼ 16) at layer l ¼ 1,

and of spatial size 3$ 3 (J ¼ 9) at layer l ¼ 2. As
demonstrated below, a two-layer model is sufficient to
capture the (simple) structure in these synthesized images.
In all examples below, we set the number of dictionary
elements at layer 1 to a relatively small value, as at this layer
the objective is to constitute simple primitives [3], [4], [5],
[6], [7], [8]; hereK ¼ 10 at layer 1. For all higher level layers,
we set K to a relatively large value, and allow the IBP
construction to infer the number of dictionary elements
needed; in this example K ¼ 100 at layer 2. When
performing max pooling, upon going from the output of
layer 1 to the input of layer 2, and also when considering
the output of layer 2, the down-sample ratio is two (i.e., the
contiguous regions in which max pooling is performed are
2$ 2; see the left of Fig. 2). The dictionary elements inferred
at layers 1 and 2 are depicted in Fig. 4; in both cases the
dictionary elements are projected down to the image
plane. Note that the dictionary elements dddd

ð1Þ
k from layer 1

constitute basic elements, such as corners, horizontal,
vertical, and diagonal segments. However, at layer 2 the
dictionary elements dddd

ð2Þ
k , when viewed on the image plane,

look like the fundamental shapes in Fig. 3a used to
constitute the synthesized images. As an example of how
the beta-Bernoulli distribution infers dictionary usage and
number, from Fig. 4b we note that at layer 2 the posterior
distribution on the number of dictionary elements is peaked
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Fig. 3. (a) The eight 8$ 8 images at the top are used as building blocks
for generation of synthesized images. (b) Ten generated images are
manifested by arbitrarily selecting four of the eight canonical elements
and situating them arbitrarily. The images are 32$ 32, and in all cases
black is zero and white is one (binary images).

Fig. 4. The inferred dictionary for the synthesized data in Fig. 3b. (a) Dictionary elements at layer 1, dddd
ð1Þ
k , and layer 2, dddd

ð2Þ
k ; (b) estimated posterior

distribution on the number of needed dictionary elements at level two, based upon the Gibbs collection samples. In (a) the images are viewed in the
image plane. The layer 1 dictionary images are 4$ 4, and the layer 1 dictionary images are 9$ 9 (in the image plane, as shown). In all cases, white
represents one and black represents zero.



at 9, with the nine elements from the ML sample shown in
Fig. 4a, while as discussed above, eight basic shapes were
employed to design the toy images. In these examples, we
employed Gibbs sampler with 30,000 burn-in iterations, and
the histogram is based upon 20,000 collection samples. We
ran this many samples because of the computational
efficiency for this problem; good results are obtained with
far fewer samples.

We next consider the widely studied MNIST data,1

which has a total of 60,000 training and 10,000 testing
images, each 28$ 28, for digits 0 through 9. We perform
analysis on 10,000 randomly selected images for Gibbs and
batch VB analysis. We also examine online VB inference on
the whole training set; this an example of the utility of
online-VB for scaling to large problem sizes.

A two-layer model is considered as these images are
again relatively simple. In this analysis, the dictionary
elements at layer 1, dddd

ð1Þ
k , are 7$ 7, while the second layer,

dddd
ð2Þ
k , are 6$ 6. At layer 1 a max-pooling ratio of three is

employed and K ¼ 24, and at layer 2 a max-pooling ratio of
two is used, and K ¼ 64.

In Fig. 5, we present the dictionary elements dddd
ð2Þ
k at

Layer 2, as inferred by Gibbs, batch VB, and online VB, in
each case viewed in the image plane. Layer-1 dictionary
elements are basic, and they look similar for all three
computational methods and are omitted for brevity.
Additional (and similar) Layer-1 dictionary elements are
presented below. We note at layer 2 the dddd

ð2Þ
k take on forms

characteristic of digits and parts of digits.
For the classification task, we construct feature vectors

by concatenating the first and second (pooling) layer
activations based on the 24 Layer 1 and 64 Layer-2
dictionary elements; results are considered based on Gibbs,
batch VB, and online VB computations. The feature vectors
are utilized within a nonlinear support vector machine
(SVM) [26] with Gaussian kernel, in a one-versus-all
multiclass classifier. The parameters in the SVM are tuned
by fivefold cross validation. The Gibbs sampler obtained an
error rate of 0.89 percent, online VB 0.96 percent, and batch
VB 0.95 percent. The results from this experiment are
summarized in Table 1, with comparison to several recent
results on this problem. The results are competitive with the
very best in the field, and are deemed encouraging, because
they are based on features learned by a general purpose,
unsupervised model.

We now examine the computational costs of the different
computational methods, relative to the quality of the model
fit. As a metric, we use normalized reconstruct mean square
error (RMSE) on held-out data, considering 200 test images
each for digits 0 to 9 (2,000 test images in total). When
performing computations on held-out data, the dictionary is
fixed, and the factor scores are then inferred as done when
performing initial learning (but without learning the
dictionary). In Fig. 6, we plot the RMSE at Layers 1 and 2,
as a function of computation time for batch VB, online
VB (with different mini-batch sizes), and Gibbs sampling.
For the batch VB and Gibbs solutions, all 10,000 training
images are processed at once for model learning, and the
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1. http://yann.lecun.com/exdb/mnist/.

Fig. 5. The inferred dictionary for MNIST data. (a) Layer-2 dictionary elements inferred by Gibbs sampler from 10,000 images; (b) Layer-2 dictionary
elements inferred by batch VB from 10,000 images; (c) Layer-2 dictionary elements inferred by online VB from 60,000 images. In all cases, white
represents one and black represents zero.

TABLE 1
Classification Performance for the MNIST Data Set of the
Proposed Model (Denoted cFA, for Convolutional Factor

Analysis) Using Three Inference Methods,
with Comparisons to Approaches from the Literature

Fig. 6. Held-out RMSE with different sizes of minibatches on MNIST
data. Here, we use 10,000 images to train batch VB. For the Gibbs
results, we consider the last sample up to a specified time, and we
employ the same training data as in batch VB (online VB has
the significant advantage of being able to handle much more data).
(a) Layer 1, (b) layer 2.



computation time is directly linked to the number of VB
iterations/Gibbs samples that are employed (all computa-
tions are on the same data). In the online VB solutions,
batches of size 50, 100, or 200 are processed at a time (from
the full 60,000 training images), with the images within a
batch selected at random; for online VB the increased time
reflected in Fig. 6 corresponds to the processing of more
data, while increasing time for the batch (Gibbs and VB)
results corresponds to more VB/Gibbs iterations. All
computations were run on a desktop computer with Intel
Core i7 920 2.26 GHz and 6-GB RAM, with the software
written in Matlab. While none of the code has been carefully
optimized, these results reflect relative computational costs,
and relative fit performance.

Concerning Fig. 6, the largest batch size (200) yields the
best model fit, and at very modest additional computational
cost relative to smaller batches. At Layer 2, there is a
substantial improvement in the model fit of the online VB
methods relative to batch (recalling that the fit is measured
on held-out data). We attribute that to the fact that online
VB has the opportunity to sample (randomly) more of the
training set, by the sequential sampling of different batches.
The size of the batch training set is fixed and smaller, for
computational reasons, and this apparently leads to Layer-2
dictionary elements that are well matched to the training
data, but not as well matched and generalizable to held-out
data. This difference between Layer 1 and Layer 2 relative
batch versus online VB model fit is attributed to the fact that
the Layer-2 dictionary elements capture more structural
detail than the simple Layer-1 dictionary elements, and
therefore, Layer-2 dictionary elements are more susceptible
to overtraining.

5.3 Caltech 101 Data

The Caltech 101 dataset2 is considered next. We rescale
and zero-pad each image to 100$ 100, maintaining the
aspect ratio, and then use local contrast normalization to
preprocess the images (this is to be consistent with
preprocessing steps considered in related models, e.g.,
[7]; this is not required, but it generally helps the visual
form/structure of the inferred dictionary elements, with
less impact on classification performance). Layer-1 dic-
tionary elements dddd

ð1Þ
k are of size 11$ 11, and the max-

pooling ratio is 5. We consider 4$ 4 dictionary elements
dddd
ð2Þ
k and 6$ 6 dictionary elements dddd

ð3Þ
k . The max-pooling

ratio at Layers 2 and 3 is set as 2. The beta-Bernoulli
truncation level was set as K ¼ 200. We first consider
modeling each class of images separately, with a three-
level model considered, as in [7]; because all of the images
within a given class are similar, interesting and distinctive
structure is manifested in the factor loadings, up to the
third layer, as discussed below. In these experiments,
the first set of results are based upon Gibbs sampling.

There are 102 image classes in the Caltech 101 dataset,
and for conciseness we present results here for one (typical)
class, revisiting Fig. 1; we then provide a summary
exposition on several other image classes. The Layer-1
dictionary elements are depicted in Fig. 7, and we only
focus on dddd

ð2Þ
k and dddd

ð3Þ
k , from layers 2 and 3, respectively.

Considering the dddd
ð2Þ
k (in Fig. 1a), one observes several

parts of cars, and for dddd
ð3Þ
k (Fig. 1d) cars are often clearly

visible. It is also of interest to examine the binary variable
b
ð2Þ
nk , which defines which of the candidate dictionary
elements dddd

ð2Þ
k are used to represent a given image. In

Fig. 1b, we present the usage of the dddd
ð2Þ
k (white indicates

being used and black not used, and the dictionary elements
are organized from most probable to least probable to be
used). From Figs. 1c and 1f, one notes that of the 200
candidate dictionary elements, roughly 134 of them are
used frequently at layer 2, and 34 are frequently used at
layer 3. The Layer-1 dictionary elements for these data
(typical of all Layer-1 dictionary elements for natural
images) are depicted in Fig. 7.

In Fig. 8, we show Layer-2 and Layer-3 dictionary
elements from five additional classes of the Caltech
101 dataset (the data from each class are analyzed
separately). Note that these dictionary elements take on a
form well matched to the associated image class. Similar
class-specific Layer 2 and object-specific Layer-3 dictionary
elements were found when each of the Caltech 101 data
classes was analyzed in isolation. Finally, Fig. 9 shows Layer
2- and Layer 3-dictionary elements, viewed in the image
plane, when the model trains simultaneously on five images
from each of four classes (20 total images), where the four
classes are faces, cars, planes, and motorcycle. We see in
Fig. 9 that the Layer-2 dictionary elements seem to capture
general characteristics of all of the classes, while at Layer 3
one observes specialized dictionary elements, specific to
particular classes.

The total Caltech 101 dataset contains 9,144 images, and
we next consider online VB analysis on these images;
batch VB and Gibbs sampling is applied to a subset of
these data. A held-out dataset of 510 images is selected at
random, and we use these images to test the quality of the
learned model to fit new data, as viewed by the model
fit at Layers 1 and 2. Batch VB/Gibbs is trained on
1,020 images (the largest number for which reasonable
computational cost could be achieved on the available
computer), and online VB was considered using minibatch
sizes of 10, 20, and 50. Fig. 11 demonstrates model fit to
the held-out data, for the batch VB/Gibbs and online VB
analysis, as a function of computation, in the same manner
as performed in Fig. 6. For this case, the limitations of
batch VB and Gibbs sampling (not able to use as much
training data, and hence poorer generalization to held-out
data) are evident at both Layers 1 and 2, which is
attributed to the fact that the Caltech 101 data are more
complicated than the MNIST data.

To examine dictionary-element usage, Fig. 12 we show
Layer 2 dictionary usage for a set of 50 face test
images. Note from Fig. 12b that for a given image typically
more than half of the dictionary elements at this layer are
not employed.
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2. http://www.vision.caltech.edu/Image_Datasets/Caltech101/.

Fig. 7. Layer-1 dictionary elements learned by a Gibbs sampler for the
Caltech 101 dataset.



5.4 Layer-Dependent Activation

It is of interest to examine the factor scores w
ðlÞ
nki at each of

the levels of the hierarchy, here for l ¼ 1; 2; 3. In Fig. 13, we

show one example from the face dataset, using Gibbs

sampling and depicting the ML collection sample. Note that

the set of factor scores becomes increasingly sparse with

increasing model layer l, underscoring that at layer l ¼ 1 the

dictionary elements are fundamental (primitive), while

with increasing l the dictionary elements become more

specialized and, therefore, sparsely utilized. The corre-
sponding reconstructions of the image in Fig. 13, as
manifested via the three layers, are depicted in Fig. 14 (in
all cases viewed in the image plane).

5.5 Sparseness

The role of sparseness in dictionary learning has been
discussed in recent papers, especially in the context of
structured or part-based dictionary learning [29], [30]. In
deep networks, the ‘1-penalty parameter has been utilized
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Fig. 8. Analysis of five datasets from Caltech 101, based upon Gibbs sampling. (a)-(e) Inferred Layer-2 dictionary elements, dddd
ð2Þ
k , respectively, for the

following datasets: face, elephant, chair, airplane, motorcycle; (f)-(j) inferred Layer-3 dictionary elements, dddd
ð3Þ
k , for the same respective datasets. All

of images are viewed in the image plane, and each of the classes of images were analyzed separately.

Fig. 9. Joint analysis of four image classes from Caltech 101, based on Gibbs sampling. (a) Original images; (b) Layer-2 dictionary elements dddd
ð2Þ
k ,

(c) Layer-3 dictionary elements dddd
ð3Þ
k . All figures in (b) and (c) are shown in the image plane.



to impose sparseness on hidden units [1], [7]. However, a
detailed examination of the impact of sparseness on various
terms of such models has received limited quantitative
attention. In this section, we employ the Gibbs sampler and
provide a detailed analysis on the effects of hyperpara-
meters on model sparseness.

As indicated at the beginning of this section, parameter b
(the IBP strength parameter) controls sparseness on the
number of filters employed (via the probability of usage,
defined by f#kg). The normal-gamma prior on the wnki

constitutes a Student-t prior, and with e ¼ 1, parameter f
controls the degree of sparseness imposed on the filter
usage (sparseness on the factor scores Wnk); recall that
within the prior $nki * Gammaðe; fÞ, with $nki the precision
for image n, dictionary element k, shift location i. Finally,
the components of the filter ddddk are also drawn from a

Student-t prior, and with g ¼ 1, h controls the sparsity of
each ddddk. Below we focus on the impact of sparseness
parameters b, d, and f on sparseness, and model perfor-
mance, again showing Gibbs results (with very similar
results manifested via batch and online VB).

In Fig. 15, we present variations of MSE with these
hyperparameters, varying one at a time, and keeping the
other fixed as discussed above. These computations
were performed on the face Caltech 101 data using Gibbs
computations, averaging 1,000 collection samples; 20 face
images were considered and averaged over, and similar
results were observed using other image classes. A wide
range of these parameters yield similar good results, all
favoring sparsity (note the axes are on a log scale). Note
that as parameter b increases, a more-parsimonious
(sparse) use of filters is encouraged, and as b increases
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Fig. 10. The inferred Layer 1 and Layer 2 dictionary for Caltech 101
data. (a) Layer-1 and Layer-2 dictionary elements inferred by batch VB
on 1,020 images; (b) Layer-1 and Layer-2 dictionary elements inferred
by online VB on the whole dataset (9,144 images).

Fig. 11. Held-out RMSE with different sizes of minibatches on
Caltech101 data, as in Fig. 6. (a) Layer 1, (b) Layer 2.

Fig. 12. The statistics of Layer-2 coefficients (factor scores) on Caltech 101 face data. (a) The usage of Layer-2 dictionary elements across all held-
out images; (b) the number of active coefficients of different Layer-2 dictionary elements for one (representative) held-out image. In this experiment,
we randomly select 50 face images as training data to learn the dictionary and another different 50 images as held-out images to investigate the
sparsity for different layers (shown in these figures). The number of Layer-2 dictionary elements is 120, and the size of each max-pooled coefficient
matrix is 8$ 8.

Fig. 13. Strength of coefficients w
ðlÞ
nki for all of three layers. (a) Image

considered, (b) layer 1, (c) layer 2, (d) layer 3.

Fig. 14. The reconstructed images at each layer for Fig. 9a. (a) Image
after local contrast normalization, (b) reconstructed image at Layer 1,
(c) reconstructed image at Layer 2, (d) reconstructed image at Layer 3.



the number of inferred dictionary elements (at Layer 2 in
Fig. 16) decreases.

5.6 Classification on Caltech 101

We consider the same classification problem considered by

the authors of [1], [7], [31], [4], [32], considering Caltech 101

data [1], [7], [8]. The analysis is performed in the same

manner these authors have considered previously, and

therefore, our objective is to demonstrate that the proposed

new model construction yields similar results. Results are

based upon a Gibbs, batch VB, and online VB (minibatch

size 20).

We consider a two-layer model, and for Gibbs, batch VB,
and online VB, 1,020 images are used for training (such that
the size of the training set is the same for all cases). We

consider classifier design similar to that in [7], in which we
perform classification based on layer-one coefficients, or
based on both layers 1 and 2. We use a max-pooling step
like that advocated in [11], [12], and we consider the image
broken up into subregions as originally suggested in [31].

Therefore, with 21 regions in the image [31], and F features
on a given level, the max-pooling step yields a 21 , F feature
vector for a given image and model layer (42 , F features
when using coefficients from two layers). Using these

feature vectors, we train an SVM as in [7], with results
summarized in Table 2 (this table is from [1], now with
inclusion of results corresponding to the method proposed
here). It is observed that each of these methods yields

comparable results, suggesting that the proposed method
yields highly competitive performance; our classification
results are most similar to the deep model considered in [7]
(and, as indicated above, the descriptive form of our

learned dictionary elements are also most similar to [7],
which is based on an entirely different means of modeling
each layer). Note, of course, that contrary to previous
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Fig. 15. Average MSE calculated from the last 1,000 Gibbs samples,
considering BP analysis on the Caltech 101 faces data (averaged
across 20 face images considered).

Fig. 16. Considering 20 face images from Caltech 101, we examine setting of sparseness parameters; unless otherwise stated, b ¼ 102, f ¼ 10(5,
and h ¼ 10(5. Parameters h and f are varied in (a) and (b), respectively. In (c), we set e ¼ 10(6 and f ¼ 10(6 and make hidden units unconstrained
to test the influence of parameter b on the model’s sparseness. In all of cases, we show the Layer-2 filters (ordered as above) and an example
reconstruction.



models, critical parameters such as dictionary size are
automatically learned from the data in our model.

In Table 2, we show results on models of the type
considered here, as well as the latest results from related
models that have considered this dataset. There are four
methods whose performances are beyond 70 percent,
specifically Hierarchical Matching Pursuit (HMP), HSC,
and Macrofeature, and Adaptive Deconvolutional Net-
works (AdaptiveDN). The first three methods are based
on overlapping local patches (not explicitly convolutional).
Macrofeature [11] embeds the sophisticated joint encoding
scheme into the spatial pyramid framework via extracted
SIFT type features with SPM classifier (rather than proces-
sing the raw pixels, as we do). In [33], for HSC, the authors
proposed a jointly trained two-layer sparse coding frame-
work, which accounts for high-order dependency among
patterns in a local image neighborhood and captures spatial
correlation via the variance of sparse coding responses.
HMP [34] first learns a dictionary from a large set of image
patches from the training images. After the dictionary is
learned, in the first layer sparse codes are computed on
small patches around each single pixel and then pooled into
feature vectors representing patches by spatial pyramid
max pooling. The second layer encodes these feature
vectors via a dictionary learned from sampled patch level
feature vectors. Thanks to good computational complexity,
both HSC and HMP construct the very high-dimensional
features at each layer with a large number of dictionary
elements and finally use linear classifier.

Most related to our model, AdaptiveDN [35], a multi-
layered convolutional network, overcomes the drawback of
traditional layerwise stacked deep models that higher
layers of the model have an increasingly diluted connection

to the input. Instead, they locally adapt the models filters to
the observed data and allow each layer to be trained with
respect to the original image, rather than the output of the
previous layer. But due to this adaptivity, the dictionary
may need to change for different image classes, rather than
being general. An approach of this form could be
considered in the future for the proposed method.

For our methods, concerning performance comparisons
between the different computational methods, the results
based upon Gibbs sampling are consistently better than
those based on VB, and the online VB results seem to
generalize to held-out data slightly better than batch VB.
The significant advantage of VB comes in the context of
dictionary learning times. On 1,020 images for each layer,
the Gibbs results (1,500 samples) required about 20 hours,
while the batch VB on 1,020 images required about
11 hours. By contrast, when analyzing all 9,144 Caltech
101 images, online VB required less than 3 hours. All
computations were performed in Matlab, on an Intel Core
i7 920 2.26 GHz and 6-GB RAM computer (as considered in
all experiments).

5.7 Online VB and Van Gogh Painting Analysis

Our final experiment is on a set of high-resolution scans of
paintings by Vincent van Gogh. This dataset includes
101 high resolution paintings with various sizes (e.g.,
5;000$ 5;000). Art historians analyze the paintings locally,
dividing into subimages; we follow the same procedure and
divide each image into several 128$ 128 smaller images
(each painting ranged from 16 to 2,000 small images ) [38].
The total dataset size is 40,000 subimages.

One issue with these paintings is that most of the time a
significant portion of the image does not include any
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TABLE 2
Classification Performance of the Proposed Model (Denoted cFA, for Convolutional Factor Analysis)

with Several Methods from the Literature

Results are for the Caltech 101 dataset. The results are arranged in four groups, from top to bottom. Group 1: hierarchical sparse coding (HSC)
based on multiscale raw patches with linear classifier; Group 2: other related methods with Spatial Pyramid Matching (SPM) classifier; Group 3:
existing related convolutional sparse coding methods with SPM classifier; Group 4: our approach.



brushstroke; it is mostly insignificant background including
cracks of paint due to aging or artifacts from canvas. This
can be observed in Fig. 17. Batch deep learning cannot
handle this dataset due to its huge size. Online algorithm
provides a way to train the dictionary by going over the
entire dataset: iteratively sampling several portions from
paintings and analyzing the entire dataset. This mechanism
also provides robustness to the regions of paintings with
artifacts—even if some subimages are from such a region,
the ability to go over the entire dataset eliminates over-
fitting those.

For the first and second layers, we use dictionary
element sizes of 9$ 9 and 3$ 3, and corresponding max-
pooling ratios of 5 and 2. The minibatch size is 6. The
truncation level K is set to 25 for the first layer and 50 for
the second layer. The learning rate parameters are (0 ¼ 1

and ) ¼ 0:5. We analyzed 20,000 subimages and the learned
dictionary is shown in Fig. 17. The layer-2 outputs, when
viewed on the image plane, look similar to the basic vision
tokens discussed by Marr [39] and Donoho [40]. This is
consistent with our observation in Fig. 10a and one of the
key findings of [20]: When the diversity in the dataset is
high (e.g., analyzing all classes of Caltech 101 together),
learned dictionaries look like primitive edges. We observe
that similar type of tokens are extracted by analyzing
diverse brushstrokes of Van Gogh which have different
thicknesses and directions.

6 CONCLUSIONS

The development of deep unsupervised models has been
cast in the form of hierarchical factor analysis, where the
factor loadings are sparse and characterized by a unique
convolutional form. The factor scores from layer l serve as
the inputs to layer lþ 1, with a max-pooling step. By
framing the problem in this manner, we can leverage
significant previous research with factor analysis [41].
Specifically, a truncated beta-Bernoulli process [16], [17],
motivated by the IBP [15], has been used on the number of
dictionary elements needed at each layer in the hierarchy
(with a particular focus on inferring the number of
dictionary elements at higher levels, while at layer 1 we
typically set the model with a relatively small number of
primitive dictionary elements). We also employ a hierarch-
ical construction of the Student-t distribution [23] to impose
sparseness on the factor scores, with this related to previous
sparseness constraints imposed via ‘1 regularization [1].

The inferred dictionary elements, particularly at higher
levels, typically have descriptive characteristics when
viewed in the image plane.

Summarizing observations, when the model was em-
ployed on a specific class of images (e.g., cars, planes, seats,
motorcycles, etc.), the Layer-3 dictionary elements when
viewed in the image plane looked very similar to the
associated class of images (see Fig. 8), with similar (but less
fully formed) structure seen for Layer-2 dictionary ele-
ments. Further, for such single-class studies the beta-
Bernoulli construction typically only used a relatively small
subset of the total possible number of dictionary elements at
Layers 2 and 3, as defined by the truncation level. However,
when considering a wide class of “natural” images at once,
while the higher level dictionary elements were descriptive
of localized structure within imagery, they looked less like
any specific entity (see Fig. 12); this is to be expected by the
increased heterogenity of the imagery under analysis.
Additionally, for the dictionary-element truncation consid-
ered, as the diversity in the images increased it was more
likely that all of the possible dictionary elements within the
truncation level were used by at least one image. Never-
theless, as expected from the IBP, there was a relatively
small subset of dictionary elements at each level that were
“popular”, or widely used (see Section 3.1).

In general, we find that the posterior distribution on the
number of dictionary elements may change as a function of
the type of images considered. However, based upon
running the IBP framework on a given class of images,
one can safely set the number of dictionary elements at the
mode of the posterior. For similar images in the future one
may use that setting and avoid the IBP. We would argue
that the IBP provides a “principled means of model
exploration. One could alternatively explore (with perhaps
exhaustive testing) different settings for the number of
dictionary elements, but the proposed approach is more
systematic, and perhaps valuable when new classes of
images are considered.
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