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Abstract

Training of large-scale deep neural networks is

often constrained by the available computational

resources. We study the effect of limited preci-

sion data representation and computation on neu-

ral network training. Within the context of low-

precision fixed-point computations, we observe

the rounding scheme to play a crucial role in de-

termining the network’s behavior during train-

ing. Our results show that deep networks can be

trained using only 16-bit wide fixed-point num-

ber representation when using stochastic round-

ing, and incur little to no degradation in the

classification accuracy. We also demonstrate an

energy-efficient hardware accelerator that imple-

ments low-precision fixed-point arithmetic with

stochastic rounding.

1. Introduction

To a large extent, the success of deep learning techniques is

contingent upon the underlying hardware platform’s ability

to perform fast, supervised training of complex networks

using large quantities of labeled data. Such a capability

enables rapid evaluation of different network architectures

and a thorough search over the space of model hyperpa-

rameters. It should therefore come as no surprise that re-

cent years have seen a resurgence of interest in deploy-

ing large-scale computing infrastructure designed specif-

ically for training deep neural networks. Some notable

efforts in this direction include distributed computing in-

frastructure using thousands of CPU cores (Dean et al.,

2012; Chilimbi et al., 2014), or high-end graphics proces-

sors (GPUs) (Ciresan et al., 2010; Krizhevsky et al., 2012),
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or a combination of CPUs and GPUs scaled-up to multiple

nodes (Coates et al., 2013; Wu et al., 2015).

At the same time, the natural error resiliency of neu-

ral network architectures and learning algorithms is well-

documented, setting them apart from more traditional

workloads that typically require precise computations and

number representations with high dynamic range. It is well

appreciated that in the presence of statistical approxima-

tion and estimation errors, high-precision computation in

the context of learning is rather unnecessary (Bottou &

Bousquet, 2007). Moreover, the addition of noise during

training has been shown to improve the neural network’s

performance (Murray & Edwards, 1994; Bishop, 1995; An,

1996; Audhkhasi et al., 2013). With the exception of em-

ploying the asynchronous version of the stochastic gradi-

ent descent algorithm (Recht et al., 2011) to reduce net-

work traffic, the state-of-the-art large-scale deep learning

systems fail to adequately capitalize on the error-resiliency

of their workloads. These systems are built by assembling

general-purpose computing hardware designed to cater to

the needs of more traditional workloads, incurring high and

often unnecessary overhead in the required computational

resources.

This work is built upon the idea that algorithm-level noise

tolerance can be leveraged to simplify underlying hard-

ware requirements, leading to a co-optimized system that

achieves significant improvements in computational perfor-

mance and energy efficiency. Allowing the low-level hard-

ware components to perform approximate, possibly non-

deterministic computations and exposing these hardware-

generated errors up to the algorithm level of the comput-

ing stack forms a key ingredient in developing such sys-

tems. Additionally, the low-level hardware changes need

to be introduced in a manner that preserves the program-

ming model so that the benefits can be readily absorbed at

the application-level without incurring significant software

redevelopment costs.
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As a first step towards achieving this cross-layer co-design,

we explore the use of low-precision fixed-point arithmetic

for deep neural network training with a special focus on

the rounding mode adopted while performing operations on

fixed-point numbers. The motivation to move to fixed-point

arithmetic (from the conventional floating-point computa-

tions) is two-fold. Firstly, fixed-point compute units are

typically faster and consume far less hardware resources

and power than floating-point engines. The smaller logic

footprint of the fixed-point arithmetic circuits would allow

for the instantiation of many more such units for a given

area and power budget. Secondly, low-precision data rep-

resentation reduces the memory footprint, enabling larger

models to fit within the given memory capacity and lower-

ing the bandwidth requirements. Cumulatively, this could

provide dramatically improved data-level parallelism.

The key finding of our exploration is that deep neural net-

works can be trained using low-precision fixed-point arith-

metic, provided that the stochastic rounding scheme is ap-

plied while operating on fixed-point numbers. We test

the validity of the proposed approach by training deep

neural networks for the MNIST (Lecun & Cortes) and

CIFAR10 (Krizhevsky et al., 2012) image classification

tasks. Deep networks trained using 16-bit wide fixed-point

and stochastic rounding achieve nearly the same perfor-

mance as that obtained when trained using 32-bit floating-

point computations. Furthermore, we present a hardware

accelerator design, prototyped on an FPGA, that achieves

high throughput and low power using a large number of

fixed-point arithmetic units, a dataflow architecture, and

compact stochastic rounding modules.

2. Related Work

Determining the precision of the data representation and

the compute units is a critical design choice in the hard-

ware (analog or digital) implementation of artificial neural

networks. Not surprisingly, a rich body of literature exists

that aims to quantify the effect of this choice on the net-

work’s performance. However, a disproportionately large

majority of these studies are focused primarily on imple-

menting just the feed-forward (inference) stage, assuming

that the network is trained offline using high precision com-

putations. Some recent studies that embrace this approach

have relied on the processor’s vector instructions to per-

form multiple 8 bit operations in parallel (Vanhoucke et al.,

2011), or employ reconfigurable hardware (FPGAs) for

high-throughput, energy-efficient inference (Farabet et al.,

2011; Gokhale et al., 2014), or take the route of custom

hardware implementations (Kim et al., 2014; Merolla et al.,

2014).

Previous studies have also investigated neural network

training using different number representations. Iwata et

al. (Iwata et al., 1989) implements the back-propagation al-

gorithm using 24-bit floating-point processing units. Ham-

merstrom (Hammerstrom, 1990) presents a framework for

on-chip learning using 8 to 16 bit fixed-point arithmetic.

In (Holt & Hwang, 1993), the authors perform theoretical

analysis to understand a neural network’s ability to learn

when trained in a limited precision setting. Results from

empirical evaluation of simple networks indicate that in

most cases, 8-16 bits of precision is sufficient for back-

propagation learning. In (Höhfeld & Fahlman, 1992),

probabilistic rounding of weight updates is used to further

reduce (< 8 bits) the precision requirements in gradient-

based learning techniques. While these studies provide

valuable insights into the behavior of the limited precision

training of neural networks, the networks considered are

often limited to variants of the classical multilayer percep-

tron containing a single hidden layer and only a few hid-

den units. Extrapolating these results to the state-of-the-art

deep neural networks that can easily contain millions of

trainable parameters is non-trivial. Consequently, there is a

need to reassess the impact of limited precision computa-

tions within the context of more contemporary deep neural

network architectures, datasets, and training procedures.

A recent work (Chen et al., 2014) presents a hardware ac-

celerator for deep neural network training that employs

fixed-point computation units, but finds it necessary to

use 32-bit fixed-point representation to achieve conver-

gence while training a convolutional neural network on

the MNIST dataset. In contrast, our results show that

it is possible to train these networks using only 16-bit

fixed-point numbers, so long as stochastic rounding is used

during fixed-point computations. To our knowledge, this

work represents the first study of application of stochastic

rounding while training deep neural networks using low-

precision fixed-point arithmetic.

3. Limited Precision Arithmetic

Standard implementations of deep neural network train-

ing via the back-propagation algorithm typically use 32-bit

floating-point (float) representation of real numbers for

data storage and manipulation. Instead, consider the gener-

alized fixed-point number representation: [QI.QF], where

QI and QF correspond to the integer and the fractional part

of the number, respectively. The number of integer bits

(IL) plus the number of fractional bits (FL) yields the to-

tal number of bits used to represent the number. The sum

IL + FL is referred to as the word length WL. In this pa-

per, we use the notation 〈IL, FL〉 to denote a fixed-point

representation in which IL (FL) correspond to the length

of the integer (fractional) part of the number. We also em-

ploy ǫ to denote the smallest positive number that may be

represented in the given fixed-point format. Therefore, the
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〈IL, FL〉 fixed-point format limits the precision to FL bits,

sets the range to
[

−2IL−1, 2IL−1 − 2−FL
]

, and defines ǫ to

be equal to 2−FL.

3.1. Rounding Modes

As will be evident in the sections to follow, the round-

ing mode adopted while converting a number (presumably

represented using the float or a higher precision1 fixed-

point format) into a lower precision fixed-point represen-

tation turns out to be a matter of important consideration

while performing computations on fixed-point numbers.

Given a number x and the target fixed-point representation

〈IL, FL〉, we define ⌊x⌋ as the largest integer multiple of

ǫ (= 2−FL) less than or equal to x and consider the follow-

ing rounding schemes:

• Round-to-nearest

Round(x, 〈IL, FL〉) =
{

⌊x⌋ if ⌊x⌋ ≤ x ≤ ⌊x⌋+ ǫ

2

⌊x⌋+ ǫ if ⌊x⌋+ ǫ

2
< x ≤ ⌊x⌋+ ǫ

• Stochastic rounding: The probability of rounding x to

⌊x⌋ is proportional to the proximity of x to ⌊x⌋:

Round (x, 〈IL, FL〉) =

{

⌊x⌋ w.p. 1− x−⌊x⌋
ǫ

⌊x⌋+ ǫ w.p.
x−⌊x⌋

ǫ

Stochastic rounding is an unbiased rounding scheme and

possesses the desirable property that the expected round-

ing error is zero, i.e. E (Round (x, 〈IL, FL〉)) = x

Irrespective of the rounding mode used, if x lies outside the

range of 〈IL, FL〉, we saturate the result to either the lower

or the upper limit of 〈IL, FL〉:

Convert (x, 〈IL, FL〉) =










−2IL−1 if x ≤ −2IL−1

2IL−1 − 2−FL if x ≥ 2IL−1 − 2−FL

Round(x, 〈IL, FL〉) otherwise

(1)

3.2. Multiply and accumulate (MACC) operation

Consider two d-dimensional vectors a and b such that

each component is represented in the fixed-point format

〈IL, FL〉, and define c0 = a.b as the inner product of a

and b. c0 is also represented in some fixed-point format

〈 ~IL, ~IF〉. We split the computation of c0 into the following

two steps:

1We call 〈IL1, FL1〉 to be a higher precision representation
than 〈IL2, FL2〉 iff FL1 > FL2

1. Compute z =
∑

d

i=1
aibi

The product of ai and bi produces a fixed-point num-

ber in the 〈2 ∗ IL, 2 ∗ FL〉 format. z can be thought of

as a temporary fixed-point register with enough width

(number of bits) to prevent saturation/overflow and avoid

any loss of precision while accumulating the sum over

all products aibi. The requirement on the width of z is

log2d + 2WL in the worst case. Note that the worst case

is extremely rare and occurs when all ai and bi are satu-

rated to either the lower or the upper limit of 〈IL, FL〉.

2. Convert: c0 = Convert(z, 〈 ~IL, ~IF〉)

This step invokes the Convert() function defined pre-

viously in eq. 1, resulting in either clipping the value in

z to the limits set by 〈 ~IL, ~IF〉 or rounding to ~FL bits of

fractional precision using the specified rounding mode.

Adopting this two-step approach has several advantages.

Firstly, it closely mimics the behavior of the hardware im-

plementation of vector inner product using the the hard-

ware DSP2 units in FPGAs. These DSP units accept 18-bit

inputs and accumulate the results of the MACC operation in

a 48-bit wide register. Secondly, by invoking the rounding

mode only after the accumulation of all the sums, we sig-

nificantly reduce the hardware overhead in implementing

the stochastic rounding scheme. Lastly, the adoption of this

approach allows us to efficiently simulate fixed-point com-

putations using CPUs/GPUs and vendor-supplied BLAS3

libraries. For instance, matrix multiplication of two fixed-

point matrices A and B can be simulated by first converting

them into float matrices, calling the hardware-optimized

SGEMM routine and applying the Convert() function to

each element of the resulting float matrix.

4. Training Deep Networks

In this section, we present the results of our investigation

into the effect of employing limited precision data rep-

resentation during the training of deep neural networks.

We consider both fully connected deep neural networks

(DNN) as well as convolutional neural networks (CNN)

and present results for the MNIST and the CIFAR10

datasets. As a baseline for comparison, we first evalu-

ate the network performance (in terms of the rate of re-

duction of both the training error and the error on the test

set) using the conventional 32-bit floating-point arithmetic.

Subsequently, we constrain the neural network parameters

(weights W l, biases Bl), as well as the other intermedi-

ate variables generated during the back-propagation algo-

rithm (layer outputs Y l, back-propagated error δl, weight

2Digital Signal Processing units are hardware units in the
FPGA fabric that can implement several mathematical and log-
ical operations including fixed-point multiplication and addition.

3Basic Linear Algebra Subprograms
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Figure 1. MNIST dataset using fully connected DNNs: Training error (a, c) and the test error (b, d) for training using fixed-point number

representation and rounding mode set to either “Round to nearest” (top) or “Stochastic rounding” (bottom). The word length for fixed-

point numbers WL is kept fixed at 16 bits and results are shown for three different fractional (integer) lengths: 8(8), 10(6), and 14(2) bits.

Results using float are also shown for comparison.

updates ∆W l, bias updates ∆Bl) to be represented in the

fixed-point format and train the network again starting from

random initialization of the parameters. While training us-

ing fixed-point, the different model hyperparameters such

as weight initialization, regularization parameters, learning

rates etc. are kept unchanged from the ones used during the

baseline evaluation. The word length WL for the fixed-point

format is set to 16 bits i.e. the number of bits allocated to

represent the integer and the fractional parts add up to 16.

This fairly restrictive choice of number representation has

some important implications. From the perspective of neu-

ral network training, an aggressive reduction of the preci-

sion with which the parameter updates are computed and

stored may result in the loss of the gradient information if

the updates are significantly smaller than the ǫ for the given

fixed-point format. As a consequence, this may impede the

progress of the gradient descent algorithm, or worse, in-

troduce instabilities during the training procedure. Note

that in the round-to-nearest scheme, any parameter update

in the range
(

− ǫ

2
, ǫ

2

)

is always rounded to zero, as op-

posed to the stochastic rounding scheme which maintains

a non-zero probability of small parameter updates to round

to ±ǫ. Secondly, since the fixed-point format offers only

a limited range, outputs of the ReLU activation function

may get clipped to the upper limit set by 〈IL, FL〉. From

a hardware perspective, the use of 16-bits for data stor-

age (instead of float) corresponds to a factor 2 reduction

in the amount of memory and communication bandwidth

needed for training a given network. Moreover, the use of

the same word length for all network variables carries with

it the added advantage of simplifying the hardware imple-

mentation.

4.1. MNIST

4.1.1. FULLY CONNECTED DNN

In the first set of experiments, we construct a fully con-

nected neural network with 2 hidden layers, each contain-

ing 1000 units with ReLU activation function and train

this network to recognize the handwritten digits from the

MNIST dataset. This dataset comprises of 60, 000 training

images and 10, 000 test images – each image is 28× 28
pixels containing a digit from 0 to 9. The pixel values

are normalized to lie in the [0, 1] range. No other form

of data pre-processing or augmentation is performed. The

weights in each layer are initialized by sampling random

values from N (0, 0.01) while the bias vectors are initial-

ized to 0. The network is trained using minibatch stochas-

tic gradient descent (SGD) with a minibatch size of 100 to

minimize the cross entropy objective function. The float

baseline achieves a test error of 1.4%.

Next, we retrain the network using fixed-point computa-

tions and set WL to 16 bits. Figure 1 shows the results for

the two rounding modes: Round-to-nearest and Stochas-
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Figure 2. MNIST dataset using CNNs: Training error (a) and the test error (b) for training using fixed-point number representation and

rounding mode set to either “Round to nearest” or “Stochastic rounding”. The word length for fixed-point numbers WL is kept fixed at 16

bits and results are shown for different fractional (integer) lengths for weights and weight updates: 12(4), and 14(2) bits. Layer outputs

use 〈6, 10〉 format in all cases. Results using float are also shown for comparison.

tic rounding. In both cases, allocating 14 bits to the frac-

tional part4 produces no noticeable degradation in either

the convergence rate or the classification accuracy. A re-

duction in the precision below 14 bits begins to negatively

impact the network’s ability to learn when the round-to-

nearest scheme is adopted. This is primarily because at

reduced fractional precision, most of the parameter updates

are rounded down to zero. In contrast, the stochastic round-

ing preserves the gradient information, atleast statistically,

and the network is able to learn with as few as 8 bits of pre-

cision without any significant loss in performance. Note,

however, at a precision lower than 8 bits, even the stochas-

tic rounding scheme is unable to fully prevent the loss of

gradient information.

4.1.2. CNN

Using the MNIST dataset, we also evaluate a CNN with

an architecture similar to LeNet-5 (LeCun et al., 1998). It

comprises of 2 convolutional layers with 5 × 5 filters and

ReLU activation function. The first layer has 8 feature

maps while the second convolutional layer produces 16 fea-

ture maps. Each convolutional layer is followed by a pool-

ing/subsampling layer. The pooling layers implement the

max pooling function over non-overlapping pooling win-

dows of size 2× 2. The output of the second pooling layer

feeds into a fully connected layer consisting of 128 ReLU

neurons, which is then connected into a 10-way softmax

output layer.

For training this network, we adopt an exponentially de-

creasing learning rate – scaling it by a factor of 0.95 af-

ter every epoch of training. The learning rate for the first

epoch is set to 0.1. Momentum (p = 0.9) is used to speed

4Using up 14 bits for the fractional part leaves only 2 bits (in-
cluding the sign bit) for representing the integer portion of the
number. This does not seem to adversely affect the network per-
formance.

up SGD convergence. The weight decay parameter is set

to 0.0005 for all layers. When trained using float, the

network achieves a test error of 0.77%. As was done previ-

ously for DNNs, we retrain the network using fixed-point

computations with WL set to 16 bits. However, in this case,

saturating the output of the convolutional layers to a low

integer value created some difficulty in jump-starting the

training procedure. As a result, we increase the number of

bits allocated for the integer part at the expense of reducing

the precision and choose the 〈6, 10〉 format for representing

the layer outputs. Figure 2 compiles the results obtained us-

ing the two different rounding modes. Unlike in the case of

DNNs, when the round-to-nearest scheme is adopted dur-

ing fixed-point computations, the training procedure fails

to converge. When stochastic rounding is used, we achieve

a test error of 0.83% and 0.90% for 14-bit and 12-bit pre-

cision, respectively – corresponding to only a slight degra-

dation from the float baseline.

4.2. CIFAR10

To further test the validity of the stochastic rounding ap-

proach, we consider another commonly used image classi-

fication benchmark: CIFAR10. The training set consists of

50, 000 RGB images of size 32 × 32 pixels. The images

are divided into 10 classes, each containing 5, 000 images.

The test set has 10, 000 images. We scale the image RGB

values to [0,1] range and do not perform any other form of

data pre-processing or augmentation. For this dataset, we

construct a CNN with 3 convolutional layers each followed

by a subsampling/pooling layer. The convolutional layers

consist of 64 5×5 filters and the subsampling layers imple-

ment the max pooling function over a window of size 3×3
using a stride of 2. The 3rd pooling layer connects to a 10-

way softmax output layer. This architecture is similar to the

one introduced in (Hinton et al., 2012) with the exception

that it does not implement local response normalization or

dropout layers.
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Figure 3. CIFAR10 dataset using CNNs: Training error (a) and the test error (b) for training using fixed-point number representation and

rounding mode set to either “Round to nearest” or “Stochastic rounding”. The word length for fixed-point numbers WL is kept fixed at

16 bits and results are shown for different fractional (integer) lengths for weights and weight updates: 12(4), and 14(2) bits. The black

arrows indicate the epoch after which the training is carried out using WL = 20 bits. Results using float are also shown for comparison.

The network training starts off with a learning rate of 0.01
and reduced by a factor of 2 after 50, 75, and 100 epochs.

Using 32-bit floating point numbers for training, this net-

work configuration misclassifies approximately 24.6% of

the images in the test set. This serves as the baseline for

comparing the results obtained while training the network

using fixed-point computations. Similar to earlier experi-

ments, we set the WL for fixed-point number to 16 and test

the different rounding modes and fractional precision. The

layer outputs are represented in the 〈4, 12〉 format. As ob-

served previously and as shown in Figure 3, training us-

ing fixed-point with round-to-nearest scheme begins to col-

lapse after only a few epochs. On the contrary, the stochas-

tic rounding scheme appears to bestow upon the training

procedure a significantly higher degree of stability. For

14 bits of fractional precision and the stochastic rounding

scheme, the network’s behavior is quite similar to that ob-

served during the baseline evaluation and achieves a test

error of 25.4%.

If the precision is reduced further (to 12 bits) the conver-

gence rate degrades as the learning proceeds and after a

point, SGD stops making progress. This is expected since

at reduced precision, the parameter updates tend to become

sparser (despite stochastic rounding) due to the perilous

combination of smaller gradients and diminished learning

rates. The network’s performance suffers as a result and

the minimum achievable test error saturates at 28.8%. For-

tunately, this damage is reversible as shown in Figure 3.

After training for 100 epochs using the 〈4, 12〉 format, we

relax the constraint on WL slightly and increase WL by 4 bits

to 20 bits. This increases the fractional precision to 16 bits

(〈4, 16〉 format) and subsequent training results in a rapid

improvement in the network’s performance. After an addi-

tional 15-20 epochs of training using the higher precision

representation, the test error approaches that obtained using

float.

This result reveals a promising (and possibly more robust)

strategy for deep neural network training in which the net-

work is first trained using low-precision fixed-point arith-

metic and stochastic rounding. At the point where learning

shows stagnation, the network can be “fine-tuned” using

only a few epochs of higher-precision fixed-point computa-

tions. Such a concept of employing mixed-precision com-

putations has been explored previously in the context of

floating point arithmetic (Baboulin et al., 2009), motivated

largely by the fact that most modern processors achieve a

factor 2 to 4 higher computational throughput for single-

precision (32-bit) floating-point as compared with double-

precision (64-bit) floating-point. Similar concepts, in con-

junction with stochastic rounding, can be extended to per-

form mixed-precision fixed-point arithmetic.5

5. Hardware Prototyping

The execution time of the mini-batch stochastic gradient

descent algorithm is dominated by a series of GEMM op-

erations in the feed-forward, error back-propagation and

weight update calculation steps6. As a result, an improve-

ment in the computational throughput of the GEMM oper-

ation translates into an improvement in the training time.

GPUs offering a large number of parallel vector proces-

sors and high memory bandwidth have therefore been very

effective in accelerating these workloads. However, cur-

rently available GPUs are heavily optimized for improving

floating-point performance.

5While preparing this paper, we became aware of a very re-
cent work (Courbariaux et al., 2014) that shares our motivations
but adopts an orthogonal approach. The authors propose the use
of dynamic fixed-point (a hybrid of the fixed-point and the con-
ventional floating-point arithmetic) for training deep neural net-
works. However, hardware implications of this approach are not
immediately obvious.

6Convolution may also be rewritten as a GEMM operation
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In this section we describe a FPGA7-based hardware ac-

celerator for fixed-point matrix multiplication. Our choice

of using FPGAs as the hardware substrate is motivated by

two factors. Firstly, FPGAs enable fast hardware develop-

ment times and significantly lower costs when compared to

ASICs8. Secondly, modern FPGAs have a large number of

hard-wired fixed-point DSP units that are well-suited for

implementing the fixed-point arithmetic described in the

earlier sections, and can potentially yield gains in perfor-

mance and energy efficiency.

Our prototype is implemented on an off-the-shelf FPGA

card featuring a Xilinx Kintex325T FPGA and 8 GB DDR3
memory, and communicating with the host PC over a PCIe

bus. This FPGA has 840 DSP multiply-accumulate units

and almost 2 MB of on-chip block RAM. The peak data

bandwidth between the off-chip DDR3 memory and the

FPGA is 6.4 GB/s. This memory bandwidth must be care-

fully managed to prevent the compute engine from stalling.

The typical dimensions of the input matrices preclude stor-

ing entire matrices in on-chip RAM. Thus, these matrices

are stored in the DDR3 memory and parts of the matri-

ces are brought into the FPGA for performing the com-

putations. The off-chip communication bandwidth limi-

tation necessitates that we reuse the on-chip data to the

highest extent possible to make the achievable throughput,

measured in giga-operations/second (G-ops/s), compute-

bound.

5.1. System Description

Figure 4 presents a block diagram of the our fixed-point

matrix multiplier. The DSP units within the FPGA are or-

ganized as a massively parallel 2-dimensional systolic ar-

ray (SA) (Kung, 1982) of size n such that n2 < 840.

This forms the core of the multiplier and will be described

in greater detail in the next subsection. Most of the block

7Field-Programmable Gate Array
8Application Specific Integrated Circuits

RAM on the FPGA is designated as the L2 cache where

a fraction of the input matrices are stored. The READ

logic sends data requests to the DDR3 memory and orga-

nizes the incoming data into the L2 cache. The WRITE

logic sends back computed results to the external memory.

The L2-to-SA circuit moves relevant rows and columns

from the L2 cache to the array. The TOP controller coordi-

nates the entire process. The FPGA also contains Xilinx-

supplied IP blocks that interface to the DDR3 memory.

The operation sequence of the multiplier is as follows. As-

sume the first input matrix A has dimensions l × k and the

second input matrix B has dimensions k × m. Initially n
columns of matrix B and pn rows of matrix A, where p is

the largest integer we can choose based on on-chip memory

capacity constraints, are brought into the FPGA to compute

pn2 elements of the result matrix. The next n columns of

matrix B are then brought in and processed. This contin-

ues until all m columns of matrix B have been multiplied

with the first pn rows of matrix A. This entire sequence is

repeated l/pn times to process all rows of matrix A. Dou-

ble buffering is employed to hide the latency of bringing in

new subsets of the matrices in to the chip. This sequence of

operation ensures that elements of matrix A are reused m
times once brought into the FPGA while those of matrix B
are reused pn times. This reuse allows efficient use of the

bandwidth between the FPGA and the DDR3 memory.

5.2. Systolic Array Architecture

Figure 5 shows the logical organization of the systolic ar-

ray. Each node of the systolic array (DSP MACC) has a

DSP unit that implements two operations (multiply and ac-

cumulate) in every clock cycle. Elements of input matrices

A and B brought in from L2-cache are staged in local block

RAM units configured as FIFO (First In First Out) queues.

Each FIFO contains elements from either a row of A or a

column of B. In each clock cycle, one element is read out

from the FIFO. Elements from earlier cycles are cascaded

right (for A) or down (for B) and the corresponding partial

products are accumulated at the DSP units. After accumu-

lation of all partial products, output data is cascaded out to

stochastic rounding units (DSP ROUND) that are also im-

plemented with DSP units. Rounded results are stored in

output FIFOs (one per column) before final readout to ex-

ternal memory. Throughput of the array depends on the

number of DSPs available and the maximum operating fre-

quency at which the system can be operated without tim-

ing errors. This is an example of a wavefront-type systolic

array where all connections are local, i.e. only between

neighboring DSPs and edge FIFOs, which limits intercon-

nect delays and improves maximum operating frequency.

Output paths from local registers to the edge of the array

are also cascaded.
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Figure 5. Schematic of the systolic core for matrix multiplication.

Rows of matrix A and columns of matrix B are initially stored in

Input FIFOs. During the operation of the systolic core, inputs are

cascaded (as shown by the blue arrows) through the Multiply-and-

Accumulate (DSP MACC) units. Each DSP MACC unit produces

one element of the result matrix. The accumulated results are then

cascaded out through a chain of local storage registers to stochas-

tic rounding units (DSP ROUND) and stored in the Output FI-

FOs before readout to eternal memory. The use of one stochastic

rounding block per column of the 2-D array of multipliers keeps

hardware overhead of stochastic rounding small.

Word length of the result elements after MACC operations

are much larger (typically 48 bits if using 7-series DSPs)

than word length of the inputs (typically 18 bits or less).

Before transferring to output FIFOs, result elements must

be trimmed through the stochastic rounding of least sign-

ficant bits (LSB) and truncation of excess MSB bits (af-

ter detection of overflow/underflow). Both operations can

be efficiently achieved using a single DSP unit per output.

At each column, linear feedback shift register (LFSR) is

used to generate a random number whose width is equal to

the number of LSB bits being rounded off. The DSP unit

adds the random number to the incoming result and drops

rounded off LSB bits. Pattern-detect capabilities built into

the DSP are used to determine if excess MSB bits are iden-

tical (all “0s” or all “1s”). If not, an overflow/underflow

condition is detected, and result values are saturated to the

max/min 2’s complement values9. The result is then trans-

ferred to output column FIFOs awaiting writeback to exter-

9A more direct stochastic rounding approach is multi-bit mag-
nitude comparison of result LSB vs. a random number, followed
by a conditional addition and examining excess MSBs. The ap-
proach in this section achieves the same result but removes the
first full multi-bit comparison, enabling compact implementation
on a single DSP unit.

nal memory. The overhead of stochastic rounding is thus

the logic occupied by DSP ROUND units, which in our case

is 28 DSP units – corresponding to less than 4% overhead

in hardware resources.

5.3. Results

For a 28 × 28 systolic array implemented on the

KintexK325T FPGA, Xilinx’s Vivado synthesis and place-

and-route tool estimated a maximum circuit operation fre-

quency of 166 MHz and a power consumption of 7 W. This

translates to a throughput of 260 G-ops/s at a power ef-

ficiency of 37 G-ops/s/W. This compares very favorably

against the Intel i7-3720QM CPU, the NVIDIA GT650m

and the GTX780 GPUs, all of which achieve power effi-

ciency in the range of 1-5 G-ops/s/W (Gokhale et al., 2014).

Table 1 presents a summary of the utilization of various

resources in the FPGA. Throughput numbers can benefit

from migration to newer Xilinx FPGAs, such as the Ultra-

scale series, that have much higher number of DSP units

and can potentially operate at higher frequencies.

Table 1. FPGA resource utilization.

RESOURCE USAGE
AVAILABLE ON

XCVK325T
UTILIZATION

RATIO

LUTS 62922 203800 31%
FLIP-FLOPS 146510 407600 36%
DSP 812 840 97%
BLOCK RAM 334 445 75%

6. Conclusion

In this paper, we embrace a top-down approach exploit-

ing the noise-tolerance of deep neural networks and their

training algorithms to influence the design of low-level

compute units. Specifically, the substitution of floating-

point units with fixed-point arithmetic circuits comes with

significant gains in the energy efficiency and computa-

tional throughput, while potentially risking the neural net-

work’s performance. For low-precision fixed-point compu-

tations, where conventional rounding schemes fail, adopt-

ing stochastic rounding during deep neural network train-

ing delivers results nearly identical as 32-bit floating-

point computations. Additionally, we implement a high-

throughput, energy-efficient architecture for matrix multi-

plication that incorporates stochastic rounding with very

little overhead. Extrapolating, we envision the emergence

of hardware-software co-designed systems for large-scale

machine learning based on relaxed, inexact models of com-

puting running on non-deterministic components all across

the stack, right down to low-level hardware circuitry.



Deep Learning with Limited Numerical Precision

References

An, G. The effects of adding noise during backpropagation

training on a generalization performance. Neural Com-

putation, 8(3):643–674, 1996.

Audhkhasi, K., Osoba, O., and Kosko, B. Noise benefits in

backpropagation and deep bidirectional pre-training. In

Neural Networks (IJCNN), The 2013 International Joint

Conference on, pp. 1–8. IEEE, 2013.

Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Lan-

gou, J., Langou, J., Luszczek, P., and Tomov, S. Accel-

erating scientific computations with mixed precision al-

gorithms. Computer Physics Communications, 180(12):

2526–2533, 2009.

Bishop, C. M. Training with noise is equivalent to

Tikhonov regularization. Neural computation, 7(1):108–

116, 1995.

Bottou, L. and Bousquet, O. The tradeoffs of large scale

learning. In NIPS, volume 4, pp. 2, 2007.

Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J.,

Li, L., Chen, T., Xu, Z., Sun, N., et al. Dadiannao: A

machine-learning supercomputer. In Microarchitecture

(MICRO), 2014 47th Annual IEEE/ACM International

Symposium on, pp. 609–622. IEEE, 2014.

Chilimbi, T., Suzue, Y., Apacible, J., and Kalyanaraman,

K. Project Adam: Building an efficient and scalable

deep learning training system. In 11th USENIX Sympo-

sium on Operating Systems Design and Implementation

(OSDI 14), pp. 571–582, Broomfield, CO, October 2014.

Ciresan, D. C., Meier, U., Gambardella, L. M., and

Schmidhuber, J. Deep, big, simple neural nets for hand-

written digit recognition. Neural computation, 22(12):

3207–3220, 2010.

Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B.,

and Andrew, N. Deep learning with COTS HPC systems.

In Proceedings of The 30th International Conference on

Machine Learning, pp. 1337–1345, 2013.

Courbariaux, M., Bengio, Y., and David, J.-P. Low pre-

cision arithmetic for deep learning. arXiv preprint

arXiv:1412.7024, 2014.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,

Mao, M., Senior, A., Tucker, P., Yang, K., Le, Q. V., et al.

Large scale distributed deep networks. In Advances in

Neural Information Processing Systems, pp. 1223–1231,

2012.

Farabet, C., Martini, B., Corda, B., Akselrod, P., Culur-

ciello, E., and LeCun, Y. Neuflow: A runtime recon-

figurable dataflow processor for vision. In Computer

Vision and Pattern Recognition Workshops (CVPRW),

2011 IEEE Computer Society Conference on, pp. 109–

116. IEEE, 2011.

Gokhale, V., Jin, J., Dundar, A., Martini, B., and Culur-

ciello, E. A 240 G-ops/s mobile coprocessor for deep

neural networks. In Computer Vision and Pattern Recog-

nition Workshops (CVPRW), 2014 IEEE Conference on,

pp. 696–701. IEEE, 2014.

Hammerstrom, D. A VLSI architecture for high-

performance, low-cost, on-chip learning. In Neural Net-

works, 1990., 1990 IJCNN International Joint Confer-

ence on, pp. 537–544. IEEE, 1990.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever,

I., and Salakhutdinov, R. R. Improving neural networks

by preventing co-adaptation of feature detectors. arXiv

preprint arXiv:1207.0580, 2012.
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