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Abstract— In this paper, we propose an extended deep learning 
approach that incorporates instance selection and bootstrap-
ping techniques for imbalanced data classification. In super-
vised learning, classification performance often deteriorates 
when the training set is imbalanced where at least one of the 
classes has a substantially fewer number of instances than the 
others. We propose to use adaptive synthetic sampling ap-
proach (ADASYN) to generate synthetic instances for the mi-
nority class. A data pruning process based on multiple corres-
pondence analysis (MCA) is then performed to identify a sub-
set of synthetic instances that are most suitable to supplement 
the existing minority instances. This results in a relatively more 
balanced training dataset which is then bootstrapped and fed 
into the convolutional neural networks (CNNs) for classifica-
tion. Furthermore, we propose to use low-level features pre-
processed by principal component analysis (PCA), instead of 
the commonly used raw signal data, as the input to CNNs to 
reduce the computational time. The experimental results show 
the effectiveness of our framework in classifying 54 TRECVID 
concepts with different imbalanced levels by comparing with 
other state-of-the-art methods. 

Keywords-Classification, imbalanced data, bootstrapping, 
Convolutional Neural Network (CNN), supervised learning, 
Multiple Correspondence Analysis (MCA) 

I. INTRODUCTION  

In many applications [1]-[10], large amounts of data are 
generated with a skewed distribution (or called an imba-
lanced dataset) where at least one of the classes is 
represented by a significantly fewer number of instances than 
the others. In addition, the rare instances that constitute the 
minority class are generally considered as the concept of 
interest. For instance, in biomedical research, the data in-
stances for different kinds of malignant cancers are generally 
very rare compared to normal cells. However, these rare in-
stances require special attentions and it is essential to predict 
their presence or classify them as accurate as possible [11]. 
Consequently, the ratio of the minority instances to the ma-

jority instances is often called P/N ratio (i.e., positive to neg-
ative ratio) to indicate the degree of imbalance in the dataset.  

Most mainstream classifiers are modeled based on the 
statistics of the training data, assuming that the class distribu-
tion is balanced or misclassification costs are equal [12]. 
Therefore, they often perform poorly in imbalanced data 
classification, where the models are biased towards the ma-
jority class (negative class) with its data instances oversha-
dowing those in the minority class (positive class). It is even 
more challenging when the dataset is multimedia data due to 
its diverse media types and spatio-temporal characteristics 
[13]-[19]. 

Recently, this problem of imbalanced data classification 
has attracted significant research efforts in machine learning, 
artificial intelligence, data mining and related areas [20]-
[23]. For instance, data manipulation methods are proposed 
in [24] to change the distribution of the training set to im-
prove the classification performance on imbalanced datasets. 
The common data manipulation methods can be grouped into 
two categories: over-sampling or under-sampling methods.  
The over-sampling methods tend to duplicate existing posi-
tive instances or generate synthetic ones to expand the posi-
tive instance pool but may result in overfitting. The under-
sampling methods select a part of negative samples to reduce 
the imbalanced degree of the training set but may lead to the 
loss of information.  

On the other hand, the selection of classifiers also plays 
an important role to improve the classification performance 
on imbalanced data. Deep learning approaches [25] such as 
convolutional neural networks (CNNs), inspired by the re-
search in neuroscience that human brains perform well in 
tasks like object recognition, are able to extract more abstract 
and high-level features from the data and are believed to 
excel many traditional classifiers. However, their perfor-
mance can actually be rather poor in imbalanced data classi-
fication as we have observed in our empirical study and they 



are often too computationally demanding to apply on large 
multimedia datasets. 

 In this paper, an extended CNN-based deep learning 
framework is proposed to improve imbalanced multimedia 
data classification. It consists of three components. First, the 
adaptive synthetic sampling approach (ADASYN) is adopted 
to generate synthetic instances for the minority class. As 
discussed in [26], ADASYN is motivated by several state-of-
the-art synthetic sampling methods to change the initially 
imbalanced data distribution and it excels in reducing the 
learning bias. However, different combinations of these syn-
thetic instances can lead to very diverse classification per-
formances. To our best knowledge, no mechanism has been 
proposed to enhance ADASYN with the capability of select-
ing suitable synthetic instances for better results. Therefore, 
in the second component, a novel MCA (multiple correspon-
dence analysis)-based supervised approach is proposed to 
improve the synthetic instance pool to fit the unique proper-
ties of the data. The selected synthetic instances are then 
used as additional minority instances to balance the training 
dataset, which is then passed to the third component to be 
bootstrapped and fed into the convolutional neural networks 
(CNNs) for classification. Here, the bootstrapping method 
aims to further adjust the distribution of the instances to im-
prove the CNNs performance. In addition, to address the 
issue that deep learning approaches such as CNNs are usual-
ly computationally expensive in processing raw data in-
stances, we propose to extract low-level features, preprocess 
them using principal component analysis (PCA) to reduce 
the feature dimension, and feed into CNNs to speed up the 
training process.  

The rest of this paper is organized as follows. In Section 
II, related work in imbalanced data classification and deep 
learning is discussed. Section III introduces the proposed 
framework and its components in details. Experimental re-
sults and analyses are presented in Section IV. Finally, Sec-
tion V concludes this paper. 

II. RELATED WORK 

A. Adaptive Synthetic Sampling Approach  

There are several types of data manipulation techniques 
to counter the effect of imbalanced datasets [27]-[28]. 
Among them, ADASYN has been shown to be effective in 
reducing the bias in the imbalanced dataset [26].The key 
idea of ADASYN is to use a density distribution as a crite-
rion to decide the number of synthetic instances that need to 
be generated for each minority data instance. It can adap-
tively shift the classification decision boundary toward the 
synthetic data to compensate for the skewed distributions. A 
detailed algorithm description is in [26].  
      The simulation analysis conducted in [26] proves that 
ADASYN can outperform many other methods including 
SMOTE, a classical synthetic sampling method, decision 
tree algorithm, and others, for all test benchmarks. Hence, 
we choose to integrate and extend ADASYN in our frame-
work to handle imbalanced learning problems. 

B. Convolutional neural network 

As a well-known deep learning method, convolutional 
neural networks (CNNs) were first proposed by Yann Le-
Cun and Yoshua Bengio [29] who embraced the idea of 
using various types of neurons organized within one net-
work as an artificial intelligence approach to recognize and 
process visual patterns. In CNNs, each neuron has its specif-
ic functions in image processing so that CNNs are capable 
of processing image data with the minimum or no prepro-
cessing. CNNs combine three architectural ideas to ensure 
some degree of shift and distortion invariance: local recep-
tive fields, shared weights, and spatial subsampling [29]. 
With local receptive fields, neurons can extract elementary 
image features such as oriented edges, corners, etc. and 
combine them as the input for the higher layers to detect 
more complex features. Taking into account that the statis-
tics of one part of a natural image are similar to other parts, 
elementary feature detectors that are useful on one part are 
likely to be applicable to the entire image. Therefore, it is 
reasonable to set a group of units as the receptive fields with 
identical weight vectors in each neuron to form a small size 
kernel. The outputs of each neuron constitute a feature map. 
A convolutional layer is composed of several feature maps 
(corresponding to several neurons with shared weight vec-
tors), so that multiple features can be extracted in each con-
volutional layer. The principle of shared weights in CNNs 
significantly reduces the number of free parameters in mod-
el training and improves its generalization ability [30]. To 
further reduce the computation task, every neuron of the 
convolutional layer is connected only to a small subset of 
the lower layer instead of the whole layer in CNNs. Once a 
feature is detected, its exact location becomes less important 
as long as its position relative to other features is preserved. 
Therefore, a convolutional layer can be followed by a spa-
tial subsampling layer to compute its aggregated statistics to 
reduce the sensitivity of the output to shifts and distortions. 
After several convolutional and spatial subsampling layers, 
the high-level reasoning in the neural network is done via 
fully connected layers [31]. Each fully connected layer 
computes the dot product of its input and weights, adds a 
bias, and applies a squashing function as a classifier to the 
lower layer outputs. 

Recently, CNNs have been used in many fields, including 
speech recognition, vehicle detection, emotion recognition, 
human action recognition, and traffic sign recognition [32]-
[35]. Encouraged by these results, we propose to extend 
CNNs for imbalanced multimedia data classification.  

III. FRAMEWORK 

Deep learning has shown to achieve huge success in 
many research areas. However, very few of them attempted 
to improve the performance of imbalanced multimedia data 
classification. In fact, as will be shown in Section IV, the 
performance is usually unsatisfactory when deep learning is 
applied directly to a skewed dataset. The reason is that most 
deep learning approaches, including CNNs, split the training 
dataset into several mini-batches during training (see de-
tailed descriptions in Section III.C). It is expected that some 



of these mini-batches may have no positive instance (called 
“positive” as it is of users’ interest) from the minority class 
in an imbalanced dataset, which brings the bias towards the 
negative instances (from the majority class) for the training 
model. To address this issue, our proposed framework con-
sists of three components: synthetic sampling, instance se-
lection, and deep learning with bootstrapping. 

A. ADASYN 

The adaptive synthetic sampling approach (ADASYN) is 
adopted and extended in our framework based on two con-
siderations. First, ADASYN has been proven as an effective 
method to tackle the imbalanced dataset problem. Second, 
the synthetic instances generated in ADASYN can be used to 
increase the total number of positive instances available in 
the training dataset, which reduces the chance that the same 
set of positive instances are repeatedly added to multiple 
mini-batches for CNN training to avoid overfitting. 
      In brief, ADASYN can generate synthetic positive in-
stances based on the analysis of the whole training dataset 
with the label information. After ms synthetic positive in-
stances are generated based on this supervised algorithm, 
they can be combined with original positive instances mo to 
generate a bigger positive instance pool mf  for CNN training, 
where mf  = mo + ms.  
     However, one limitation of applying ADASYN in our 
framework is that, to our best knowledge, no rules have been 
defined to determine the value of ms (i.e., how many synthet-
ic positive instances should be generated and used for each 
concept). In fact, as a powerful synthetic sampling method, 
ADASYN can generate as many positive instances as needed 
(up to n െ mo, where n is the number of negative instances in 
the training dataset) which may or may not lead to an optim-
al results in CNN classification. Therefore, we propose to 
generate (n െ mo) * β synthetic positive instances in 
ADASYN. Here, β is a real number which is less than 1. In 
Section IV, β is set to be 0.01, considering n >> mo in our 
training dataset. Then a novel multiple correspondence anal-
ysis (MCA) is applied to analyze these synthetic positive 
instances and identify the most suitable ms ones for perfor-
mance improvement as will be discussed in the next section.  

B. Integrating MCA with ADASYN 

The idea is to use MCA as a pruning tool to assign each 
instance a score to reflect its relevance to the majority class 
or the minority class in the training dataset by utilizing the 
label information. Specifically, MAC will be applied to a 
dataset that consists of all the negative instances from the 
original training dataset and all the synthetic positive in-
stances generated from ADASYN. Each instance may be 
represented by a vector of numerical values (e.g., raw data 
values, low-level features, etc.). In our framework, low-level 
features are used to improve the framework efficiency as 
discussed earlier (with more details in Section III.D). To 
apply MCA, each feature values are first discretized into 
several partitions (i.e., feature-value pairs). An example is 
shown in Table I, assuming there are F features in total.   

 

TABLE I.  EXAMPLES FOR NOMINAL DATA INSTANCES 
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As can be seen from Table I, each instance occupies one 

row in the table and is represented by a set of feature-value 

pairs ܣ௜௝ (i.e., j
th 

partition in the i
th
 feature) with the class la-

bel at the last column (ܥ௣ or ܥ௡ in two-class classification, 

where ܥ௣ = 1 representing positive class and ܥ௡ = 0 for nega-

tive class). MCA is then used to capture the correlation 
among more than two variables in Table I. It projects the 
feature value space into the principle component space and 

calculates the cosine of the inner product angle ( ݈ܽ݊݃݁௜௝ ߳ 

[0, 180]) between each feature-value pair (ܣ௜௝) and each class 

of the training dataset to represent their level of correlation. 

In other words, ܣ௜௝ has a higher (or lower) correlation rela-

tionship with the positive class if ݈ܽ݊݃݁௜௝  for (ܣ௜௝ ௣ܥ, ) is 

smaller (or bigger) than 90-degree, respectively. If ݈ܽ݊݃݁௜௝ is 

equal to 90-degree, then  ܣ௜௝ is equally correlated with both 

positive and negative classes. Accordingly, the weight of 

each feature-value pair ܣ௜௝ is computed via Equation (1). 

ܪܩܫܧܹ  ௜ܶ௝ ൌ ሺ180 െ ݈ܽ݊݃݁௜௝ሻ/90.            (1) 

 
The final score ܵܧܴܱܥ௞ for each row k (i.e., k

th
 training 

instance) is then calculated as the summation of all its fea-
ture-value pair weights as shown in Equation (2), where j is 
the corresponding partition for each feature.  

௞ܧܴܱܥܵ  ൌ ෍ ܪܩܫܧܹ ௜ܶ௝ி௜ୀ଴ ;                     (2) 

           
We rank the synthetic positive instances in a descending 

order based on their score values and choose top ms instances 
for each concept to supplement the mo positive instances in 
the original training dataset. Here, we adopt the idea pre-
sented in [28] to set ms = k* mo (k is normally set to be 1 or 2) 
with the restriction of mf < n where mf  = mo + ms and n is the 
total number of the negative instances. Note that if a dataset 
is severely imbalanced, i.e., mo <<n, we will get an mf  that 
is still far smaller than n so the dataset remains imbalanced 
even after the ADASYN and MCA steps.  

C. CNNs with bootstrapping 

To further improve the classification performance on 
imbalanced datasets, we propose to extend the CNN frame-
work with a bootstrapping method. The bootstrapping me-
thod is formally defined as follows.  



Let n and mf be the numbers of negative and positive in-
stances, respectively, in the revised training dataset after the 
ADASYN and MCA steps. They will then be used to gener-
ate a set of mini-batches, which each contains totally S in-
stances with Sm positive and Sn negative instances, for 
CNNs. The main idea of our algorithm is illustrated in Table 
II. In step 1, n negative instances are divided into N distinct 
subsets ܺ ൌ ሼݔ௜| ݅ ൌ 1, 2, … ܰሽ  where ݔ௜ ת ௝ݔ ൌ ׎  when ݅ ് ݆, size(xi) =ܵ௡ , and N = ݊ہ/ܵ௡ۂ . In other words, any 
negative instance can be contained in at most one of these 
subsets. Then, in steps 7-11, all mf positive instances are 

divided into M distinct groups (M=ඃ݉௙/ܵ௠ඇ ). If ܵ௠ is not a 

divisor of  ݉௙, we have (M-1) groups with each group hav-

ing Sm positive instances and one group containing (݉௙ െܵ௠ כ ሺܯ െ 1ሻ) positive instances. Each of the groups (with ܵ௠ positive instances) will combine with Sn different nega-
tive instances (i.e., each negative subset ݔ௜  is used only 
once) to form a mini-batch in step 12. We will randomly 
regenerate another M groups (steps 5-6) and repeat the same 
process until N mini-batches are generated.  

Using the random partition and selection method, this 
process ensures that each positive instance has a relatively 
equal opportunity to be selected and reduces the chance of 
having the exact same set of positive instances in multiple 
mini-batches to avoid overfitting. 

 

TABLE II.  OVERALL PROCESS OF THE EXTENDED CNN 

PSEUDO CODE OF CNN WITH BOOTSTRAPPING 

Input: negative set NG containing n negative instances, 

positive set PS with mf  positive instances 

Output: N mini-batches ܤܯ ൌ ሼܾ݉௜| ݅ ൌ 1, 2, … ܰሽ for 

CNNs  

1. Divide n negative instances into N subsets ܺ ൌ     ሼݔ௜| ݅ ൌ 1, 2, … ܰሽ, each with Sn negative instances 

2.  Set Temp = PS   //save a copy of all positive instances 
3.  for i = 1:N 
ݏ݋݌         .4 ൌ  pos: positive subset in the mini-batch//     ;׎
5.         if  (length(Temp)< Sm) 
6.               Temp = random(PS);  
7.         for 1:Sm 

8.               randomly pick an instance t from Temp; 
ݏ݋݌               .9 ൌ ݏ݋݌ ׫  ;ݐ
10.             Temp = Temp – t; 
11.        end for 
12.        ܾ݉௜ ൌ ௜ݔ ׫  ;ݏ݋݌
13.  end for; 
14.  return MB to train CNNs; 
 

 
In the algorithm, the parameter S (the size of the mini-

batches) is dynamically defined as follows. 
 

S = උ݉௙/ܯ כ  ඏ * (1 + 1/ α).                         (3)ߟ 

 
Considering mf  is often small, M is set to 2 in our study. α is 
the positive to negative instance ratio (i.e., α = Sm / Sn) per 

mini-batch. As we try to generate pseudo balanced mini-
batches for each training iteration, α is set to 1 in our study. η 
is a compensation coefficient to accommodate a wide range 
of datasets with diverse data imbalance ratios. In our study, η 
is chosen to be 1.5 for severely imbalanced concepts and 1 
otherwise. Please note that all these parameters are selected 
from our empirical studies. However, different values can be 
used according to the characteristics of the datasets. 

D. Integrating CNN with low-level features 

CNNs can achieve better classification performance as 
compared to many other classifiers, but they are computa-
tionally expensive [36], especially when applied to large 
multimedia datasets. To tackle this time complexity issue, 
we propose to extract low-level features instead of directly 
using raw media data such as the image RGB pixel values as 
input. Specifically, to work on images in our study, we care-
fully select five kinds of low-level features including haar 
[37], HOG [38], HSV [39], YCbCr [40], and CEDD [41], 
which are concatenated into a feature vector with 709 ele-
ments. To further reduce the computational cost, principle 
component analysis (PCA) is applied to reduce the size of 
the feature vector to 324. Because a CNN is initially de-
signed to process an image as a 2-dimensional matrix input, 
here we reshape the feature vectors into 18*18 matrices. 
Taking into account that these generated low-level features 
are not always stationary, we do not apply spatial subsam-
pling layers in our proposed framework. In order to better 
accommodate the reduced input feature size, the size of re-
ceptive fields (i.e., kernel size) and the number of feature 
maps in each convolutional layer in CNNs can be set to a 
relatively small number. In our proposed framework, the 
kernel size is set to be 3 and two convolutional layers are 
used with their corresponding numbers of feature maps being 
6 and 9, respectively. The final output in the fully-connected 
layer is 2 since in our framework we only target at the binary 
classification problem. The small size chosen here is also 
helpful to reduce the computation time in the training 
process when compared to other work [42]. 

IV. EXPERIMENTAL RESULTS  

 To demonstrate the effectiveness of our proposed frame-
work for multimedia data classification, it is tested on 
TRECVID large-size benchmark dataset with a highly imba-
lanced class distribution.  

A. Performance Evaluation 

In general, a classifier is evaluated by a confusion matrix 
as illustrated in Table III. The columns are the predicted 
class and the rows are the state of nature (actual class). In the 
confusion matrix, TP and FP represent the numbers of posi-
tive instances that are correctly (True Positives) or incorrect-
ly classified (False Positives). Similarly, TN and FN indicate 
the numbers of negative instances being correctly (True 
Negatives) or incorrectly classified (False Negatives). For 
performance comparison, the precision and recall metrics 
[43] are commonly used and are derived from the confusion 
matrix as follows. 
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B.  Experimental Setup 

The IACC.1.B dataset is chosen from
2011 benchmark [44], whose semantic ind
aims to recognize the semantic concept co
video shot, which can be an essential techno
al, categorization, and other video exploita
concepts refer to high-level semantic objec
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dataset. The labels are provided by a colla
tion effort organized by NIST (National I
dards and Technology). In this study, ea
treated as a data instance. As discussed in
tional deep learning approaches, includin
perform poorly on the TRECVID dataset du
of under-fitting, huge diversity, and noisy
data annotation.   
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C. Experimental Results on the TRE
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As can be seen, our F-scores are higher 
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call values are much higher for every co
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In our second experiment, CNNs are di
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illustrate that CNNs are biased towards 
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formance on the positive instances, where
stances are wrongly classified as negative (i
but zero TP).  
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Figure 3.  Error rate convergence in original CNN 
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