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Abstract

Motivation: Estimating the future course of patients with cancer lesions is invaluable to physicians;

however, current clinical methods fail to effectively use the vast amount of multimodal data that is

available for cancer patients. To tackle this problem, we constructed a multimodal neural network-

based model to predict the survival of patients for 20 different cancer types using clinical data,

mRNA expression data, microRNA expression data and histopathology whole slide images (WSIs).

We developed an unsupervised encoder to compress these four data modalities into a single fea-

ture vector for each patient, handling missing data through a resilient, multimodal dropout method.

Encoding methods were tailored to each data type—using deep highway networks to extract fea-

tures from clinical and genomic data, and convolutional neural networks to extract features from

WSIs.

Results: We used pancancer data to train these feature encodings and predict single cancer and

pancancer overall survival, achieving a C-index of 0.78 overall. This work shows that it is possible

to build a pancancer model for prognosis that also predicts prognosis in single cancer sites.

Furthermore, our model handles multiple data modalities, efficiently analyzes WSIs and represents

patient multimodal data flexibly into an unsupervised, informative representation. We thus present

a powerful automated tool to accurately determine prognosis, a key step towards personalized

treatment for cancer patients.

Availability and implementation: https://github.com/gevaertlab/MultimodalPrognosis

Contact: ogevaert@stanford.edu

1 Introduction

Estimating tumor progression or predicting prognosis can aid physi-

cians significantly in making decisions about care and treatment of

cancer patients. To determine the prognosis of these patients, physi-

cians can leverage several types of data including clinical data, gen-

omic profiling, histology slide images and radiographic images,

depending on the tissue site. Yet, the high-dimensional nature of

some of these data modalities makes it hard for physicians to manu-

ally interpret these multimodal biomedical data to determine treat-

ment and estimate prognosis (Gevaert et al., 2006, 2008). Next, the

presence of inter-patient heterogeneity warrants that characterizing

tumors individually is essential to improving the treatment process

(Alizadeh et al., 2015). Previous research has shown how molecular

signatures such as gene expression patterns can be mined using ma-

chine learning and are predictive of treatment outcomes and progno-

sis. Similarly, recent work has shown that quantitative analysis of

histopathology images using computer vision algorithms can pro-

vide additional information on top of what can be discerned by

pathologists (Madabhushi and Lee, 2016). Thus, automated

machine-learning systems, which can discern patterns among high-

dimensional data may be the key to better estimate disease aggres-

siveness and patient outcomes. Another implication of inter-patient

heterogeneity is that tumors of different cancer types may share

underlying similarities. Thus, pancancer analysis of large-scale data

across a broad range of cancers has the potential to improve disease

modeling by exploiting these pancancer similarities. Multi-

institutional projects such as The Cancer Genome Atlas (TCGA)

(Campbell et al., 2018; Malta et al., 2018; Weinstein et al., 2013),

which collected standardized clinical, multiomic and imaging data

for a wide array of cancers, are crucial to enable this kind of pan-

cancer modeling.

Automated prognosis prediction, however, remains a difficult

task mainly due to the heterogeneity and high dimensionality of the

available data. For example each patient in the TCGA database has

thousands of genomic features (e.g. microRNA or mRNA) and high

resolution histopathology whole slide images (WSIs). Yet, based on
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previous work, only a subset of the genomic image features are rele-

vant for predicting prognosis. Thus, to successfully develop a multi-

modal model for prognosis prediction, an approach is required that

can efficiently work with clinical, genomic and image data, in es-

sence multimodal data. Here, we tackle this challenging problem by

developing a pancancer deep learning architecture drawing from un-

supervised and representation learning techniques, and developing a

learning architecture that exploits large-scale genomic and image

data to the fullest extent. The main goal of this contribution is to

harness the vast amount of TCGA data available to develop a robust

representation of tumor characteristics that can be used to cluster

and compare patients across a variety of different metrics. Using un-

supervised representation techniques, we develop pancancer survival

models for cancer patients using multimodal data including clinical,

genomic and WSI data.

2 Background

Prognosis prediction can be formulated as a censored survival ana-

lysis problem (Cox, 2018; Luck et al., 2017), predicting both if and

when an event (i.e. patient death) occurs within a given time period.

Given the unique statistical distribution of survival times, they are

canonically parameterized using the ‘hazard function’, such as in

standard Cox regression.

In recent years, many different approaches have been attempted

to predict cancer prognosis using genomic data. For example Zhang

et al. (2017) used an augmented Cox regression on TCGA gene ex-

pression data to get a C-index of 0.725 in predicting glioblastoma.

MicroRNA data in particular have shown high relevance as a meas-

ure for disease modeling and prognosis (Calin and Croce, 2006;

Cheerla and Gevaert, 2017; Esquela-Kerscher and Slack, 2006; Liu

et al., 2017), with Christinat and Krek (2015), achieving a C-index

of 0.77 on a subset of renal cancer data using random forest classi-

fiers. However, despite the high performance of machine learning

models based on molecular data alone, there is still scope for im-

provement; after all, the tumor environment is a complex, rapidly

evolving milieu that is difficult to characterize through molecular

profiling alone (Alizadeh et al., 2015; de Bruin et al., 2013; Lovly

et al., 2016).

Recently, the use of WSI data has been shown to improve the

performance and generality of prognosis prediction. As WSIs are

high resolution images of cellular architecture and environment with

potentially only a fraction of the slide relevant to predicting progno-

sis, much of the literature focuses on hybrid approaches involving

pathologist annotation of regions of interest (ROIs). For example

Wang et al. (2014) match the performance of genomic models by

using 500 � 500 pixel, physician-selected ROIs and handcrafted

slide features to predict prognosis. More recently, deep learning pro-

vides a significant boost in predictive power. For example Yao et al.

(2016) are able to significantly outperform all molecular profiling-

based methods on two lung cancer datasets using only physician-

selected ROIs and convolutional neural networks (CNNs). Other

reports, including Beck et al. (2011) and Bejnordi et al. (2017),

showing that histopathology image data contains important prog-

nostic information that is complementary to molecular data. Yet,

multimodal prognosis models are still highly underexplored

(Momeni et al., 2018a). To our knowledge, only one paper explores

combining genomic and image data for prognosis showing that a

lung-cancer genomic model (C-index 0.660) and WSI-based model

with hand-annotated ROIs (C-index 0.613) can be combined to get

a final classifier with C-index 0.691 (Zhu et al., 2016).

Moreover, the WSI-based methods discussed above require a

pathologist to hand-annotate ROIs, a tedious task. Arguably the

most difficult part of automated, multimodal prognosis prediction

is finding clinically relevant ROIs automatically. In the related

field of tumor classification from WSIs, a ‘decision-fusion’ model

that randomly samples patches and integrates them into a

Gaussian mixture has yielded accurate predictions (Hou et al.,

2016). Moreover, more recent work has focused on using atten-

tion mechanisms to learn what patches are important (Momeni

et al., 2018b). However, in prognosis prediction, truly automated

WSI-based systems have had limited success. One report uses a

slide-based approach that relies on unsupervised learning—Zhu

et al.’s (2017) recent paper uses K-means clustering to character-

ize and adaptively sample patches within slide images, achieving

0.708C-index on lung cancer data, a result that nearly rivals

genomic-data approaches.

Previous research has focused mostly on single-cancer data-

sets, missing the opportunity to explore commonalities and rela-

tionships between tumors in different tissues. And although

previous papers explore both genomic and imaging-based

approaches, few models have been developed that integrate both

data modalities. By exploiting multimodal data, as well as devel-

oping better methods to automate WSI scoring and extract use-

ful information from slides, we have the potential to improve

upon the state-of-the-art.

In recent years, CNNs have been used to significantly improve

machine learning tasks (LeCun et al., 2015) including missing value

estimation in genomic data (Qiu et al., 2018) and prediction of

prognostic factors based on WSI (Momeni et al., 2018b). A key

component of the success of CNNs is their ability to deal with high-

dimensional, unstructured data, in particular image data (Wang

et al., 2017). For example CNNs can accurately classify scenes from

images by learning a set of flexible, hierarchical features (Zhou

et al., 2014). Even if the majority of pixel inputs are ‘dropped out’

completely for some samples, this model can still be trained to pre-

dict accurately and can handle the uncertainty (Wager et al., 2013).

The prognosis prediction task is more unstructured than trad-

itional deep learning tasks; instead of classifying from relatively

small images (224 � 224 for ImageNet, e.g.), we must predict sur-

vival times from a combination of clinical, genomic and WSI images

that are much higher resolution. Furthermore, patients span a wide

variety of cancer types, and are often missing some form of imaging,

clinical or genomic data, making it difficult to apply standard

CNNs. Unsupervised learning has shown significant promise (Fan

et al., 2018). By learning unsupervised correlations among imaging

features and genomic features, it may be possible to overcome the

paucity of data labels. Similarly, representation learning techniques

might allow us to exploit similarities and relationships between data

modalities (Kaiser et al., 2017). In prognosis prediction, it is crucial

that the model maps similar patients to the same abstract representa-

tion in a way that is agnostic to data modality and availability. We

propose to use unsupervised and representation learning to tackle

many of the challenges that make prognosis prediction using multi-

modal data difficult.

3 Materials and methods

3.1 Datasets and tools

Our main source of data is preprocessed and batch corrected data

from the PanCanAtlas TCGA project (Campbell et al., 2018; Malta

et al., 2018; Weinstein et al., 2013). This dataset contains data for

Deep learning with multimodal representation for pancancer prognosis prediction i447

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
5
/1

4
/i4

4
6
/5

5
2
9
1
3
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



1881 microRNAs, gene expression data for 60 383 genes, a wide

range of clinical data, of which we used the race, age, gender and

histological grade variables, and WSI data for over 11 000 patients.

Table 1 describes the data distribution in more detail. Many patients

do not have all data available, implying that classifiers and architec-

tures that can deal with missing data are warranted. Each patient

has a time of death recorded, right-censored up to a maximum of

11 000 days after diagnosis across all cancer sites. The 20 cancers

we examine have significantly different survival patterns, as can be

seen in Figure 1. We rely on the Python package openslide to effi-

ciently read and parse WSIs and the PyTorch framework to enable

the creation of neural network models. To train our models, we use

an NVIDIATM GTX 1070 GPU.

The TCGA dataset of 11 160 patients was split into training and

testing datasets in 85/15 ratio, stratifying by cancer type in order to

ensure the same distribution of cancers in both the training and test

sets.

3.2 Deep unsupervised representation learning

In order to train a pancancer model for prognosis prediction, we

first attempt to compress multiple data modalities into a single fea-

ture vector that represents a patient. Previous work has found sig-

nificant cross-correlations between different data types (e.g. gene

expression, clinical, microRNA and image data) (Gevaert et al.,

2012; Momeni et al., 2018a), and learning these relations in an un-

supervised fashion could significantly improve the prognosis predic-

tion process. Thus, we use a representation learning framework to

guide our approach. Although approaches such as split-brain

autoencoders induce convergence between different multimodal fea-

ture representations, they rely on reconstruction error, which may

not be a good choice for heterogeneous data sources. Instead, we

rely on a method inspired by Chopra et al. (2005), in which two dif-

ferent views of objects are passed through a Siamese network to cre-

ate feature representations. For views from the same object, the

cosine similarity between these feature representations is maxi-

mized, whereas for views from different objects, the cosine similarity

is minimized. To ensure stability, a margin-based, hinge-loss formu-

lation is used, such that different-object feature representations are

only penalized if they fall within a margin M of the same-object rep-

resentations. This forces different views of a single patient’s infor-

mation to have similar feature vectors, while avoiding mode

collapse where all features predict exactly the same vector for all

patients.

In this work, we use a similar formulation as (Chopra et al.,

2005), but with some modifications. Because of the different data

modalities, instead of using a Siamese network, we use one deep

neural network for each data type, with differing architectures

described in Figure 2. We define the feature space to have a length

of 512 based on empirical evidence (data not shown). Since we have

Fig. 1. Kaplan–Meier survival curves for all cancer sites in TCGA demonstrating that overall survival is tissue specific. The first graph contains the 10 cancers with

the highest mean overall survival, the second graph contains the 10 cancers with the lowest mean overall survival

Table 1. Data distribution of TCGA data including missing data

Data type Number of cases Number of missing cases Percentage missing (%)

Gene expression data 10 198 962 8.62

MicroRNA expression data 10 125 1035 9.27

WSI slide data 10 914 246 2.2

Clinical data 7512 3648 32.69

Survival target data (time of death) 11 121 39 0.35

Patients with complete data 6404 4756 42.62

Note: Survival data are available for the majority of patients, while microRNA and clinical data are missing in a subset of patients. Nearly 43% of patients

have at least one type of missing data.
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more than two different modalities, we sum over the similarity loss

for each pair of modalities that are present. We can define the loss

lsimðhÞ as in Equations (1)–(3):

simhðx; yÞ ¼
X

i;j2modalities

^hh;iðxiÞ � ^hh;jðyjÞ

j^hh;iðxiÞjj^hh;jðyjÞj
(1)

Lhðx; yÞ ¼ maxð0;M� simhðx; yÞ þ simhðx; xÞÞ (2)

lsimðhÞ ¼
X

x;y

Lhðx; yÞ (3)

where xi is the data for modality i and ^hh;i is the predictive model

for modality i. Note that the parameter M controls the ‘tightness’ of

the clustering. If M is high, feature vectors for a given patient are

permitted to be relatively different, as long as they stay similar to a

certain extent. If M is low, feature vectors for a patient are forced to

be much closer together, which is usually more ideal, but can also

cause mode collapse. We settled on M¼0.1 as the default value

based on our observations that it is the smallest value ofM that does

not cause mode collapse. This loss is computed between every pair

of patients in a batch. Thus, the unsupervised model must learn to

recognize important, patient-distinguishing patterns in genomic and

image data. Moreover, it must learn how patterns in one modality

correspond to patterns in a different modality, so it can generate

similar encodings for both. As a result, this method naturally gener-

ates compact patient representations that are resilient to missing

data. The entire process is summarized in Figure 2.

3.3 Prognosis prediction

In addition to learning the feature representation, the model must

also accurately predict prognosis. Because this is a survival data

problem, we aim to maximize the concordance score or C-index.

Previous research has defined the Cox loss function (Katzman et al.,

2016), which optimizes the Cox partial likelihood, as the best way

to maximize concordance differentiably. Thus, we add a final pre-

diction layer that maps the 512 feature vector to a survival predic-

tion. We use the standard formulation of Cox loss to train the

model. Cox loss is defined as

lcoxðhÞ :¼ �
X

i:Ei¼1

�

^hhðxiÞ � log
X

j:Tj>Ti

e
^hhðxjÞ

�

(4)

where the values Ti, Ei and xi are, respectively, the survival time, the

censorship flag and the data for each patient, and ^hh represents the

neural network model trained to predict survival times. The loss is

computed over all patients whose lack of survival was observed.

Combining with the unsupervised model, the overall loss becomes

lðhÞ ¼ lsimðhÞ þ lcoxðhÞ (5)

3.4 Model architectures

We use a dedicated CNN architecture for each data type. For the

clinical data, we use fully connected (FC) layers (Fig. 2) with sig-

moid activations and dropout as encoders. For the gene and

microRNA data, we use highway networks as the architecture

(Srivastava et al., 2015). Because of the complexity and scale of WSI

images, we use the CNN architecture to encode the image data.

These architectures are now described in more detail.

The genomic and microRNA patient data sources are repre-

sented by dense, large one-dimensional vectors and neural networks

are not the traditional choice for such problems, e.g. support vector

machines or random forests are more commonly used (Daemen

et al., 2008, 2009). However, in order to differentiably optimize the

similarity and Cox loss, we must use CNNs to predict these features.

Recent improvements to the state-of-the-art have made deep

Fig. 2. Structure of the unsupervised model: the similarity loss can be visualized as projecting representations of different modalities in the same space. Each mo-

dality uses a different network architecture. For the clinical data, we use FC layers with sigmoid activations, for the genomic data we use deep highway networks

(Srivastava et al., 2015) and for the WSI images, we use the SqueezeNet architecture (Iandola et al., 2016) (see main text for architecture details). These architec-

tures generate feature vectors that are then aggregated into a single representation and used to predict overall survival
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learning approaches competitive with other approaches. Thus, we

use deep highway networks to train 10-layer deep feature predictors

without compromising gradient flow through a neural gating ap-

proach (Srivastava et al., 2015). Highway networks use LSTM-style

sigmoidal gating to control gradient flow between deep layers, com-

bating the problem of ‘vanishing’ and ‘exploding’ gradient in very

deep feed forward neural networks (Fig. 2).

In order to represent and encode WSIs, we need to develop ma-

chine learning methods that can effectively ‘summarize’ WSIs.

However, the high resolution of WSIs makes learning from them in

their entirety difficult. Thus, there must be an element of stochastic

sampling and filtering involved. In this work, we use a relatively

simple approach to sample ROIs. We sample 200 224 � 224 pixel

patches at the highest resolution, then compute the ‘color balance’

of each patch; i.e. how far the average (R, G, B) color value deviates

from the mean (R, G, B) value of the entire WSI using mean-squared

error. Then, we select the top 20% of these 200 patches (or 40

patches) as ROIs; this ensures that ‘non-representative’ patches

belonging to white-space and over-staining are ignored. These 40

ROIs represent, on average, 15% of the tissue region within the

WSI. Next, we apply a SqueezeNet model (Iandola et al., 2016) on

these 40 ROIs, with the last layer being replaced by the length-512

feature encoding predictor. The architecture is detailed in Figure 3.

This model is connected to the broader network as shown in

Figure 2, and is trained using the similarity and Cox loss terms.

Because the SqueezeNet model is designed to be computationally ef-

ficient, we can train on a large percentage of the WSI patches with-

out sacrificing performance. We tuned the hyper parameters of these

model architectures on a validation set to find the final model

parameters (Figs 2 and 3). To evaluate the performance of our

model, we use the concordance score (C-index) on the test dataset.

3.5 Multimodal dropout

Dropout is a commonly used regularization technique in deep neural

network architectures in which some randomly selected neurons are

dropped out during the training, forcing other neurons to step in to

make predictions for missing neurons. This technique results in less

overfitting and more generalization (Srivastava et al., 2014). We

developed a variation of dropout, multimodal dropout, to improve

the network’s ability to deal with missing data. In this method, instead

of dropping neurons, we drop entire feature vectors corresponding to

each modality, and scale up the weights of the other modalities corres-

pondingly similar to our previous work (Momeni et al., 2018a). This

is applied to each data sample during training with probability P for

each modality, to force the network to create representations that are

robust to missing data modalities. We experimented with a number of

different values for P before settling on 25% as optimal.

3.6 Visualization

T-distributed stochastic neighbor embedding, or T-SNE, is a com-

monly used visualization technique that maps points in high-

dimensional vector spaces into lower-dimensions (Maaten and

Hinton, 2008). Unlike other dimensionality reduction techniques

like Principal Component Analysis (PCA), T-SNE produces more

visually interpretable results by converting vector similarities into

joint probabilities, generating visually distinct clusters that represent

patterns in the data. Here, we use T-SNE to cluster and show the

relationships between our length-512 feature vectors representing

patients. Because T-SNE is computationally intensive, we first used

PCA to project these vectors into a 50-dimensional space, then apply

T-SNE to map them into 2D space.

4 Results and discussion

4.1 Unsupervised learning representations

We first evaluated the unsupervised representation learning of our

model architecture by visualizing the encodings of the pancancer pa-

tient cohort (Fig. 4). Clusters of patients with similar feature repre-

sentations tend to have the same traits (race, sex and cancer type),

Fig. 3. The SqueezeNet model architecture. The SqueezeNet architecture con-

sists of a set of fire modules interspersed with maxpool layers. Each fire mod-

ule consists of a squeeze layer (with 1 � 1 convolution filters) and expand

layer (with a mix of 1 � 1 and 3 � 3 convolution filters). This fire module archi-

tecture helps to reduce the parameter space for faster training. We replaced

the final softmax layer of the original SqueezeNet model with the 512-length

feature encoding predictor

Fig. 4. T-SNE-mapped representations of feature vectors T-SNE-mapped representations of feature vectors for 500 patients within the testing set. The 512-length

feature vectors were compressed using PCA (50 features) and T-SNE into the 2D space. These representations manage to capture relationships between patients;

e.g. patients with the same sex were generally clustered together (left image), and to a lesser extent, patients of the same race and same cancer type tended to be

clustered as well (center and right), even when those clinical features were not provided to the model

i450 A.Cheerla and O.Gevaert
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even though the model was not explicitly trained on these variables.

The CNN model thus learned, in an unsupervised fashion, relation-

ships between factors such as sex, race and cancer type across differ-

ent modalities. These results suggest that the unsupervised model

can effectively summarize information from multimodal data and

our proposed unsupervised encoding could act as a pancancer ‘pa-

tient profile’.

4.2 Evaluation of multimodal dropout

Next, we evaluated the use of the multimodal dropout when inte-

grating multimodal clinical, gene expression, microRNA and WSIs

across 20 cancer sites to predict the survival of patients. We train

the models for 80 epochs and we see model convergence within that

span (Fig. 5). This analysis also showed that the validation C-index

improves when using multimodal dropout during training (Fig. 5),

indicating that randomly dropping-out feature vectors during train-

ing improves the network’s ability to build accurate representations

from missing multimodal data.

4.3 Pancancer prognosis prediction

Next, we used our model on the test dataset to predict prognosis in

single cancer and pancancer experiments. We compared different

combinations of modalities, always including clinical data, and we

evaluated the use of multimodal dropout. We observed that only for

the integration of clinical and mRNA, multimodal dropout did not

improve the results. For the model that is trained with all modalities,

many of the cancer types (15 out of 20) have a higher C-index com-

pared to the training without multimodal dropout with an average

an improvement of 2.8%. Similar results are observed for integrat-

ing less data modalities (Table 2). In addition, the pancancer model

integrating clinical, mRNA, miRNA and WSI achieves an overall C-

index of 0.78 on all cancers with multimodal dropout versus 0.75

without dropout. Also for the other pancancer models integrating

two or three data modalities, an improvement in multimodal drop-

out was observed except for the integration of clinical and mRNA

data (Table 2).

4.4 Essential data modalities

Next, we investigated using different combinations of modalities to-

gether with clinical data, to examine if the genomic and image

modalities are crucial for prognosis prediction. We observed that

miRNA is the most informative modality while mRNA is the least

informative in a pancancer setting when integrating all modalities

(C-index of 0.75 versus 0.60 for the baseline pancancer model,

Table 2). For single cancers, different combinations of modalities

are important. For eight cancer sites, the integration of all four

modalities is the best with the most striking example KICH (C-index

0.95). Next, for six cancer sites, integration of clinical, miRNA and

WSI gives the best or equal performance to the model integrating all

four modalities, suggesting that mRNA is also not essential in these

single cancer models for prognosis prediction (Table 2). For ex-

ample, the best model for KIRP, OV and LUAD results from inte-

grating clinical, miRNA and WSI with C-index of 0.86, 0.69 and

0.77, respectively, suggesting that these three data modalities are

sufficient and necessary for these cancer sites prognosis

determination.

4.5 Pancancer pretraining evaluation

Next, we tested if training on pancancer data actually improved the

prediction of survival across each individual cancer site. To test this,

we compared the multimodal pancancer results with the results of

models trained on each cancer site using an 85–15 train–test split,

separately for the multimodal dropout model using all data modal-

ities (i.e. clin þ miRNA þ mRNA þ WSI), and compared the per-

formance for survival prediction using exactly the same test cases

for each cancer site. This showed that for all cancer sites pancancer

training improves the results except for KIRC where a drop of 6%

was observed (Table 3).

4.6 Comparison with previous work

All previous work on prognosis prediction using genomic and WSI

data has focused on specific cancer types and data modalities. For

example, Christinat and Krek (2015) achieved the highest C-index

(0.77) thus far, on renal cancer data (TCGA-KIRC). As can be seen

from our results, our method performed slightly worse (0.740) on

the same type of data. However, our method outperforms a multi-

modality classifier on lung adenocarcinoma by Zhu et al. (2016)

(0.726 versus 0.691C-index). In general there is no ‘fair comparison’

that can be made between this method and the previous state-of-the-

art, especially because most previous papers discard patients with

missing data modalities, while our proposed model is able to train

and predict with missing data included. Moreover, our methods

achieve comparable or better results from previous research by re-

siliently handling incomplete data and predicting across 20 different

cancer types.

5 Conclusion

In this paper, we demonstrate a multimodal approach for predicting

prognosis using clinical, genomic and WSI data. First, we developed

an unsupervised method to encode multimodal patient data into a

common feature representation that is independent of data type or

modality. We then illustrated that these unsupervised patient encod-

ings are associated with clinical features, and that patients with simi-

lar characteristics tend to cluster together in ‘representation-space’.

These feature representations act as an integrated multimodal pa-

tient profile, enabling machine learning models to compare and con-

trast patients in a systematic fashion. Thus, these encodings could be

useful in a number of contexts, ranging from prognosis prediction to

treatment recommendation.

Fig. 5. Evaluation of multimodal dropout: learning rate in terms of C-index of

the model on the validation dataset for predicting prognosis across 20 cancer

sites combining multimodal data. The model converges after 40 epochs and

shows that multimodal dropout improves the validation performance

Deep learning with multimodal representation for pancancer prognosis prediction i451
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We then used these feature representations to predict single can-

cer and pancancer prognosis. On 20 TCGA cancer sites, our meth-

ods achieve the overall C-index of 0.784. Furthermore, on cancer

types that have few samples (e.g. KICH), our prognostic prediction

model is able to estimate prognosis with relatively high accuracy,

leveraging unsupervised features and information from other cancer

types to overcome data scarcity.

Our work distinguishes itself in a number of ways, we demon-

strate how to build a pancancer model of prognosis. Next, we show

the use of multimodal data, novel representation learning techniques

and methods such as multimodal dropout to create models that can

generalize well and predict also in the absence of one or more data

modalities. More specifically, while learning unsupervised relation-

ships between clinical, genomic and image data, our proposed CNN

is forced to develop a unique, consistent representation for each pa-

tient. Finally, we propose an efficient automated WSI analysis by

sampling ROIs per patient representing on average 15% of patient’s

lesions.

6 Future work

Although we have created an algorithm to select patches from WSI

images, our work for modeling WSI can be further improved.

Refining the CNN architecture used for encoding the biopsy slides is

crucial to further improve the performance. Future research, likely

should focus on learning which image patches are important, rather

than randomly sampling patches. Furthermore, we can use more

advanced, deeper architectures and advanced data augmentation.

Another intriguing possibility is using transfer learning on models

designed to detect low-level cellular activity like mitoses

(Zagoruyko and Komodakis, 2016). Because of the well-established

connection between mitotic proliferation and cancer, this could help

focus the CNN on important cellular features. Next, integrating

more diverse sources of data is another key goal. In this research, re-

source constraints prevented us from exploring other data genomic

modalities in TCGA, such as DNA methylation (Gevaert, 2015;

Litovkin et al., 2014) and DNA copy number data (Gevaert et al.,

2013; Gevaert and Plevritis, 2013), all of which have potentially un-

tapped, prognostically relevant information.
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