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Abstract

In this paper, we prove a conjecture published in 1989 and also partially address
an open problem announced at the Conference on Learning Theory (COLT) 2015.
With no unrealistic assumption, we first prove the following statements for the
squared loss function of deep linear neural networks with any depth and any
widths: 1) the function is non-convex and non-concave, 2) every local minimum is
a global minimum, 3) every critical point that is not a global minimum is a saddle
point, and 4) there exist “bad” saddle points (where the Hessian has no negative
eigenvalue) for the deeper networks (with more than three layers), whereas there
is no bad saddle point for the shallow networks (with three layers). Moreover, for
deep nonlinear neural networks, we prove the same four statements via a reduction
to a deep linear model under the independence assumption adopted from recent
work. As a result, we present an instance, for which we can answer the following
question: how difficult is it to directly train a deep model in theory? It is more dif-
ficult than the classical machine learning models (because of the non-convexity),
but not too difficult (because of the nonexistence of poor local minima). Further-
more, the mathematically proven existence of bad saddle points for deeper models
would suggest a possible open problem. We note that even though we have ad-
vanced the theoretical foundations of deep learning and non-convex optimization,
there is still a gap between theory and practice.

1 Introduction

Deep learning has been a great practical success in many fields, including the fields of computer
vision, machine learning, and artificial intelligence. In addition to its practical success, theoretical
results have shown that deep learning is attractive in terms of its generalization properties (Livni
et al., 2014; Mhaskar et al., 2016). That is, deep learning introduces good function classes that
may have a low capacity in the VC sense while being able to represent target functions of interest
well. However, deep learning requires us to deal with seemingly intractable optimization problems.
Typically, training of a deep model is conducted via non-convex optimization. Because finding a
global minimum of a general non-convex function is an NP-complete problem (Murty & Kabadi,
1987), a hope is that a function induced by a deep model has some structure that makes the non-
convex optimization tractable. Unfortunately, it was shown in 1992 that training a very simple
neural network is indeed NP-hard (Blum & Rivest, 1992). In the past, such theoretical concerns in
optimization played a major role in shrinking the field of deep learning. That is, many researchers
instead favored classical machining learning models (with or without a kernel approach) that require
only convex optimization. While the recent great practical successes have revived the field, we do
not yet know what makes optimization in deep learning tractable in theory.

In this paper, as a step toward establishing the optimization theory for deep learning, we prove a
conjecture noted in (Goodfellow et al., 2016) for deep linear networks, and also address an open
problem announced in (Choromanska et al., 2015b) for deep nonlinear networks. Moreover, for
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both the conjecture and the open problem, we prove more general and tighter statements than those
previously given (in the ways explained in each section).

2 Deep linear neural networks

Given the absence of a theoretical understanding of deep nonlinear neural networks, Goodfellow
et al. (2016) noted that it is beneficial to theoretically analyze the loss functions of simpler models,
i.e., deep linear neural networks. The function class of a linear multilayer neural network only
contains functions that are linear with respect to inputs. However, their loss functions are non-
convex in the weight parameters and thus nontrivial. Saxe et al. (2014) empirically showed that
the optimization of deep linear models exhibits similar properties to those of the optimization of
deep nonlinear models. Ultimately, for theoretical development, it is natural to start with linear
models before working with nonlinear models (as noted in Baldi & Lu, 2012), and yet even for
linear models, the understanding is scarce when the models become deep.

2.1 Model and notation

We begin by defining the notation. Let H be the number of hidden layers, and let (X,Y ) be the

training data set, with Y ∈ R
dy×m and X ∈ R

dx×m, where m is the number of data points.
Here, dy ≥ 1 and dx ≥ 1 are the number of components (or dimensions) of the outputs and

inputs, respectively. Let Σ = Y XT (XXT )−1XY T . We denote the model (weight) parameters by
W , which consists of the entries of the parameter matrices corresponding to each layer: WH+1 ∈
R

dy×dH , . . . ,Wk ∈ Rdk×dk−1 , . . . ,W1 ∈ Rd1×dx . Here, dk represents the width of the k-th layer,
where the 0-th layer is the input layer and the (H + 1)-th layer is the output layer (i.e., d0 = dx

and dH+1 = dy). Let Idk
be the dk × dk identity matrix. Let p = min(dH , . . . , d1) be the smallest

width of a hidden layer. We denote the (j, i)-th entry of a matrix M by Mj,i. We also denote the
j-th row vector of M by Mj,∙ and the i-th column vector of M by M∙,i.

We can then write the output of a feedforward deep linear model, Y (W,X) ∈ Rdy×m, as

Y (W,X) = WH+1WHWH−1 ∙ ∙ ∙ W2W1X.

We consider one of the most widely used loss functions, squared error loss:

L̄(W ) =
1

2

m
∑

i=1

‖Y (W,X)∙,i − Y∙,i‖
2
2 =

1

2
‖Y (W,X) − Y ‖2

F ,

where ‖∙‖F is the Frobenius norm. Note that 2
m L̄(W ) is the usual mean squared error, for which

all of our results hold as well, since multiplying L̄(W ) by a constant in W results in an equivalent
optimization problem.

2.2 Background

Recently, Goodfellow et al. (2016) remarked that when Baldi & Hornik (1989) proved Proposition
2.1 for shallow linear networks, they stated Conjecture 2.2 without proof for deep linear networks.

Proposition 2.1 (Baldi & Hornik, 1989: shallow linear network) Assume that H = 1 (i.e.,
Y (W,X) = W2W1X), assume that XXT and XY T are invertible, assume that Σ has dy dis-
tinct eigenvalues, and assume that p < dx, p < dy and dy = dx (e.g., an autoencoder). Then, the

loss function L̄(W ) has the following properties:

(i) It is convex in each matrix W1 (or W2) when the other W2 (or W1) is fixed.

(ii) Every local minimum is a global minimum.

Conjecture 2.2 (Baldi & Hornik, 1989: deep linear network) Assume the same set of conditions as
in Proposition 2.1 except for H = 1. Then, the loss function L̄(W ) has the following properties:

(i) For any k ∈ {1, . . . ,H + 1}, it is convex in each matrix Wk when for all k′ 6= k, Wk′ is
fixed.

(ii) Every local minimum is a global minimum.
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Baldi & Lu (2012) recently provided a proof for Conjecture 2.2 (i), leaving the proof of Conjecture
2.2 (ii) for future work. They also noted that the case of p ≥ dx = dx is of interest, but requires
further analysis, even for a shallow network with H = 1. An informal discussion of Conjecture 2.2
can be found in (Baldi, 1989). In Appendix D, we provide a more detailed discussion of this subject.

2.3 Results

We now state our main theoretical results for deep linear networks, which imply Conjecture 2.2 (ii)
as well as obtain further information regarding the critical points with more generality.

Theorem 2.3 (Loss surface of deep linear networks) Assume that XXT and XY T are of full rank
with dy ≤ dx and Σ has dy distinct eigenvalues. Then, for any depth H ≥ 1 and for any layer
widths and any input-output dimensions dy, dH , dH−1, . . . , d1, dx ≥ 1 (the widths can arbitrarily

differ from each other and from dy and dx), the loss function L̄(W ) has the following properties:

(i) It is non-convex and non-concave.

(ii) Every local minimum is a global minimum.

(iii) Every critical point that is not a global minimum is a saddle point.

(iv) If rank(WH ∙ ∙ ∙W2) = p, then the Hessian at any saddle point has at least one (strictly)
negative eigenvalue.1

Corollary 2.4 (Effect of deepness on the loss surface) Assume the same set of conditions as in
Theorem 2.3 and consider the loss function L̄(W ). For three-layer networks (i.e., H = 1), the
Hessian at any saddle point has at least one (strictly) negative eigenvalue. In contrast, for networks
deeper than three layers (i.e., H ≥ 2), there exist saddle points at which the Hessian does not have
any negative eigenvalue.

The assumptions of having full rank and distinct eigenvalues in the training data matrices in Theorem
2.3 are realistic and practically easy to satisfy, as discussed in previous work (e.g., Baldi & Hornik,
1989). In contrast to related previous work (Baldi & Hornik, 1989; Baldi & Lu, 2012), we do not
assume the invertibility of XY T , p < dx, p < dy nor dy = dx. In Theorem 2.3, p ≥ dx is allowed,
as well as many other relationships among the widths of the layers. Therefore, we successfully
proved Conjecture 2.2 (ii) and a more general statement. Moreover, Theorem 2.3 (iv) and Corollary
2.4 provide additional information regarding the important properties of saddle points.

Theorem 2.3 presents an instance of a deep model that would be tractable to train with direct greedy
optimization, such as gradient-based methods. If there are “poor” local minima with large loss values
everywhere, we would have to search the entire space,2 the volume of which increases exponentially
with the number of variables. This is a major cause of NP-hardness for non-convex optimization. In
contrast, if there are no poor local minima as Theorem 2.3 (ii) states, then saddle points are the main
remaining concern in terms of tractability.3 Because the Hessian of L̄(W ) is Lipschitz continuous, if
the Hessian at a saddle point has a negative eigenvalue, it starts appearing as we approach the saddle
point. Thus, Theorem 2.3 and Corollary 2.4 suggest that for 1-hidden layer networks, training can
be done in polynomial time with a second order method or even with a modified stochastic gradient
decent method, as discussed in (Ge et al., 2015). For deeper networks, Corollary 2.4 states that
there exist “bad” saddle points in the sense that the Hessian at the point has no negative eigenvalue.
However, we know exactly when this can happen from Theorem 2.3 (iv) in our deep models. We
leave the development of efficient methods to deal with such a bad saddle point in general deep
models as an open problem.

3 Deep nonlinear neural networks

Now that we have obtained a comprehensive understanding of the loss surface of deep linear models,
we discuss deep nonlinear models. For a practical deep nonlinear neural network, our theoretical
results so far for the deep linear models can be interpreted as the following: depending on the

1If H = 1, to be succinct, we define WH · · ·W2 = W1 · · ·W2 , Id1 , with a slight abuse of notation.
2Typically, we do this by assuming smoothness in the values of the loss function.
3Other problems such as the ill-conditioning can make it difficult to obtain a fast convergence rate.
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nonlinear activation mechanism and architecture, training would not be arbitrarily difficult. While
theoretical formalization of this intuition is left to future work, we address a recently proposed open
problem for deep nonlinear networks in the rest of this section.

3.1 Model

We use the same notation as for the deep linear models, defined in the beginning of Section 2.1. The

output of deep nonlinear neural network, Ŷ (W,X) ∈ Rdy×m, is defined as

Ŷ(W,X) = qσH+1(WH+1σH(WHσH−1(WH−1 ∙ ∙ ∙ σ2(W2σ1(W1X)) ∙ ∙∙))),

where q ∈ R is simply a normalization factor, the value of which is specified later. Here, σk :
R

dk×m → R
dk×m is the element-wise rectified linear function:

σk













b11 . . . b1m

...
. . .

...
bdk1 ∙ ∙ ∙ bdkm












=







σ̄(b11) . . . σ̄(b1m)

...
. . .

...
σ̄(bdk1) ∙ ∙ ∙ σ̄(bdkm)






,

where σ̄(bij) = max(0, bij). In practice, we usually set σH+1 to be an identity map in the last layer,
in which case all our theoretical results still hold true.

3.2 Background

Following the work by Dauphin et al. (2014), Choromanska et al. (2015a) investigated the connec-
tion between the loss functions of deep nonlinear networks and a function well-studied via random
matrix theory (i.e., the Hamiltonian of the spherical spin-glass model). They explained that their
theoretical results relied on several unrealistic assumptions. Later, Choromanska et al. (2015b) sug-
gested at the Conference on Learning Theory (COLT) 2015 that discarding these assumptions is an
important open problem. The assumptions were labeled A1p, A2p, A3p, A4p, A5u, A6u, and A7p.

In this paper, we successfully discard most of these assumptions. In particular, we only use a weaker
version of assumptions A1p and A5u. We refer to the part of assumption A1p (resp. A5u) that
corresponds only to the model assumption as A1p-m (resp. A5u-m). Note that assumptions A1p-m
and A5u-m are explicitly used in the previous work (Choromanska et al., 2015a) and included in
A1p and A5u (i.e., we are not making new assumptions here).

As the model Ŷ (W,X) ∈ R
dy×m represents a directed acyclic graph, we can express an output

from one of the units in the output layer as

Ŷ (W,X)j,i = q

Ψ
∑

p=1

[Xi](j,p)[Zi](j,p)

H+1
∏

k=1

w
(k)
(j,p). (1)

Here, Ψ is the total number of paths from the inputs to each j-th output in the directed acyclic graph.
In addition, [Xi](j,p) ∈ R represents the entry of the i-th sample input datum that is used in the

p-th path of the j-th output. For each layer k, w
(k)
(j,p) ∈ R is the entry of Wk that is used in the p-th

path of the j-th output. Finally, [Zi](j,p) ∈ {0, 1} represents whether the p-th path of the j-th output

is active ([Zi](j,p) = 1) or not ([Zi](j,p) = 0) for each sample i as a result of the rectified linear
activation.

Assumption A1p-m assumes that the Z’s are Bernoulli random variables with the same probability
of success, Pr([Zi](j,p) = 1) = ρ for all i and (j, p). Assumption A5u-m assumes that the Z’s are
independent from the input X’s and parameters w’s. With assumptions A1p-m and A5u-m, we can

write EZ [Ŷ (W,X)j,i] = q
∑Ψ

p=1[Xi](j,p)ρ
∏H+1

k=1 w
(k)
(j,p).

Choromanska et al. (2015b) noted that A6u is unrealistic because it implies that the inputs are not
shared among the paths. In addition, Assumption A5u is unrealistic because it implies that the
activation of any path is independent of the input data. To understand all of the seven assumptions
(A1p, A2p, A3p, A4p, A5u, A6u, and A7p), we note that Choromanska et al. (2015b,a) used these
seven assumptions to reduce their loss functions of nonlinear neural networks to:

Lprevious(W ) =
1

λH/2

λ
∑

i1,i2,...,iH+1=1

Xi1,i2,...,iH+1

H+1
∏

k=1

wik
subject to

1

λ

λ
∑

i=1

w2
i = 1,
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where λ ∈ R is a constant related to the size of the network. For our purpose, the detailed definitions
of the symbols are not important (X and w are defined in the same way as in equation 1). Here,
we point out that the target function Y has disappeared in the loss Lprevious(W ) (i.e., the loss value
does not depend on the target function). That is, whatever the data points of Y are, their loss values
are the same. Moreover, the nonlinear activation function has disappeared in Lprevious(W ) (and the
nonlinearity is not taken into account in X or w). In the next section, by using only a strict subset
of the set of these seven assumptions, we reduce our loss function to a more realistic loss function
of an actual deep model.

Proposition 3.1 (High-level description of a main result in Choromanska et al., 2015a) Assume
A1p (including A1p-m), A2p, A3p, A4p, A5u (including A5u-m), A6u, and A7p (Choromanska
et al., 2015b). Furthermore, assume that dy = 1. Then, the expected loss of each sample datum,
Lprevious(W ), has the following property: above a certain loss value, the number of local minima
diminishes exponentially as the loss value increases.

3.3 Results

We now state our theoretical result, which partially address the aforementioned open problem. We
consider loss functions for all the data points and all possible output dimensionalities (i.e., vectored-
valued output). More concretely, we consider the squared error loss with expectation, L(W ) =
1
2‖EZ [Ŷ (W,X) − Y ]‖2

F .

Corollary 3.2 (Loss surface of deep nonlinear networks) Assume A1p-m and A5u-m. Let q = ρ−1.
Then, we can reduce the loss function of the deep nonlinear model L(W ) to that of the deep linear
model L̄(W ). Therefore, with the same set of conditions as in Theorem 2.3, the loss function of the
deep nonlinear model has the following properties:

(i) It is non-convex and non-concave.

(ii) Every local minimum is a global minimum.

(iii) Every critical point that is not a global minimum is a saddle point.

(iv) The saddle points have the properties stated in Theorem 2.3 (iv) and Corollary 2.4.

Comparing Corollary 3.2 and Proposition 3.1, we can see that we successfully discarded assump-
tions A2p, A3p, A4p, A6u, and A7p while obtaining a tighter statement in the following sense:
Corollary 3.2 states with fewer unrealistic assumptions that there is no poor local minimum, whereas
Proposition 3.1 roughly asserts with more unrealistic assumptions that the number of poor local min-

imum may be not too large. Furthermore, our model Ŷ is strictly more general than the model an-
alyzed in (Choromanska et al., 2015a,b) (i.e., this paper’s model class contains the previous work’s
model class but not vice versa).

4 Proof Idea and Important lemmas

In this section, we provide overviews of the proofs of the theoretical results. Our proof approach
largely differs from those in previous work (Baldi & Hornik, 1989; Baldi & Lu, 2012; Choromanska
et al., 2015a,b). In contrast to (Baldi & Hornik, 1989; Baldi & Lu, 2012), we need a different
approach to deal with the “bad” saddle points that start appearing when the model becomes deeper
(see Section 2.3), as well as to obtain more comprehensive properties of the critical points with
more generality. While the previous proofs heavily rely on the first-order information, the main
parts of our proofs take advantage of the second order information. In contrast, Choromanska et al.
(2015a,b) used the seven assumptions to relate the loss functions of deep models to a function
previously analyzed with a tool of random matrix theory. With no reshaping assumptions (A3p, A4p,
and A6u), we cannot relate our loss function to such a function. Moreover, with no distributional
assumptions (A2p and A6u) (except the activation), our Hessian is deterministic, and therefore, even
random matrix theory itself is insufficient for our purpose. Furthermore, with no spherical constraint
assumption (A7p), the number of local minima in our loss function can be uncountable.

One natural strategy to proceed toward Theorem 2.3 and Corollary 3.2 would be to use the first-order
and second-order necessary conditions of local minima (e.g., the gradient is zero and the Hessian is
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positive semidefinite).4 However, are the first-order and second-order conditions sufficient to prove
Theorem 2.3 and Corollary 3.2? Corollaries 2.4 show that the answer is negative for deep models
with H ≥ 2, while it is affirmative for shallow models with H = 1. Thus, for deep models, a simple
use of the first-order and second-order information is insufficient to characterize the properties of
each critical point. In addition to the complexity of the Hessian of the deep models, this suggests that
we must strategically extract the second order information. Accordingly, in section 4.2, we obtain
an organized representation of the Hessian in Lemma 4.3 and strategically extract the information
in Lemmas 4.4 and 4.6. With the extracted information, we discuss the proofs of Theorem 2.3 and
Corollary 3.2 in section 4.3.

4.1 Notations

Let M ⊗ M ′ be the Kronecker product of M and M ′. Let Dvec(W T
k

)f(∙) = ∂f(∙)
∂
vec(W T

k
)

be the partial

derivative of f with respect to vec(WT
k ) in the numerator layout. That is, if f : Rdin → R

dout , we

have Dvec(W T
k

)f(∙) ∈ Rdout×(dkdk−1). Let R(M) be the range (or the column space) of a matrix

M . Let M− be any generalized inverse of M . When we write a generalized inverse in a condition
or statement, we mean it for any generalized inverse (i.e., we omit the universal quantifier over

generalized inverses, as this is clear). Let r = (Y (W,X) − Y )T ∈ R
m×dy be an error matrix.

Let C = WH+1 ∙ ∙ ∙ W2 ∈ Rdy×d1 . When we write Wk ∙ ∙ ∙Wk′ , we generally intend that k > k′

and the expression denotes a product over Wj for integer k ≥ j ≥ k′. For notational compactness,
two additional cases can arise: when k = k′, the expression denotes simply Wk, and when k < k′,
it denotes Idk

. For example, in the statement of Lemma 4.1, if we set k := H + 1, we have that

WH+1WH ∙ ∙ ∙WH+2 , Idy
.

In Lemma 4.6 and the proofs of Theorems 2.3, we use the following additional notation. We de-
note an eigendecomposition of Σ as Σ = UΛUT , where the entries of the eigenvalues are ordered
as Λ1,1 > ∙ ∙ ∙ > Λdy,dy

with corresponding orthogonal eigenvector matrix U = [u1, . . . , udy
].

For each k ∈ {1, . . . dy}, uk ∈ R
dy×1 is a column eigenvector. Let p̄ = rank(C) ∈

{1, . . . , min(dy, p)}. We define a matrix containing the subset of the p̄ largest eigenvectors as
Up̄ = [u1, . . . , up̄]. Given any ordered set Ip̄ = {i1, . . . , ip̄ | 1 ≤ i1 < ∙ ∙ ∙ < ip̄ ≤ min(dy, p)},
we define a matrix containing the subset of the corresponding eigenvectors as UIp̄

= [ui1 , . . . , uip̄
].

Note the difference between Up̄ and UIp̄
.

4.2 Lemmas

As discussed above, we extracted the first-order and second-order conditions of local minima as
the following lemmas. The lemmas provided here are also intended to be our additional theoretical
results that may lead to further insights. The proofs of the lemmas are in the appendix.

Lemma 4.1 (Critical point necessary and sufficient condition) W is a critical point of L̄(W ) if and
only if for all k ∈ {1, ...,H + 1},

(

Dvec(W T
k

)L̄(W )
)T

=
(

WH+1WH ∙ ∙ ∙Wk+1 ⊗ (Wk−1 ∙ ∙ ∙W2W1X)T
)T

vec(r) = 0.

Lemma 4.2 (Representation at critical point) If W is a critical point of L̄(W ), then

WH+1WH ∙ ∙ ∙ W2W1 = C(CT C)−CT Y XT (XXT )−1.

Lemma 4.3 (Block Hessian with Kronecker product) Write the entries of ∇2L̄(W ) in a block form
as

∇2L̄(W ) =











Dvec(W T
H+1)

(

Dvec(W T
H+1)

L̄(W )
)T

∙ ∙ ∙ Dvec(W T
1 )

(

Dvec(W T
H+1)

L̄(W )
)T

...
. . .

...

Dvec(W T
H+1)

(

Dvec(W T
1 )L̄(W )

)T

∙ ∙ ∙ Dvec(W T
1 )

(

Dvec(W T
1 )L̄(W )

)T











.

4For a non-convex and non-differentiable function, we can still have a first-order and second-order necessary
condition (e.g., Rockafellar & Wets, 2009, theorem 13.24, p. 606).
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Then, for any k ∈ {1, ...,H + 1},

Dvec(W T
k

)

(

Dvec(W T
k

)L̄(W )
)T

=
(

(WH+1 ∙ ∙ ∙Wk+1)
T (WH+1 ∙ ∙ ∙Wk+1) ⊗ (Wk−1 ∙ ∙ ∙W1X)(Wk−1 ∙ ∙ ∙W1X)T

)

,

and, for any k ∈ {2, ...,H + 1},

Dvec(W T
k

)

(

Dvec(W T
1 )L̄(W )

)T

=
(

CT (WH+1 ∙ ∙ ∙Wk+1) ⊗ X(Wk−1 ∙ ∙ ∙W1X)T
)

+

[(Wk−1 ∙ ∙ ∙W2)
T ⊗ X] [Idk−1

⊗ (rWH+1 ∙ ∙ ∙Wk+1)∙,1 . . . Idk−1
⊗ (rWH+1 ∙ ∙ ∙Wk+1)∙,dk ] .

Lemma 4.4 (Hessian semidefinite necessary condition) If ∇2L̄(W ) is positive semidefinite or neg-
ative semidefinite at a critical point, then for any k ∈ {2, ...,H + 1},

R((Wk−1 ∙ ∙ ∙W3W2)
T ) ⊆ R(CT C) or XrWH+1WH ∙ ∙ ∙Wk+1 = 0.

Corollary 4.5 If ∇2L̄(W ) is positive semidefinite or negative semidefinite at a critical point, then
for any k ∈ {2, ...,H + 1},

rank(WH+1WH ∙ ∙ ∙Wk) ≥ rank(Wk−1 ∙ ∙ ∙W3W2) or XrWH+1WH ∙ ∙ ∙Wk+1 = 0.

Lemma 4.6 (Hessian positive semidefinite necessary condition) If ∇2L̄(W ) is positive semidefinite
at a critical point, then

C(CT C)−CT = Up̄U
T
p̄ or Xr = 0.

4.3 Proof sketches of theorems

We now provide the proof sketch of Theorem 2.3 and Corollary 3.2. We complete the proofs in the
appendix.

4.3.1 Proof sketch of Theorem 2.3 (ii)

By case analysis, we show that any point that satisfies the necessary conditions and the definition of
a local minimum is a global minimum.

Case I: rank(WH ∙ ∙ ∙W2) = p and dy ≤ p: If dy < p, Corollary 4.5 with k = H + 1 implies
the necessary condition of local minima that Xr = 0. If dy = p, Lemma 4.6 with k = H + 1
and k = 2, combined with the fact that R(C) ⊆ R(Y XT ), implies the necessary condition that
Xr = 0. Therefore, we have the necessary condition of local minima, Xr = 0 . Interpreting
condition Xr = 0, we conclude that W achieving Xr = 0 is indeed a global minimum.

Case II: rank(WH ∙ ∙ ∙W2) = p and dy > p: From Lemma 4.6, we have the necessary condi-

tion that C(CT C)−CT = Up̄U
T
p̄ or Xr = 0. If Xr = 0, using the exact same proof as in

Case I, it is a global minimum. Suppose then that C(CT C)−CT = Up̄U
T
p̄ . From Lemma 4.4

with k = H + 1, we conclude that p̄ , rank(C) = p. Then, from Lemma 4.2, we write
WH+1 ∙ ∙ ∙W1 = UpU

T
p Y XT (XXT )−1, which is the orthogonal projection onto the subspace

spanned by the p eigenvectors corresponding to the p largest eigenvalues following the ordinary
least square regression matrix. This is indeed the expression of a global minimum.

Case III: rank(WH ∙ ∙ ∙W2) < p: We first show that if rank(C) ≥ min(p, dy), every local min-
imum is a global minimum. Thus, we consider the case where rank(WH ∙ ∙ ∙W2) < p and
rank(C) < min(p, dy). In this case, by induction on k = {1, . . . ,H+1}, we prove that we can have
rank(Wk ∙ ∙ ∙W1) ≥ min(p, dy) with arbitrarily small perturbation of each entry of Wk, . . . ,W1

without changing the value of L̄(W ). Once this is proved, along with the results of Case I and Case
II, we can immediately conclude that any point satisfying the definition of a local minimum is a
global minimum.

We first prove the statement for the base case with k = 1 by using an expression of W1 that is
obtained by a first-order necessary condition: for an arbitrary L1,

W1 = (CT C)−CT Y XT (XXT )−1 + (I − (CT C)−CT C)L1.
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By using Lemma 4.6 to obtain an expression of C, we deduce that we can have rank(W1) ≥
min(p, dy) with arbitrarily small perturbation of each entry of W1 without changing the loss value.

For the inductive step with k ∈ {2, . . . ,H + 1}, from Lemma 4.4, we use the following necessary
condition for the Hessian to be (positive or negative) semidefinite at a critical point: for any k ∈
{2, . . . ,H + 1},

R((Wk−1 ∙ ∙ ∙W2)
T ) ⊆ R(CT C) or XrWH+1 ∙ ∙ ∙Wk+1 = 0.

We use the inductive hypothesis to conclude that the first condition is false, and thus the second
condition must be satisfied at a candidate point of a local minimum. From the latter condition, with
extra steps, we can deduce that we can have rank(WkWk−1 ∙ ∙ ∙W1) ≥ min(p, dx) with arbitrarily
small perturbation of each entry of Wk while retaining the same loss value.

We conclude the induction, proving that we can have rank(C) ≥ rank(WH+1 ∙ ∙ ∙W1) ≥
min(p, dx) with arbitrarily small perturbation of each parameter without changing the value of
L̄(W ). Upon such a perturbation, we have the case where rank(C) ≥ min(p, dy), for which we
have already proven that every local minimum is a global minimum. Summarizing the above, any
point that satisfies the definition (and necessary conditions) of a local minimum is indeed a global
minimum. Therefore, we conclude the proof sketch of Theorem 2.3 (ii).

4.3.2 Proof sketch of Theorem 2.3 (i), (iii) and (iv)

We can prove the non-convexity and non-concavity of this function simply from its Hessian (The-
orem 2.3 (i)). That is, we can show that in the domain of the function, there exist points at which
the Hessian becomes indefinite. Indeed, the domain contains uncountably many points at which the
Hessian is indefinite.

We now consider Theorem 2.3 (iii): every critical point that is not a global minimum is a saddle
point. Combined with Theorem 2.3 (ii), which is proven independently, this is equivalent to the
statement that there are no local maxima. We first show that if WH+1 ∙ ∙ ∙W2 6= 0, the loss function
always has some strictly increasing direction with respect to W1, and hence there is no local maxi-
mum. If WH+1 ∙ ∙ ∙W2 = 0, we show that at a critical point, if the Hessian is negative semidefinite
(i.e., a necessary condition of local maxima), we can have WH+1 ∙ ∙ ∙W2 6= 0 with arbitrarily small
perturbation without changing the loss value. We can prove this by induction on k = 2, . . . ,H + 1,
similar to the induction in the proof of Theorem 2.3 (ii). This means that there is no local maximum.

Theorem 2.3 (iv) follows Theorem 2.3 (ii)-(iii) and the analyses for Case I and Case II in the proof
of Theorem 2.3 (ii); when rank(WH ∙ ∙ ∙W2) = p, if ∇2L̄(W ) � 0 at a critical point, W is a global
minimum.

4.3.3 Proof sketch of Corollary 3.2

Since the activations are assumed to be random and independent, the effect of nonlinear activations
disappear by taking expectation. As a result, the loss function L(W ) is reduced to L̄(W ).

5 Conclusion

In this paper, we addressed some open problems, pushing forward the theoretical foundations of
deep learning and non-convex optimization. For deep linear neural networks, we proved the afore-
mentioned conjecture and more detailed statements with more generality. For deep nonlinear neural
networks, when compared with the previous work, we proved a tighter statement (in the way ex-
plained in section 3) with more generality (dy can vary) and with strictly weaker model assumptions
(only two assumptions out of seven). However, our theory does not yet directly apply to the prac-
tical situation. To fill the gap between theory and practice, future work would further discard the
remaining two out of the seven assumptions made in previous work. Our new understanding of the
deep linear models at least provides the following theoretical fact: the bad local minima would arise
in a deep nonlinear model but only as an effect of adding nonlinear activations to the corresponding
deep linear model. Thus, depending on the nonlinear activation mechanism and architecture, we
would be able to efficiently train deep models.
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