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Abstract

Previous 2D saliency detection methods extrac-
t salient cues from a single view and directly pre-
dict the expected results. Both traditional and deep-
learning-based 2D methods do not consider geo-
metric information of 3D scenes. Therefore the re-
lationship between scene understanding and salien-
t objects cannot be effectively established. This
limits the performance of 2D saliency detection in
challenging scenes. In this paper, we show for the
first time that saliency detection problem can be re-
formulated as two sub-problems: light field synthe-
sis from a single view and light-field-driven salien-
cy detection. We propose a high-quality light field
synthesis network to produce reliable 4D light field
information. Then we propose a novel light-field-
driven saliency detection network with two purpos-
es, that is, i) richer saliency features can be pro-
duced for effective saliency detection; ii) geomet-
ric information can be considered for integration of
multi-view saliency maps in a view-wise attention
fashion. The whole pipeline can be trained in an
end-to-end fashion. For training our network, we
introduce the largest light field dataset for saliency
detection, containing 1580 light fields that cover a
wide variety of challenging scenes. With this new
formulation, our method is able to achieve state-of-
the-art performance.

1 Introduction

Salient object detection aims to extract the most relevant parts
that grab human attention of what we see. As a fundamental
task in computer vision, it has received increasing attention
in recent years because of its great success in many field-
s, such as semantic segmentation, tracking and person re-
identification.

The existing saliency detection algorithms can be rough-
ly divided into three categories based on the 2D, 3D and
4D input images. Among 3D and 4D saliency detection
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Figure 1: Challenging scenes in saliency detection (e.g. transparent
objects, complex background, similar foreground and background
and low intensity environment, etc.). First row is the center view
image and second row is the corresponding ground truth.

methods [Li et al., 2014; Li et al., 2015; Qu et al., 2017;
Han et al., 2017], there are different kinds of inputs, such as
depth maps, focal stacks and multi-view images. They al-
l provide the accurate geometric information, which plays
a dispensable role in extraction of salient objects. Recen-
t advances in 3D and 4D saliency detection show the most
promise in challenging scenes.

On the other hand, among 2D saliency detection methods,
the traditional approaches [Li et al., 2013; Qin et al., 2015;
Tu et al., 2016] mainly rely on various handcrafted features
and prior knowledges. For example, the image boundary re-
gions are mostly background (boundary prior), the color con-
trasts between foreground and background are high (contrast
prior).The deep-learning-based methods benefit from the u-
nique feature extraction capability of convolutional neural
networks (CNNs). CNNs can extract both low-level and high-
level features such as color, intensity, texture and semantic in-
formation. Many deep-learning-based methods [Liu and Han,
2016; Zhang et al., 2017b; Hou et al., 2017] contribute more
meaningful feature representations to facilitate saliency de-
tection. However, compared with the aforementioned 3D and
4D methods which are grounded by geometric information,
2D saliency detection methods may appear fragile when it
comes to challenging scenes shown in Figure 1. The reasons
for limited performance of 2D saliency detection methods are
twofold. First, for traditional 2D methods, many prior knowl-
edges are not fully effective in complex scenes. This signifi-
cantly limits performance of traditional 2D methods. Second,
current 2D deep-learning-based methods are empowered by
the learning capability of CNNs. They directly relate multi-
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Figure 2: Multi-view images of one scene in the proposed dataset.
There are seven images in horizontal and vertical directions respec-
tively. White circles are in the same location of multi-view images
in horizontal direction and black circles are in vertical direction.

level features to the ground truth but the relationship between
scene understanding and salient objects can not be effectively
established.

The light field provides images of the scene from an array
of viewpoints which spread over the extent of the lens aper-
ture. These different views provide abundant spatial parallax
information as well as accurate depth information about the
objects in the scene. Light field data has been demonstrat-
ed in favor of many applications in computer vision, includ-
ing depth estimation [Zhou et al., 2018; Guo et al., 2017;
Song and Lee, 2018], super resolution [Zhu et al., 2019;
Yeung et al., 2019] and material recognition [Wang et al.,
2016b]. In this paper, inspired by light field, we create an
end-to-end CNN framework, from a novel perspective, that
decomposes the saliency detection problem into the subprob-
lems: light field synthesis from a single view and light-field-
driven saliency detection. The light field information (multi-
view images and depth maps) can be automatically generated
by the light field synthesis network. This allows 2D method-
s to have more reliable information for saliency detection in
challenging scenes. The whole pipeline is shown in Figure
3. The key insights here are that i) both light field synthesis
and light-field-driven saliency detection consider the geomet-
ric information. ii) the whole pipeline can be trained in an
end-to-end fashion. Due to the limited number of light field
datasets, we collected 1580 light fields that cover a wide vari-
ety of scenes, including multi-view images (shown in Figure
2) and a pixel-wise ground truth of central view. We discover
that our saliency detection network is able to outperform all
the previous methods on the proposed dataset.

In summary, we make following contributions:

• We collected the largest available light field dataset for
saliency detection, containing 1580 light fields, divid-
ed into 1100 for training and 480 for testing, captured
by the Lytro Illum camera. Each light field consists of
multi-view images and a pixel-wise ground truth of the
central view.

• We show for the first time that the saliency detection
problem can be factorized into two subproblems: light
field synthesis and light-field-driven saliency detection.
This factorization can effectively improve the perfor-

mance of saliency detection in challenging scenes.

• We propose a novel light-field-driven saliency detec-
tion network where the new saliency feature extraction
technique facilitates saliency detection and the multi-
view attention module helps integrate multi-view salien-
cy maps in a view-wise way.

• The proposed method outperforms state-of-the-art 2D,
3D and 4D methods on the proposed light field dataset.
The source code and light field saliency detection dataset
can be found at https://github.com/OIPLab-DUT/.

2 Related Work

2.1 Saliency Detection Based on 3D and 4D Inputs

Recently, a small number of saliency detection works focus
on using geometric information of the scene to help salien-
cy estimation. The 3D approaches mainly exploit depth cues
to help saliency detection. [Han et al., 2017] utilize two C-
NNs to extract both RGB features and depth representations
and make a fusion automatically to generate the final salien-
cy prediction. [Qu et al., 2017] motivated by the tradition-
al saliency detection methods, first generate saliency feature
vectors using RGB images and depth maps, and then use a C-
NN to learn from the existing features. [Zhu et al., 2018] use
a master network to process RGB values and a sub-network to
exploit depth cues which can facilitate the prediction of mas-
ter network. [Wang and Gong, 2019] propose a novel fusion
module in which a switch map is learned to adaptively fuse
the saliency maps predicted from RGB and depth map.

For the 4D approaches, there are only traditional methods
at present. All of them concentrate on the low-level hand-
crafted features. [Li et al., 2014] propose the first light field
saliency detection approach in 2014, which compute the fo-
cusness and objectness of the focal stack firstly and then inte-
grate focusness-based saliency candidates with other contrast
cues using objectness as a weight. [Li et al., 2015] develop
a weighted sparse coding framework to handle the heteroge-
nous types of input data. They first generate initial saliency
candidate regions and then use an iterative method to refine
the candidates. [Zhang et al., 2015] utilize both background
prior and location prior and introduce an additional depth cue
into the contrast computation. [Zhang et al., 2017a] integrate
multiple saliency cues extracted from light field images by
a random-serach-based weighting method. Those methods
have better performance than 2D methods in some challeng-
ing scenes, such as similar foreground and background, trans-
parent objects, complex background and low intensity envi-
ronment, because light field information is involved. In our
work, we adopt a high-quality light field rendering network in
which the multi-view images can be automatically generated.

2.2 Saliency Detection Based on 2D Input

Over the past decades, lots of 2D saliency detection meth-
ods have been developed. The 2D saliency models can be
roughly divided into two categories: traditional methods and
deep-learning-based methods. The traditional methods [Qin
et al., 2015; Li et al., 2013; Tu et al., 2016] create the ground-
work for saliency detection. With the development of deep
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Figure 3: The whole pipeline.

learning, many new approaches of 2D saliency detection are
proposed. In 2015, [Li and Yu, 2015] use three different C-
NNs with three kinds of inputs: the considered superpixel,
the immediate neighboring segments and the whole image,
and then aggregate all three information with fully connected
layers to label the considered superpixel. [Li and Yu, 2016]

propose a two-stream framework to extract both pixel-wise
and segment-wise saliency maps and use a CRF to fuse them
efficiently. [Liu and Han, 2016] develop a novel deep hierar-
chical saliency network to first generate a coarse saliency map
and then using a RCL module to refine the details of saliency
prediction step by step. [Wang et al., 2016a] combine the FC-
N with a recurrent architecture, which can refine the saliency
map progressively. [Zhang et al., 2017b] integrate multi-level
features into multiple resolutions and predict saliency maps
hierarchically. A boundary preserved refinement is also ap-
plied to achieve accurate salient objects boundary inference.
[Deng et al., 2018] propose a series of residual refinement
modules to alternately extract low-level and high-level fea-
tures and use them to gradually refine the saliency map.

There is a strong relationship between scene understanding
and salient objects. 2D saliency detection methods without
consideration of that relationship are more likely to be com-
promised in those challenging scenes.

2.3 View Synthesis from Light Fields

Over the past decades, there are fewer works on light field
rendering. [Levoy and Hanrahan, 1996] capture a densely-
sampled 4D light field images of a scene and interpret the
input images as 2D slices of a 4D light field. [Gortler et
al., 1996] use the silhouette information to compute the ap-
proximate geometry and utilize it to improve the quality of
the rendered images. The unstructured lumigraph rendering
framework [Buehler et al., 2001] is designed to meet many
specific goals, using a set of unstructured 2D slices of light
field. The recent light field synthesis method [Srinivasan et
al., 2017] estimates depth maps, then uses the geometry to
render the 4D light fields. But the huge amount of high di-
mensional data makes the processing of light field informa-
tion time-consuming. For efficient learning, in this paper, we
only synthesize the views along the horizontal and vertical
directions. This is good enough to represent the original light
field.

3 Light Field Dataset

There is no light field dataset, in saliency detection, contain-
ing a large number of images for training. To solve the lack
of light field dataset, we collected 1580 light fields to build
the largest available light field dataset with the Lytro Illum
camera. We decoded the light field format file using the Lytro
Desktop, which makes better 2D renderings than other light
field toolboxes. The decoded light field images have no dis-
tortion in shape, intensity and color. Each light field consists
of multi-view images and a pixel-wise ground truth of the
central view. Figure 2 shows a sample of the multi-view im-
ages in the proposed dataset. The spatial resolution of each
view is 400× 590 and the angular resolution in both horizon-
tal and vertical directions is 7. We use a custom segmentation
tool to manually label the central view in light field. Our
dataset is randomly split into 1100 for training and 480 for
testing.

This dataset includes light fields with a wide range of in-
door and outdoor scenes. Each scene in our dataset was cap-
tured related to the surrounding environment of our daily life,
such as supermarkets, offices, classrooms, streets and so on.
Many challenging scenes are included in the proposed dataset
(e.g. similar foreground and background, transparent objects,
complex background and low intensity environment, etc.).

4 The Proposed Method

In this section, we formulate the saliency detection problem
as two sub-problems, namely light field rendering and light-
field-driven saliency detection. The whole pipeline is shown
in Figure 3. We will show the network details of two parts in
the following part, respectively.

4.1 Analysis of the Whole Pipeline

Light field contains both spatial and angular information of
the light rays which benefits many tasks in computer vision
such as scene flow estimation, lens aberrations correction-
s and refocusing. Inspired by light field, we design a light
field rendering network to facilitate saliency detection with
the light field information. Then we propose a light-field-
driven saliency detection network to build the relationship be-
tween salient objects and scene understanding.
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256 × 3, and our network outputs multi-level saliency prediction-
s which have 1, 1/2, 1/4, 1/8, 1/16 spatial resolution of the input
images, respectively.

As shown in Figure 3, we expand a single view to an array
of views firstly. However, the huge amount of high dimen-
sional data makes existing light field processing ineffective
and inefficient. Considering the redundancy of light field in-
formation, we only synthesize the views along the horizon-
tal and vertical directions through the central view which are
good enough to represent the original light field. Recently,
[Srinivasan et al., 2017] propose a new light field synthesis
method, which is a learning-based method by warping a sin-
gle image using the corresponding depth information to gen-
erate the light field. We train depth CNNs to estimate scene
depths and render a Lambertian approximation of light field
based on a physically-based warping layer. Inspired by [S-
rinivasan et al., 2017], we adopt its design and develop our
light field rendering network based on it.

After generating the light field images, we design a light-
field-driven saliency detection network to estimate saliency
maps. The light-field-driven saliency detection network con-
sists of two parts: multi-view saliency detection subnetwork
and multi-view attention module. It is natural to think that
the richer convolutional features can be generated in a deeper
network. And rich convolutional features are highly effective
for saliency detection. However, the network is difficult to
converge when going deeper because of vanishing/exploding
gradients. To solve this problem, our first subnetwork adopts
a novel rich feature extraction technique to facilitate salien-
cy detection in each view. In the second module, to inte-
grate multi-view saliency maps, we first warp each saliency
map into the central view using the corresponding depth map.
This warping operation is equivalent to the inverse procedure
in light field synthesis. Then we integrate the warped multi-

view saliency maps using the proposed attention mechanism.
The view-wise attention vector is generated in our multi-view
attention module (MVAM). We generate the final prediction
by integrating the attentive multi-view saliency maps.

4.2 Light Field Synthesis Network

Our light field synthesis network is illustrated in Figure 3.
First, we apply depth CNNs, represented by du (•) and dv (•)
, to estimate depth maps Du(x, y, u)and Dv(x, y, v) along
horizontal and vertical directions, respectively:

Du (x, y, u) = du (I (x, y) ; θu)
Dv (x, y, v) = dv (I (x, y) ; θv)

(1)

where (x, y) is the spatial coordinates and (u, v) are angular
coordinates. I(x, y) is the central view of light field. The two
depth CNNs have the same structure but different parameter-
s θu and θv . We develop our depth CNNs based on the view
synthesis network [Srinivasan et al., 2017], in which there are
ten convolutional layers including four dilated convolutional
layers. The dilated convolution is used to obtain a large recep-
tive field. The output channels of the last two convolutional
layers are modified to be the number of the views in horizon-
tal and vertical directions. The detailed network architecture
can be found in [Srinivasan et al., 2017].

Then the central image and the predicted depth maps are
fed in the warping layer to render other viewpoints of light
field. The physically-based warping layer is the core part
of the light field synthesis network. The process can be ex-
pressed as follows:

Lu (x, y, u) = I (x+ uDu (x, y, u) , y)
Lv (x, y, v) = I (x, y + vDv (x, y, v))

(2)

where Lu (x, y, u) and Lv (x, y, v) are the predicted multi-
view images. After rendering the new viewpoints, we cal-
culate the reconstruction error between the predicted images
and the ground truth. Here, we use a simple L1 loss function
to supervise the reconstruction quality:

ℓre =
∥

∥

∥
Lu (x, y, u)− L̂u (x, y, u)

∥

∥

∥

1

+
∥

∥

∥
Lv (x, y, v)− L̂v (x, y, v)

∥

∥

∥

1

(3)

where L̂u (x, y, u) and L̂v (x, y, v) are the ground truth.

To further improve the quality of depth maps, the con-
sistency regularization loss and total variation regularization
loss proposed by [Srinivasan et al., 2017] are applied in our
light field rendering network. We update the parameters of
the depth CNNs by minimizing the final loss:

min
θu,θv

∑

T

(ℓre + λcℓc + λtvℓtv) (4)

where T is the training set. λc and λtv are the weight of con-
sistency regularization loss and the weight of total variation
regularization loss, respectively.

4.3 Light-field-driven Saliency Detection Network

Our proposed light-field-driven saliency detection network
can be divided into two parts: multi-view saliency detection
subnetwork and multi-view attention module.
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Figure 5: Details of multi-view attention module.

Multi-View Saliency Detection Subnetwork

Our multi-view saliency detection subnetwork is based on the
VGG-19 model. The detailed architecture of our network is
shown in Figure 4. Previous feature extraction techniques in
saliency detection produce feature maps only from the last
convolutional layer in each block. To exploit rich saliency
cues, we make a combination of the features in the same
block. We concatenate all the features in the same convolu-
tional block, and use a convolutional layer with 1 × 1 kernel
size to weight the importance of each feature map. The gen-
erated hybrid features contain rich saliency cues at each level.

Then we use the extracted rich convolutional features to
predict the saliency map hierarchically. The recursive mech-
anism is applied to refine the saliency predictions from top
convolutional layer to shallower layers. We adopt the deep
supervision [Lee et al., 2015] scheme to facilitate saliency
map learning. In this way, the pixel-wise supervised informa-
tion can guide the recursive saliency prediction at each level.

Multi-View Attention Module (MVAM)

The purpose of our multi-view attention module is to integrate
multi-view saliency maps in a view-wise attention fashion.
The attention mechanism can learn the importance of salien-
cy maps from different views by considering the geometric
information (multi-view depth maps). The detailed structure
is shown in Figure 5.

The salient objects shift slightly in different views. For
effective integration, we first warp the multi-view saliency
maps into the central view using the corresponding depth
maps. Then we concatenate the warped multi-view saliency
maps and depth maps in the color channel and generate a 4D
vector (height × width × angular channels× color channels).
We connect two 3D convolutional layers in which each filter
has access to every 2D view. The kernel size of the 3D con-
volutional layer is 3×3×3. Next, we use an average pooling
layer and a fully connected layer to predict the weight wn of
the saliency map Sn from the n-th view. A softmax operation
is applied to normalize wn spatially:

w̃n = exp(wn)/
∑N

n=1

exp(wn) (5)

where N is the number of view images. Finally, the integrated

saliency map S̃ is calculated by:

S̃ =
N
∑

n=1

w̃nSn (6)

Model Input S-measure F-measure E-measure MAE

DSR 2D 0.640 0.574 0.767 0.173
BSCA 2D 0.673 0.605 0.777 0.198
MST 2D 0.637 0.548 0.738 0.179
ACSD 3D 0.675 0.637 0.792 0.188
RGBD 3D 0.535 0.567 0.732 0.179
LFS 4D 0.538 0.423 0.717 0.242
UCF 2D 0.788 0.709 0.814 0.136
UCF+ 2D 0.792 0.715 0.821 0.131
Amulet 2D 0.801 0.734 0.839 0.104
DSS 2D 0.740 0.709 0.228 0.112
DSS+ 2D 0.731 0.674 0.795 0.141

R3Net 2D 0.793 0.749 0.851 0.089
PDNet 3D 0.761 0.692 0.827 0.126
AFNet 3D 0.731 0.687 0.822 0.109
Ours 2D 0.806 0.749 0.861 0.088

Table 1: Quantitative comparison of S-measure, F-measure, E-
measure, and MAE scores. The retrained models are denoted as
”XX+”. (bold: best; underline: second best).

5 Experiments

5.1 Experimental Setup

Implementation Details

We implement our method based on the Tensorflow toolbox
with one NVIDIA 1080Ti GPU. We train the whole network
end-to-end using the Adam optimization algorithm with de-
fault parameters β1= 0.9, β2= 0.999, and ε= 1e− 08, re-
spectively. For light field synthesis, the learning rate is
0.0001, weight of consistency regularization loss λc and total
variation regularization loss λtv are 0.01 and 0.001 respec-
tively. For saliency detection, the learning rate is 0.001. The
minibatch size is set to 1 and the maximum iteration is set to
200000.

Datasets

For the training, the general data augmentation schemes are
employed on our light field dataset to improve the varieties,
including the flipping, cropping and rotating operations. In
this way, we produce 12100 training images totally including
the original image. We conducted performance evaluations
on the proposed dataset.

Evaluation Metrics

We adopt four of main metrics to evaluate the performance of
our method, including the S-measure, F-measure, E-measure
and mean absolute error (MAE) scores. We apply the imple-
mentations of [Hou et al., 2017] to compute the F-measure
and MAE and the definitions can be found in their paper. The
S-measure evaluates structure similarities of saliency map-
s and the E-measure evaluates the pixel-level matching and
image-level statistics. The definitions of S-measure and E-
measure can be found in [Fan et al., 2017] and [Fan et al.,
2018], respectively.

5.2 Comparisons with the 2D Methods

We compare our method with 7 state-of-the-art 2D saliency
detection methods, including the deep-learning-based meth-
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Figure 6: Visual comparsion of saliency maps on the proposed dataset.

Model S-measure F-measure E-measure MAE

RSF− 0.801 0.731 0.849 0.097
MVAM− 0.803 0.730 0.845 0.094
Ours 0.806 0.749 0.861 0.088

Table 2: Ablation analysis on the proposed dataset.

ods (R3Net [Deng et al., 2018], Amulet [Zhang et al., 2017b],
DSS [Hou et al., 2017], UCF [Zhang et al., 2017c]) and the
traditional methods (MST [Tu et al., 2016], BSCA [Qin et
al., 2015], DSR [Li et al., 2013]). For a fair comparison,
we use the recommended parameter settings provided by the
authors. Table 1 shows the quantitative results in terms of
S-measure, F-measure, E-measure and MAE. Our proposed
method achieves the best results compared with other meth-
ods. Besides, we retrain two representative networks using
the released codes on our proposed dataset.

To further verify the effectiveness of the proposed method,
we provide a visual comparison of our method and the state-
of-art methods in Figure 6. It can be seen that the proposed
method can obtain more complete and accurate salient object-
s, when salient objects are transparent as shown in the 2nd
and 3rd rows, when foreground and background are similar
or background is cluttered as shown in rows 4-8. Further, our

method can block background effectively in different com-
plex scenes.

5.3 Comparisons with the 3D and 4D Methods

In this section, we compare the proposed method with 5 state-
of-the-art 3D and 4D methods, including four 3D methods
(AFNet [Wang and Gong, 2019], PDNet [Zhu et al., 2018],
RGBD [Qu et al., 2017], ACSD [Ju et al., 2015]) and one 4D
method (LFS [Li et al., 2014]). For a fair comparison, we
provide all the needed inputs for those methods. The results
are shown in Table 1. As we can see, our method outperforms
the 3D and 4D methods. For qualitative evaluation, the visu-
al results are shown in Figure 6. In the complex scenarios,
our method based on a single input can achieve better perfor-
mance than 3D and 4D methods.

5.4 Ablation Study

The Effectiveness of Rich Saliency Features Extraction

To verify the importance of our feature extraction technique,
we evaluate the proposed network without the rich saliency
feature extraction technique, named RSF−. For a fair com-
parison, we add one additional convolutional layer in which
we change the output channels to keep the number of param-
eters approximately unchanged. We perform a detailed com-
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parison of their performance using S-measure, F-measure, E-
measure and MAE in Table 2. It can be observed that the
proposed feature extraction technique can effectively facili-
tate saliency detection. This is mainly because the extracted
rich convolutional features contain more salient cues.

The Effectiveness of Multi-View Attention Module
To verify the contribution of our proposed MVAM, we simply
average the warped multi-view saliency maps to generate the
final prediction, named MAVM−. We show the quantitative
comparison of our method with MAVM− in Table 2. We can
see that the good results benefit from the attentive integra-
tion of multi-view saliency maps in MVAM. Our MVAM can
learn the weight distribution of different views, which leads
to different views corresponding to different degrees of con-
tribution.

6 Conclusion

In this paper, we propose a novel end-to-end framework to
detect saliency object in challenging scenes. We show for
the first time that the saliency detection is decomposed in-
to two sub-tasks: light field synthesis and light-field-driven
saliency detection. The light field synthesis network gen-
erates high-quality 4D light fields from a single view. The
light-field-driven network extracts rich saliency representa-
tions and builds the relationship between salient objects and
scene understanding. Meanwhile, we collected the largest
light-field saliency detection dataset, containing 1580 light
fields that cover a wide variety of challenging scenes. Exten-
sive quantitative and qualitative evaluations demonstrate that
the proposed method outperforms the state-of-the-art 2D, 3D
and 4D methods on the proposed dataset and is capable of
capturing salient objects in challenging scenes.
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