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Deep longitudinal multiomics profiling reveals two
biological seasonal patterns in California
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The influence of seasons on biological processes is poorly understood. In order to identify

biological seasonal patterns based on diverse molecular data, rather than calendar dates, we

performed a deep longitudinal multiomics profiling of 105 individuals over 4 years. Here, we

report more than 1000 seasonal variations in omics analytes and clinical measures. The

different molecules group into two major seasonal patterns which correlate with peaks in late

spring and late fall/early winter in California. The two patterns are enriched for molecules

involved in human biological processes such as inflammation, immunity, cardiovascular

health, as well as neurological and psychiatric conditions. Lastly, we identify molecules and

microbes that demonstrate different seasonal patterns in insulin sensitive and insulin resis-

tant individuals. The results of our study have important implications in healthcare and

highlight the value of considering seasonality when assessing population wide health risk and

management.
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T
he environment is a key factor in human health, and
seasonal changes in particular have been associated with
human conditions and diseases. For example, mortality

rates in the U.S. show a notable seasonality with rates in winter
25% higher than in summer1. Other human phenotypes asso-
ciated with seasons are allergies, autoimmune conditions2, and
cardiovascular diseases3 as well as psychiatric disorders4,5. In
addition, a series of large-scale population-based studies revealed
that systolic and diastolic blood pressures were higher in winter
than in summer6–8.

Photoperiodism has been considered to be one of major cues for
organismal responses to seasons9. It enables plants and animals to
measure environmental day length to ascertain time of year10. For
example, flowering time in response to photoperiod and tempera-
tures has been well studied using model plants (Arabidopsis and
rice)9,11. The underlying mechanism for photoperiod perception is
measured daily through interactions between the internal circadian
clock and the external light–dark cycle9,11,12.

Although external cues and diseases have been monitored, little
is known about how human biological and physiological pro-
cesses change in response to the seasons. The effect of seasonal
variation on humans has been primarily focused on gene
expression data13–15. These studies are limited in the number of
individuals and the time span of the study, the intensity of sample
collection across the year and the depth of experiments and
features that are quantified. Moreover, they do not assess whether
seasonal changes might affect individuals with different disease
conditions, for example, insulin sensitive (IR) versus insulin
resistant (IR) individuals (insulin resistance is often associated
with Type 2 diabetes). In addition, most studies choose to study
seasonal changes based on the current paradigm of four equal-
sized seasons, which is an arbitrary window and may not reflect
natural biological patterns in many parts of the country.
Understanding human biological patterns regardless of arbitrary
calendar dates is expected to be important to improve disease risk
prediction, susceptibility, and diagnostics.

We and others have demonstrated the value of deep long-
itudinal profiling to decipher complex physiological processes in
humans including diabetes onset, viral infection and detoxifica-
tion pattern16–18.

In this work, we leverage the power of multiomics profiling to
examine the calendar patterns of biomolecular features in a sys-
tematic fashion to elucidate (1) the seasonal patterns of diverse
individual molecules and pathways, (2) the overall patterns of bio-
logical changes (i.e., how many distinct major patterns exist and
when do they occur independently of the arbitrary four seasons), and
(3) molecular and microbial differences between insulin sensitive
versus insulin resistant individuals throughout the year. By per-
forming deep sampling and omics profiling for 105 individuals for
up to 4 years, we discover more than 1000 molecular seasonal var-
iation changes in both microbiome and host molecules; these
changes group into two major patterns. We further demonstrate
differential seasonal fluctuations depending on insulin resistance
status. These findings have important implications for human health.

Results
Cohort and data description. In order to examine seasonal
changes of human molecular data, we leveraged the power of
longitudinal multiomics data from profiling of 105 individuals
(55 women and 50 men) with ages ranging from 25 to 75 years
old (Fig. 1a; Supplementary Table 1). This cohort was generally
healthy and well characterized for glucose dysregulation using
annual oral glucose tolerance tests (OGTTs), insulin resistance
measuring steady-state plasma glucose (SSPG), fasting glucose
and hemoglobin A1c (HbA1c; an indicator of the average level of

blood glucose over the past 100 days)19 as well as quarterly
sample collections with measurements of transcriptomes (from
peripheral blood mononuclear cells), proteome and metabolome
from plasma, targeted cytokine and growth factor assays using
serum. Nasal and gut microbiomes were analyzed using 16S
rRNA sequencing providing information at the genus level and
host exome sequencing was performed once from PBMCs
(Fig. 1b). Moreover, 51 clinical laboratory tests were acquired on
each visit and they were aligned to the meteorological data (e.g.
air temperature), pollen counts (e.g. mold spores, grass pollens,
tree pollens, weed pollens) and airborne fungi from the San
Francisco bay area. In total, there were 902 visits (average across
different types of omes‘) from which samples were drawn over up
to 4 years (see “Methods”). The sample collections were generally
evenly distributed throughout the year (Fig. 1b). Nearly all indi-
viduals lived in the San Francisco Bay Area with the exception of
three individuals who lived in Southern California and frequented
the Bay area (Supplementary Data 1). Participants in our study
were well characterized for steady-state plasma glucose (SSPG)
using the modified insulin suppression test20, in which 31 par-
ticipants were insulin sensitive (SSPG < 150 mg/dL), and 35 were
insulin resistant (SSPG ≥ 150 mg/dL) (Supplementary Table 1).

Seasonal changes of diverse biological molecules. We first sys-
tematically searched for molecules that fluctuate throughout the
year. We applied a generalized additive mixed model (GAMM) (see
“Methods”) in order to detect molecules with seasonality effects
(GAMM model likelihood ratio test p-value ≤ 0.05). We identified
seasonal patterns for 898 transcripts, 119 metabolites, 116 proteins,
22 clinical lab tests, seven cytokines, seven gut microbial taxa,
and 23 nasal microbial taxa (GAMM model likelihood ratio test
p-value ≤ 0.05; Fig. 2d, Supplementary Table 1, Supplementary
Data 2). Our computational analysis detected expected molecules
known to exhibit seasonal patterns such as HbA1c19 (p-value =
1.27E − 08), which peaks in spring and summer, and is low in
winter19. We also found that RBC21 (red blood cells) (p-value =
0.029) and RDW (Red Blood Cell Distribution Width)22 (p-value=
0.002) follow a similar seasonal pattern. HDL (High-density lipo-
protein)23 (p-value = 0.025) peaks in summer, and the LDL/HDL
ratio (p-value = 0.003) peaks in winter (Fig. 1c). Also, PER1
(period circadian regulator 1), the primary circadian pacemaker in
the mammalian brain24, shows seasonal effects (p-value=0.003)
with highest expression level in spring. PER1 belongs to a family of
genes responsible for the circadian rhythms of locomotor activity,
metabolism, and tightly involved in photo- and thermo-periodic
measurements25,26.

Our analysis also revealed a number of novel molecules with
seasonality variations. C2, C9, IL5, SIGLEC15, and IL1RAP are
examples of molecules with roles in immunity, inflammation and
allergy that demonstrate seasonal effects (Fig. 1c; Supplementary
Data 2). Although the majority of omics molecules peaked once
during the year, we found multiple molecules that peaked twice or
thrice such as CTTNBP2, COQ10A, and gut microbial genus
Holdemania (Supplementary Fig. 1). Thus, a large number of
molecules undergo seasonal changes with a variety of different
patterns.

Two predominant seasonal patterns in California. Presently we
think of seasons as four equally partitioned periods arbitrarily set by
the calendar. To determine if general seasonal patterns of molecules
could be observed and how many classes might exist in our Cali-
fornia cohort, we performed fuzzy C-means clustering with Silhou-
ette criterion on both normalized multiomics data as well as
individual omes’ to determine the number of clusters (see “Meth-
ods”; Fig. 2a; Supplementary Fig. 2). Rather than four seasonal
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patterns, two distinct clusters of omics molecules both at the level of
all omes’ combined as well as each single ome were observed
(Fig. 2a–c; Supplementary Fig. 3; Supplementary Data 3). Interest-
ingly, omics seasonal pattern one peaks in late April, whereas omics
seasonal pattern two peaks in December and drops in March
through July. Pattern one corresponds to late spring, a period of high
pollen count and end of the California rainy season, and pattern two
peaks in late fall and early winter, a period of high viral infection
incidents. Individual omes‘ exhibited similar but slightly shifted
patterns, depending upon the ome (Fig. 2c).

Integrative pathway analysis of seasonal signatures. To obtain a
better understanding of the biological processes and human diseases
associated with each seasonal pattern, we performed pathway and
disease enrichment analyses using Ingenuity pathway analysis (see
“Methods”) using all the 1133 omics molecules that showed sig-
nificant seasonal effects (p ≤ 0.05) (Supplementary Data 2).

Pathways and their associated diseases that change during the
two omics seasonal patterns are shown in Fig. 2 (Fig. 2e, f;

Supplementary Data 4; Supplementary Table 2; adjusted p ≤ 0.05).
Interestingly, we found disorders related to blood pressure,
hypertension, and cardiovascular disease to be associated with
seasonal omics pattern one where the omics molecules have the
highest expression level in spring/summer. Other notable path-
ways and diseases associated with pattern one are schizophrenia
spectrum disorder, sleep pattern, and seizure (Fig. 2e). We also
discovered that transcripts from 12 collagen genes show a strong
match with pattern one (Supplementary Fig. 4). Collagen plays a
structural role by contributing to the molecular architecture,
shape, and mechanical properties of tissues, such as the tensile
strength in skin and the resistance to traction in ligaments27.

Pattern two is associated with acute phase response, clathrin-
mediated endocytosis, esterification of cholesterol, volume of urine
and acne, as well as other pathways (Fig. 3a, b). The acute phase
response (Supplementary Fig. 5) is upregulated over fall and winter
and is a rapid inflammatory response that provides protection
against microorganisms (bacteria, viruses, etc.). It involves an
increase in pro-inflammatory cytokines (IP10, IL1, IL1R1, IL1RAP,
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Fig. 1 Study design and seasonality. a. Integrative personal omics profiling (iPOP) cohort sampling and data collection for seasonal analyses. Omic assays

included immune molecules profiling using Luminex assay, proteomics using sequential windowed acquisition of all theoretical fragment ion mass

spectrometry (SWATH-MS), metabolomics using liquid chromatography (LC)—mass spectrometry, transcriptomics and microbial profiling (gut and nasal)

using next-generation sequencing, in conjunction with clinical lab tests and meteorological measurements. b Subjects and sampling timepoints for each

individual, as well as ethnicity (A: Asian, B; Black, C; Caucasian), insulin sensitive (IS) and insulin resistance (IR), and gender information (M: Male, F:

Female). c Examples of omics analytes with seasonal patterns (transcripts, cytokines, metabolites, proteins, clinical lab tests, gut and nasal microbiome).

The X-axis shows the days of the year (1–365 days) and Y-axis shows the normalized expression/abundance values. The samples are collected up to 4

years and aggregated and mapped to 1-year-long time frame. The shaded area represents 95% confidence bounds computed as ±1.96 standard deviation of

model coefficients. Standard deviations were derived from a maximum likelihood fit.
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IL6) and a change in concentration of plasma acute phase proteins
and complement system (C2, C3, C9). Clathrin-mediated endocy-
tosis pathway (Fig. 2e, f) is also associated with pathogen-influenced
signaling and is a major gateway for the internalization of nutrients,
hormones and other signaling molecules from the plasma
membrane into intracellular compartments. The complement
system (Fig. 2e, f; Supplementary Fig. 6) is a cascade of enzyme
activations that bridges innate and acquired immune systems and is
involved in clearance of immune complexes, activation of
inflammation and augmenting the antibody response28,29. Comple-
ment system defects have been found in autoimmune disorders
such as systemic lupus erythematosus that can affect the joints, skin,
kidneys, blood and lungs. These results indicate that biological
processes and their associated diseases correlate with the two major
seasonal patterns.

Correlation of seasonal patterns with clinical lab tests and
meteorological measurements. We next conducted the season-
ality analysis for 51 clinical laboratory measures (Supplementary

Data 6) and identified health markers with significant seasonality
components (Figs. 1c; 3a, d; Supplementary Data 2; p ≤ 0.05). We
further correlated these markers with the two omics seasonal
patterns described above (Fig. 3a). As mentioned above, we
observed that A1c (Hemoglobin A1c), as well as insulin, RDW
(red blood cell distribution width), RBC (red blood cell counts),
MONO (monocytes), UALB (urine albumin), and EGFR (esti-
mated glomerular filtration rate) correlated with omics seasonal
pattern one, whereas LDLHDL (LDL/HDL ratio), CHOLHDL
(cholesterol/HDL ratio), MCH (mean corpuscular hemoglobin),
ALB (albumin), PLT (platelet count), ALKP (alkaline phospha-
tase), CR (creatinine), CO2 (carbon dioxide), GLOB (Globulin)
and NEUTAB (neutrophil absolute count), AG (albumin/globulin
ratio), TBIL (Total Bilirubin) and TP (total protein) correlated
with omics seasonal pattern two (Fig. 3a, d). These findings
highlight the extensive seasonality variation in clinical health
biomarkers and the importance of considering seasonality com-
ponents in interpreting health biomarkers in the clinic.

Since most of the individuals that participated in this study are
residents of the San Francisco Bay Area, we further correlated
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omics seasonal patterns with meteorological measurements
collected from this area (see “Methods”, Fig. 3b). Average air
temperature and average solar radiation correlated with omics
seasonal pattern one, whereas average air pressure, air humidity,
and precipitation correlated better with pattern two (Fig. 3b).

Seasonal gut and nasal microbial shifts. In order to detect
microbial shifts over the two omics related patterns, we calculated
GAMM seasonal coefficients for gut and nasal microbiome from
the same individuals. We first measured the diversity of the gut
and nasal microbiome by estimating Chao diversity index30. We
discovered that the overall microbial diversity increased in winter
compared to summer (p ≤ 0.05) in both nasal and gut micro-
biomes at all tested taxonomic levels (genus, family, order, class,
phylum) (Fig. 4c). The correlation of gut and nasal microbial taxa
with patterns one and two are shown in Fig. 4a, b. Overall, we
observed more seasonal changes in nasal microbial taxa (23
microbial taxa) compared to the gut (four microbial taxa) (Sup-
plementary Fig. 7a, b; Supplementary Data 2). Gut microbial taxa
Holdemania genus, Ruminococcaceae genus, Oscillibacter genus as
well as Firmicutes phylum show significant (p ≤ 0.05) seasonal
components. These microbial taxa correlated with the omics
seasonal pattern one (Fig. 4b). Of notable nasal bacterial taxa, we

observed Staphylococcus genus, Porphyromonas genus, Dolosi-
granulum genus, Corynebacterium genus, Bacteroidia class, Bacilli
class, Actinobacteria class, and Pasteurellaceae family show sea-
sonal effects and correlate with either omics pattern one or two,
depending upon the taxa (Fig. 4). Thus, the human nasal and gut
microbiome undergoes extensive seasonal changes.

Correlation of seasonal patterns with pollen counts and air-
borne fungi. To evaluate the relationship between regional pollen
exposure and omics seasonal patterns, we calculated GAMM
seasonal coefficients for pollen counts (tree pollens, weed pollens,
mold spores, grass pollens), as well as 23 airborne fungi collected
from the San Francisco Bay area (Los Altos Hills, California)
(Fig. 5a, b, Supplementary Fig. 9; Supplementary Table 4; Sup-
plementary Data 10). We then correlated pollen count patterns
with the two major omics seasonal patterns (Fig. 5a, b). We
observed that total counts for grass pollens, mold spores, tree
pollens, and weed pollens correlate with omics seasonal pattern
one, where the peak allergy season starts around early spring
(Fig. 5a). Total tree pollen counts peaks in early springtime, fol-
lowed by total grass pollen counts and total mold spores counts
that peak in late spring. These peaks also correlate with the allergy
season in the San Francisco bay area that extends from March
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through June. There is also a surge in weed pollen that peaks in
around mid-summer (Fig. 5a). Figure 5b shows the correlation of
specific airborne fungi with omics seasonal pattern one and two.
The individual seasonal patterns of airborne fungi are shown in
Fig. 5b; Supplementary Fig. 9. Airborne fungi show seasonal
changes and correlate with both omics seasonal pattern one and
two (Fig. 5b). Fungal spores that peak in early spring/early
summer and correlate with omics seasonal pattern one are Rusts,
Smuts/Myxomycetes, Algae, Oidium/Erysiphe, Periconia and
Ganoderma. Fungal spores that peak in late fall/winter are
Penicillium/Aspergillus, Ascospores, Basidiospores and Pithomyces.
Thus, pollen and spore counts associate with the major patterns
and may be contributors to driving these patterns.

Seasonal effects in insulin resistant and insulin sensitive indi-
viduals. Whether seasonal patterns are distinct between people
with different diseases has not been investigated. Since the par-
ticipants in our study have been well characterized as either
insulin resistant (IR) or insulin sensitive (IS), we examined the
seasonal differences of biomolecules and microbes in these two
groups. Our aim is to identify time intervals of omics features that
show differences between IR and IS groups either in part or all
over the entire year. For this purpose, we used the multiomics
profiles from 66 subjects who were classified as either IR
(35 subjects) or IS (31 subjects) based on steady-state plasma

glucose (SSPG) measurements (Supplementary Table 3). We
utilized our recently developed longitudinal analysis method,
OmicsLonDA31 (see “Methods”), to identify the time intervals
where differences are observed (Supplementary Data 11 and 12).
Of 11,184 analytes examined (all omics analytes combined), there
were 187 omics analytes (138 genes, 13 proteins, 19 metabolites, 6
clinical markers, and 11 microbial taxa) that showed significant
(p ≤ 0.05) seasonal differences between IR and IS (Fig. 6a). Of
187 significant analytes, we identified 71 that showed statistical
significance in part of the year (Fig. 6c), whereas the remaining
116 features exhibit a global difference between IR and IS across
the entire year. More specifically, at the microbiome level, Veil-
lonella has a higher abundance in IR than IS throughout the year
except mid-March until late June (Fig. 6b). The family Rike-
nellaceae from phylum Bacteroides is enriched in IS between mid-
April until the end of October (Fig. 5b). The Lachnospiraceae
family and Flavonifractor genus are examples of microbes that
show a significant increase in IR than IS over the entire year
(Fig. 6b). On the transcriptome level, 138 genes show differential
seasonal effects (Supplementary Data 12). Among those genes are
APCDD1, PL2, GPS2, and EXOSC4. APCDD1 which showed
higher expression in IR than IS during December until March
(Fig. 6b). At the proteome level, APOF, C7, KRT17, and
PI16 show significantly higher expression in IS than IR in part of
the year, whereas IGLL5 showed a significant increase in IR than
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IS (Supplementary Data 12). At the metabolome level, our results
indicated that 18 metabolites show significant changes between IR
and IS across the entire year. It is of note that only Hippuric Acid
(HMBD00714) is in higher abundance in IS than IR all year,
except during April and October (Fig. 6b). Among metabolites
that have higher expression in IR are L-Octanoylcarnitine,
Adrenic acid, Dihomo-gamma-linolenic acid, gamma-Linolenic
acid, Eicosadienoic acid, 2-Octanoylcarnitine, 3, 5-Tetra-
decadiencarnitine, and Linoleic acid. Butyric acid, L-Malic acid,
Cholic acid, N6-Trimethyl-L-lysine, Phenylacetylglutamine, Cin-
namoylglycine, p-Cresol glucuronide, and 20-Dihydroxy Eicosa-
noic acid. Furthermore, three clinical markers, Neutrophils
absolute count, Platelet count, and Triglycerides (TG) level, were
found to be higher in IR than IS across the year. Overall, these
results reveal that there are extensive differences between IR and
IS participants.

Lifestyle factors. We analyzed lifestyle factors that may have
seasonal effects, such as dietary habits and physical activities32,33.
Dietary habits data were collected every 3 months using the
Dietary Targets Monitor survey34 (see “Methods”). The survey
asks about the frequency of consumption of a variety of foods
including fish, meat, cheese, fruits and vegetables, starchy foods as
well as sweets, and savory snacks and comprises a total of 25

different food categories (see “Methods”, Supplementary Data 15
and 16). None of these food categories were significantly different
between IR and IS groups throughout the year (One-way
ANOVA with random blocks, P-value > 0.05, Supplementary
Table 5, Supplementary Fig. 10). In our analysis we used subject
ID as a random effect to account for different numbers of samples
per subject. On the other hand, physical activity measured in total
metabolic equivalent of task (MET) is significantly different
between the IR and the IS groups in February, May, June, and
August (P-value = 0.01787, Supplementary Fig. 11). However, a
post-hoc analysis of all the omics features that were identified to
be significantly different between the IR and the IS groups, are
not associated with the physical activity.

Discussion
In order to understand the molecular and microbial changes that
occur during seasonal variations, we profiled 105 participants in
the San Francisco bay area over 4 years. This study is unique in
three respects. First, it performs intensive longitudinal profiling of
105 individuals from the same region for up to nearly 4 years
across (105 individuals). Second, it holistically captures different
types of omics data from the host (transcriptome, proteome,
metabolome, cytokinome, clinical health data), as well as nasal
and gut microbiota thereby enabling a deep profiling of human
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physiology and function. Third, it integrates data from environ-
mental factors such as meteorological data (e.g. air temperature,
solar radiation) and airborne pollen counts from the San Fran-
cisco Bay area. As a result of this comprehensive approach, our
study discovered the seasonal changes of over 1000 molecules and
microbes and identified two major biological seasonal patterns
that correlate with early spring and late fall/early winter in the
San Francisco bay area. The two major seasonal patterns of host
molecules and microbes are relevant to human health and disease
based on the biological processes in which they participate.

We have discovered omics features and bacteria taxa and genes
with seasonality trends. Among clinical markers, HbA1c was
found to peak in spring/summer and declines in winter. HbA1c is
a common marker for T2D; it reflects the average blood glucose
over the past 100 days19. Previous studies have compared the
level of blood glucose in winter to summer, and report either
higher blood glucose level in winter than in summer35, or no
significant difference36. HbA1c also has been reported to be
higher in winter in diabetic patients37,38. However, these studies
only sampled patients in winter and summer (not throughout the
year), and they were only conducted on diabetic patients. Higher
HbA1c in Spring is likely explained by reduced physical activity
in winter and a delayed effect due to the average nature of the
measurement.

PER1, the primary circadian pacemaker in the mammalian
brain, also shows a complex seasonal pattern with highest
expression in spring. PER1 belongs to a family of genes respon-
sible for the circadian rhythms. There is emerging evidence
suggesting that the deregulation of PER1 plays an important role
in the development of mammalian cancer39. Our data showed
that PER1 peaks in spring; interestingly, seasonal variation studies
in tumor stage at the time of diagnosis shows spring as the season
with the highest proportion of localized tumors40, indicating that
tumor stage correlates with seasonal activity. C2, C6, IL5,
SIGLEC15, and IL1RAP have roles in immune responses.
SIGLEC15 and IL1RAP peak in late spring/early summer, con-
sistent with their role in allergies which often peaks in spring and
early summer, and IP10, C2 and C6 peak in late fall/winter
consistent with their role in fighting infections which often occur
during the late fall/winter.

Consistent with the molecular patterns, we also found seasonal
association of biological pathways that are relevant to human
physiology and disease. The immune responses such as the
complement system, acute phase response and IL12 signaling
pathways are highest in fall/winter, as expected for when
respiratory viral infections are common (Fisher’s exact test p-
value ≤ 0.05). Pathways related to knee and joint inflammation
such as osteoarthritis and rheumatoid arthritis pathways are
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elevated in spring/summer (Fisher’s exact test p-value ≤ 0.05).
Molecular signatures associated with neurological and behavioral
pathways also show seasonal patterns. Schizophrenia spectrum
disorder, seizures, and sleep disorder are enriched at late spring/
early summer (omics seasonal pattern one). Such seasonal pat-
terns have been previously shown to be associated with several
aspects of human brain functions such as mood and cognition,
and influence many neurological and psychiatric illnesses, and the
incidence of schizophrenia41.

Molecular signatures associated with hypertension, blood
pressure and cardiovascular diseases correlate with the late
spring/early summer (seasonal pattern one) and are consistent
with previous studies demonstrating that blood pressure (BP) is
higher in winter6,42. As above, the late Spring/early summer may
reflect the end of a period of reduced activity. Interestingly,
Sjögren’s syndrome (a chronic autoimmune disorder character-
ized by lymphocytic infiltration and malfunction of the exocrine
glands, causing dry mouth and eyes)43, inflammation of the
myocardium, volume of urine, and esterification of cholesterol are
enriched during late fall/early winter (seasonal pattern two
(Fisher’s exact test p-value ≤ 0.05)) (Fig. 2g).

We also find acne is associated with seasonal pattern two,
consistent with previous reports44. Demographic studies have
shown that acne worsens in winter and improves in summer44.
Cold air temperature and low humidity in winter increase skin
permeability, epidermal thickening, and stimulate inflammatory
mediator production, which leads to acne worsening in winter45.
Our data show that azelaic acid, SELL (Leukocyte-Endothelial
Cell Adhesion Molecule 1), APOA1 (Apolipoprotein A1) and
RBP4 (Retinol Binding Protein 4) are the drivers of seasonal
responses contributing to acne pathophysiology. Azelaic acid
(dicarboxylic acids) and retinol are currently used to treat mild to
moderate acne41,46. Our data therefore support seasonal adjust-
ment for acne treatment. Altogether, our results provide mole-
cular signatures for a variety of seasonal conditions and processes,
and provide molecular and biological insights into these processes
as well as potential biomarkers for monitoring and treating
increased seasonal risk for a variety of diseases.

We also analyzed the microbiome in detail and discovered a
clear seasonal trend of nasal and gut microbiome composition
(Fig. 4c). We observed significantly higher diversity for gut
microbial taxa during February–April and significantly lower
diversity in September–October (GAMM model likelihood ratio
test p-value ≤ 0.05) (Fig. 4c). We also observed significantly lower
diversity for nasal microbial taxa during spring, which coincides
with allergy season in the San Francisco bay area (GAMM model
likelihood ratio test p-value ≤ 0.05) (Fig. 4c). Interestingly, recent
studies also indicate that asthma may be associated with
decreased nasal and gut microbiome diversity47,48, and our sea-
sonality finding supports this association, as it coincides with the
annual peak in asthma exacerbations49.

Moreover, there are more microbial taxa with seasonal effects
in nasal samples (26 microbial taxa) compared to the gut (four
microbial taxa) (Supplementary Data 2). This may be due to the
more diverse seasonal exposure of the nasal environment as
compared to the gut which is heavily influenced by food; although
there are seasonal patterns of food consumption, our results
suggest food diversity may be less seasonally diverse than air-
borne exposures which are known to be highly dynamic at the
personal level50. A notable nasal microbial taxonomy with high
degree of seasonality variation is Staphylococcus aureus, a key
pathogenic bacterium in chronic rhinosinusitis with nasal polyps,
that appears to be more abundant in September-October period
(Supplementary Fig. 8a). Other notable bacterial taxa include
Porphyromonas genus, Bacteroidia class, Actinobacteria class and
Pasteurellaceae family which correlate with omics seasonal

pattern one, while Firmicutes phylum, Bacilli class, Dolosi-
granulum genus, Corynebacterium genus correlate with omics
seasonal pattern two (Fig. 4b). Furthermore, gut microbial taxa
Holdemania genus, Ruminococcaceae genus, and Oscillibacter
genus, as well as Firmicutes phylum, show significant (P ≤ 0.05)
seasonal components. It is of note that the gut Firmicutes and the
nasal Firmicutes show different seasonal patterns (Supplementary
Fig. 8b). While the gut genus Firmicutes is in higher abundance
through March to April and in lower abundance through August
to September, the nasal phylum Firmicutes peaks through April to
September and declines in winter (Supplementary Fig. 8b).

We discovered that the two omics seasonal patterns correlate
with airborne pollen counts and fungi in the San Francisco Bay
area. This correlation may suggest the role of tree pollens, grass
pollens, weed pollens and mold spores in contributing to the
regulation/dysregulation of biochemical and immunological
pathways segregated with the omics seasonal patterns. These
patterns are also in alignment with allergy seasons (e.g. allergic
rhinitis) in the San Francisco Bay area. In general, our data
indicate that tree pollens are the cause of allergies in early Spring
in the Bay area, while grass pollens are the cause of allergies in
late Spring/Early Summer along with mold spores. Our data
provide information in regard to the onset, duration and severity
of the pollen season in the Bay area.

We examined differences in seasonal patterns among IS and IR
individuals. We identified 187 omics features and microbial taxa
which show significantly seasonal differences between the IR and
IS groups. For instance, Veillonella has a higher abundance in IR
than IS individuals throughout the year, except mid-March until
late June (Fig. 5b). Previous studies have shown that Veillonella
genus, a gram-negative bacteria known for its lactate fermentation
abilities, is associated with IR51. Here we demonstrate these dif-
ferences are strongest all year long except in Spring (day 100–day
175) (Fig. 5b). In contrast, family Rikenellaceae from phylum
Bacteroides is enriched in IS between mid-April to the end of
October (Fig. 5b). Rikenellaceae is linked with enhanced insulin
sensitivity in mice52. The Lachnospiraceae family contains further
examples of microbes that show a significant enrichment in IR
across the year (Fig. 5b). Lachnospiraceae is reported to be asso-
ciated with T2D in human53, and the colonization of the gut by a
Lachnospiraceae bacterium contributes to the development of
diabetes in obese germ-free mice54. Another notable molecule
with seasonal differences between IR and IS groups is APCDD1,
which showed higher expression in IR than IS during December
until March (Fig. 5b). APCDD1 inhibits the Wnt signaling path-
way55, and the downregulation of the canonical Wnt signaling
pathway is associated with hypertension56, which is also more
prevalent in winter57. As has been demonstrated previously58,59,
three clinical markers: neutrophil absolute count, platelet count,
and triglyceride (TG) level were found to be higher in the IR group
throughout the year. However, the relationship of increased pla-
telet counts to insulin resistance needs further validation.

Several omics analytes that we identified in our study are linked
with hibernation. Hibernation is a dynamic phenotype max-
imizing energy storage during periods of low resource availability
and metabolic depression60. Supplemental figure 12 shows
molecules from our study that are known to change during
periods of hibernation in mammals60,61. For example, serpin
peptidase inhibitor (SERPINC1) protein is shown to be over-
expressed in late torpor compared to early arousal time in
hibernating arctic ground squirrels62. Our data also show over-
expression of SERPINC1 in winter compared to summer (Sup-
plementary Fig. 12).

All together, these deep multiomics measurements enable us to: 1.
Identify extensive seasonal variations across omics molecules and
microbiomes; 2. Discover biological pathways that drive seasonal
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responses for human diseases such as cardiovascular and hyper-
tension disorders; and 3. Detect two basic omics seasonal patterns
that correlate with late spring and late fall/early winters in the San
Francisco bay area. It is of note that from the climate perspective,
there are mainly two seasons in the San Francisco Peninsula: a long
and moderately warm and dry summer, and a mild winter when it
rains. The two major human biological seasonal patterns are likely
influenced by these environmental conditions, which likely impact
environmental exposures as well as lifestyle. We expect that late
spring/early summer (pattern one) reflects a period at the end of less
physical activity and the onset of heavy pollen count; late fall/early
winter likely reflects a period of high RVI. Importantly, these results
have direct implications in disease risk monitoring and for dis-
covering health biomarkers, given our finding that these markers
carry seasonal variation which needs to be measured when inter-
preting disease risk. It is of note that our data do not capture changes
associated with solar diurnal cycle and dark–light cycle as we col-
lected one sample per each visit from fasted participants. We tried to
minimize the effect of solar diurnal cycle on our seasonal changes
assessment by taking samples at the same time for each fasted
participant (7–10 am) for every visit over the course of 4 years.
However, time of sample collection is different relative to the
dark–light cycle that is known to have an impact on the phase of
sleep and human physiology63. Therefore, the seasonal differences
that we report in this study may be affected by different phases of the
seasonal dark–light cycle. We also suggest researchers consider
photoperiodism and other recurring patterns (e.g. the menstrual
cycle) in their study design for future efforts. Finally, since every
geographical location has its unique climate conditions, our
approach can be applied to any geographical location around the
planet to capture the seasonal human biology associated with these
locations.

Methods
IRB and informed consent. This study complies with all relevant ethical regula-
tions and has been approved by the Stanford University Institutional Review Board.
All participants provided written informed consent and were enrolled as part
integrative personalized omics profiling project at Stanford. This study conducted
under research study protocol IRB 23602 and all research participants were studied
after an overnight fast at the Stanford Clinical and Translational Research Unit
(CTRU). Participants survey information were managed using REDCap electronic
data capture tools hosted at Stanford University.

Multiomics experiments and data preparation. Multiomics data of host and
microbial samples used in this study are taken from our integrative personalized
omics profiling project17. A brief description of these data is as follows. RNA-seq:
the transcriptome was evaluated by RNA sequencing (RNA-seq) from bulk
PBMCs. The RNA libraries were constructed using the TruSeq Stranded total RNA
LT/HT Sample Prep Kit (Illumina). The TopHat package was used to align the
reads to the human reference genome (hg19). HTseq and DESEQ2 were used for
quantification and analysis. Custom scripts in R and Python were used for
downstream analyses. For data preprocessing, we first removed the genes with
average read counts over all samples smaller than 1. Then the samples with average
read counts over all filtered genes smaller than 0.5 are filtered out. After this, we
have 890 samples with the expression level data of 10142 genes. Microbiome
Sampling and analysis: stool and nasal microbiome sampling were collected
according to the Human Microbiome Project–Core Microbiome Sampling Protocol
A (hmpdacc.org) and (HMP Protocol #07-001, v12.0). Targeted rRNA gene
amplification and sequencing was carried out by 16S (Bacterial) rRNA gene
amplification V1-V3 of 16S using primers 27F and 534R (27F:5′-AGAGTTTGA
TCCTGGCTCAG-3′ and 534R: 5′- ATTACCGCGGCTGCTGG-3′).

Untargeted Metabolomics by LC-MS: Metabolic extracts from plasma were
analyzed using HILIC. Metabolic extracts from all samples were prepared in a
randomized order. Only metabolic features present in >33% of the samples were
kept for further analysis and missing values were imputed using the k-nearest
neighbors’ method. Inter- and intra-batch variation was corrected using the LOESS
normalization method on QC injected repetitively along the batches. After
normalization, samples from the same individual tend to cluster together. A total of
722 metabolites were measured using our metabolite profiling platform among
which 431 were identified by matching retention time and fragmentation spectra to
authentic standards or by comparing fragmentation spectra to public repositories.
Proteomics (SWATH-Mass Spectroscopy) Tryptic peptides of plasma samples were

obtained from NanoLC™ 425 System (SCIEX). Peak groups from individual runs
were statistically scored with pyProphet and all runs were aligned using TRIC9 to
produce a final data matrix. Luminex Assays: levels of circulating cytokines,
chemokines and growth factors in the blood were measured using a 63-plex
Luminex antibody-conjugated bead capture assay (Affymetrix) that has been
extensively characterized and benchmarked by the Stanford Human Immune
Monitoring Center (HIMC). The full list of cytokines, chemokines and growth
factors are shown in Supplementary Data 5 (Supplementary Data 5). Clinical
laboratory tests: all visits were intensively characterized by 51 clinical laboratory
tests (Supplementary Data 6).

Modified Insulin Suppression test: Steady-state plasma glucose was measured
using the modified insulin suppression test20, which consists of an overnight fast
followed by an 180-min infusion of octreotide (0.27 μg m−2min−1), insulin (0.25
μg m−2min−1) and glucose (240 μg m−2min−1). Blood draws were then taken at
minutes 150, 160, 170, and 180. The oximetric method was used to determine
blood glucose and SSPG was determined by taking the mean of the four
measurements.

Meteorological measurements: We obtained historical meteorological
parameters on visit days that we have samples collected from our cohort. We
queried the synoptic portal (https://synopticdata.com/) to retrieve the
Meteorological measurements from Menlo Park station (Menlo Park, CA). The
majority of our subjects are residents of the San Francisco Bay Area
(Supplementary Data 1, Supplementary Fig. 9). The collected parameters include
air temperature (Celsius), humidity (%), solar radiation (W/m2), pressure (k
Pascal), wind speed (m/sec), and precipitation (mm) (Supplementary Data 8).

Airborne pollen and mold counts. Pollen and airborne fungi counts have been
collected from the American Academy of Allergy, Asthma, and Immunology
(AAAAI) station located at Los Altos Hills, California, USA. The counts are col-
lected on a weekly basis between 2014 and 2016. Pollen counts are measured from
silicone-greased glass slides taken from the Burkard Collector in pollen grains or
mold spores per cubic meter of air per 24 h. The counts are done manually. The
slide is stained with four drops of Calberla’s solution, which is a red dye of basic
fuchsin crystals, and ethanol, and a little bit of glycerin. A cover slip is put on the
slide, it is put on a microscope and a sweep is made from one end of the cover slip
to the other. All pollens are either identified as grass, specific trees, or weeds, but
there are always a number of pollen grains which are unidentified. Also, it is worth
mentioning that pollen and mold counts can only be generalized to all locations in
a very imprecise manner. If a location has lots of oak trees around, similar to where
the station is located, the oak pollen count will be higher. Similarly, if there are
acacia trees around, the acacia count will be higher, dissimilar to where the station
is located. Pollen and airborne fungi data used in this study can be found at
Supplementary Data 13 and 14.

Physical activity and dietary habits. The International Physical Activity Ques-
tionnaire (IPAQ) short form, a validated instrument, was used to assess physical
activity in participants every 3 months34. The iPAQ asks about days and minutes of
vigorous, moderate and walking activity in the past week and it was scored per
IPAQ protocol to estimate the total metabolic equivalent of task (MET) minutes
expended. Dietary habits were similarly assessed every 3 months using the Dietary
Targets Monitor which asks about the frequency of consumption of a variety of
foods including fish, meat, cheese, fruits and vegetables, starchy foods as well as
sweets, and savory snacks64. Dietary habits and IPAQ data can be found at Sup-
plementary Data 15 and 16.

Statistical analysis of seasonality modeling. In order to analyze the seasonality
of longitudinal multiomics data of host and microbiome, we used generalized
additive mixed model (GAMM) in mgcv package in R63. The gamm function in the
mgcv package allows fitting smoothing terms (a cyclic cubic regression splines) to
model seasonal time-series data. The cyclic cubic regression spline ensures that the
measurement at the end of the year (day 365) is the same as the beginning of the
year (day 1). We also considered subject’s ID as random effect, and subject’s BMI
and health status (IR and IS) as covariates:

formula = y ~ IRIS+ BMI+ s(Time, bs= "cc"). The GAMM
coefficients are extracted via gam$coefficients object in mgcv package. The P-
values for smooth terms are extracted using summary(mod$gam), which is
derived based on a likelihood ratio test63. Omics features with seasonality pattern
are those with GAMM model likelihood ratio test p-value ≤ 0.05.

Seasonal clustering analysis of omics feature. Omics features that have a
GAMM model likelihood ratio test p-value ≤ 0.05 (Supplementary Data 2) (as
described above), were selected for clustering analysis. We then derived the GAMM
coefficients for the significant features (GAMM model likelihood ratio test p-value
≤ 0.05) for every type of ome (Supplementary Data 7). Subsequently, we performed
Elbow and Silhouette criteria to identify the optimum number of clusters based on
C-means clustering for every single ome as well as all omes combined. The sil-
houette coefficient estimates the average distance between clusters. We also con-
ducted the principal component analysis (PCA) on the GAMM coefficients for all
the omics analytes and Fig. 2a shows the scatter plot of the first two PCs, colored by
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cluster numbers (cluster 1 and 2) and 95% confidence interval. Each omics analyte
was normalized to have the same variance and the first two PCs explain most of the
variance (93%). Having identified the best number of clusters (k= 2 in our case;
Fig. 2a), we then conducted fuzzy C-means pattern recognition clustering on
GAMM coefficients using the Mfuzz package in R65. We performed fuzzy C-means
pattern recognition clustering on every single ome (transcriptome, proteome,
metabolome and cytokines) as well as all combined.

Correlation of omics seasonal patterns. In order to measure how well the gut and
nasal microbiome, the clinical lab tests and the meteorological measurements fits the
existing two omics seasonal patterns, we calculated cluster membership values (which
are on a scale of 0 and 1) for new data (e.g., microbiome, clinical lab tests, meteor-
ological measurements) based on existing cluster centroids and fuzzification para-
meters using membership function in Mfuzz package in R65 (Supplementary
Data 9). We used ggplot2 in R for visualization of the membership scores.

Ingenuity canonical pathway and disease analysis. We applied ingenuity path-
way analysis (IPA®, QIAGEN Inc.) to search for enriched pathways and diseases in
our list of’omics molecules that carry a significant seasonal component. For integrated
canonical pathway analysis as well as disease enrichment analysis, the significant
transcripts, proteins, metabolites and cytokines were combined and used as an input
file. The IPA enrichment algorithm uses the ‘enrichment’ score based on Fisher’s
exact test p-value. The p-value represents the significance of the overlap between
observed and predicted regulated molecules. We performed this analysis separately for
omics molecules from seasonal pattern one and seasonal pattern two. We used ggplot2
package in R to visualize the differences between the two seasonal patterns.

IR and IS longitudinal analysis. We utilized our recently developed longitudinal
analysis method, OmicsLonDA (https://bioconductor.org/packages/OmicsLonDA/),
to find the time intervals of differentially abundant/expressed omics features
between IR and IS. OmicsLonDA is an extension of MetaLonDA66 to account for
correlated data, repeated measurements, and multiple covariates (continuous and/or
categorical). For each feature f and for each group k (IR or IS), we used a generalized
additive mixed model for modeling nonlinear time-series abundance/expression/
intensity of omics features. Since we model the seasonality effect, we enforced such
cyclicity in our model by using cyclic cubic spline, where the fitted model is con-
tinuous up to the second derivative. This ensures that the measurement on
December 31st (day 365) is the same as January 1st (day 1). In our study, we
accounted for the subject’s age, BMI, and health status as covariates, while subject’s
ID as a random effect. Once the model is fitted, we did a hypothesis test on the
coefficient of the time function f(t). We then calculated the test statistic for each of
the T-1 time intervals, where T is the number of timepoints (T= 365, in our case).
We developed a studentized test statistic that quantifies the differences between the
two splines for each time interval (Eq. (1)). The formula represents the area between
the two splines for each time interval [t, t+ 1] as shown in, where Ak1[t, t+ 1], and
Ak2[t, t+ 1] denote the area under the spline curve from time t to t+ 1 for group 1
(IR) and group 2 (IS), respectively, and SE represents the standard error.

testStatistict;tþ1 ¼
Ak1
t;tþ1 � Ak2
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Then, we performed a permutation procedure by permuting the sample group
label k. The permutation was done B times (B = 1000, in our case), and after each
permutation, we calculated the test statistics for the null hypothesis for each time
interval. Subsequently, the p-value of each interval of the tested feature f was
calculated using Eq. (2), where (T-1) denotes the number of time intervals, and I(.)
is an indicator function.

p-valuet;tþ1 ¼

PT�1
j¼1

PB
b¼1 IðtestStatistic

b
j;jþ1 > testStatisticbt;tþ1Þ

B*ðT � 1Þ
:

ð2Þ

The p-value was then adjusted for multiple testing using Benjamini–Hochberg67

to control for the false discovery rate. For each feature f, significant time intervals
are inferred as those with adjusted-p-value[t, t+1] < α/2, where α is the significance
level (α = 0.05, in our case)68.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All raw data used in this study are hosted on the NIH Human Microbiome 2 project site.

(https://portal.hmpdacc.org). The processed data of host and microbiome data are

available at https://figshare.com/articles/Multi_Omics_Seasonal_RData/12376508.

Code availability
The code for GAMM model (Supplementary Code 1) and clustering (Supplementary

Code 2) are available in supporting information files. The code for IR and IS analysis is

available on https://github.com/aametwally/ipop_seasonal.
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