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Abstract—Recent years have witnessed remarkable information
overload in online social networks, and social network based
approaches for recommender systems have been widely studied.
The trust information in social networks among users is an
important factor for improving recommendation performance.
Many successful recommendation tasks are treated as the matrix
factorization problems. However, the prediction performance of
matrix factorization based methods largely depends on the
matrixes initialization of users and items. To address this challenge,
we develop a novel trust-aware approach based on deep learning to
alleviate the initialization dependence. First, we propose two deep
matrix factorization (DMF) techniques, i.e., linear DMF and non-
linear DMF to extract features from the user-item rating matrix for
improving the initialization accuracy. The trust relationship is
integrated into the DMF model according to the preference
similarity and the derivations of users on items. Second, we exploit
deep marginalized Denoising Autoencoder (Deep-MDAE) to
extract the latent representation in the hidden layer from the trust
relationship matrix to approximate the user factor matrix
factorized from the user-item rating matrix. The community
regularization is integrated in the joint optimization function to
take neighbours’ effects into consideration. The results of DMF are
applied to initialize the updating variables of Deep-MDAE in order
to further improve the recommendation performance. Finally, we
validate that the proposed approach outperforms state-of-the-art
baselines for recommendation, especially for the cold-start users.

Index Terms—Autoencoder, deep learning, matrix factoriza-
tion, social networks, trust relationship.

I. INTRODUCTION

DUE to the rapidly growing amount of information and

explosive appearance of new services available in the

web, the overloaded information prevents users from obtain-

ing useful information conveniently [1]–[6]. How to help the

overwhelmed users to select the interested part of online infor-

mation is becoming an unprecedentedly important task. Both

academic and industrial fields pay much attention to this prob-

lem. To satisfy this requirement, recommender systems have

emerged as an effective mechanism to provide suitable recom-

mendation for the costumers about what kinds of the items or

persons that they may be potentially interested [7]. At present,

there are many popular recommender systems such as the

items recommendation in Amazon, the music recommenda-

tion in Last.fm, the movies recommendation in Netflix and the

friends recommendation in Linked [8], [9], etc.

A. Motivation

Although recommender systems have been widely studied

and used both in academic and industrial fields, some impor-

tant problems still exist. First, only a small proportional items

have been rated. The users’ ratings on items may reflect the

interest of users, and the users’ historical rating data can gen-

erally be formalized as the user-item rating matrix, which usu-

ally influences the collaborative filtering-based recommender

systems. The host information systems of recommender sys-

tems can provide a large amount of information, and thus the

dimension of user-item rating matrix is generally very high.

However, the users only visit a relative small number of items,

and the number of ratings that the users assign to the items is

rare. Thus a large number of ratings are lacked in the user-

item rating matrix. As illustrated in [10], the available ratings

for implementing recommendation are very rare. The classical

user-based collaborative filtering approaches exploit the

neighbors’ ratings of the target user to predict his/her rating.

When the user-item rating matrix is egregious sparsity, the tar-

get user’s neighbors can hardly be identified. Thus the recom-

mendation coverage would deteriorate dramatically. The

classical item-based collaborative filtering approaches exploit

the target users’ ratings which already exist in the user-item

rating matrix to achieve the recommendation. Due to the exist-

ing of sparsity, the users’ historical rating data is too rare,

which means that the essence of sparsity is information miss-

ing in the user-item rating matrix. The neighbors’ items of
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target items that have already been visited cannot be identi-

fied. The recommendation accuracy would deteriorate dramat-

ically, and the item-based approaches even fail to recommend

the items to target users. The recommendation quality of col-

laborative filtering approaches cannot be guaranteed without

sufficient data of ratings assigned to items by users.

Second, the challenge of cold-start exists in recommender

systems, including the cold-start users and the cold-start items.

When new users appear in the systems, no items has been

assigned by them. There are no ratings for the new users can

be utilized. From this perspective, the content-based collabo-

rative filtering approaches do not work since the user profile

cannot be constructed in recommender systems. For the user-

based collaborative filtering approaches, the similar neighbors

of target user cannot be identified in the recommender sys-

tems. In terms of the item-based collaborative filtering

approaches, the item similarity can be determined by recom-

mender systems. The ratings of items have not been assigned

by new users, and thus the prediction cannot be completed.

When new items appear in the systems, for the content-based

collaborative filtering approaches, the model of new items can

be constructed in recommender systems without ratings

assigned by users. For collaborative filtering approaches, the

similarity calculation and the predictions of ratings cannot be

completed when the data deficiency of items’ ratings exists.

The cold-start problem exists during the whole life cycle of

recommender systems, especially in the initial stage of con-

struction of recommender systems. The new users and items

are difficult for investigation without any prior information.

The defect of cold-start is the excessive dependence of the rat-

ing data. Thus other information about users or items should

be considered to design or improve the recommender systems.

Third, the trust relationship [11], [12] among the users has

not been considered in traditional recommender systems. In

real application, compared with other ordinary users, their

friends’ comments can better affect the users’ decisions about

which items that they are interested. Therefore, the traditional

recommender systems cannot sufficiently provide accurate

and reliable predictions since they only consider the user-item

rating matrix. Thus new approaches and techniques are needed

to address these problems.

In this paper, the trust relationship is integrated to solve the

problem mentioned above. With the help of the trust relation-

ship, the effect of cold-start problem can be relieved as well as

the data sparsity. Although the neighbours of the cold-start

users cannot be known accurately, the user’s preference can

be inferred via the friends-based social networks.

B. Contributions

In this paper, we propose several approaches based on

matrix factorization for recommendation exploiting trust-

aware relationship in social networks. Since the initialization

is very important for matrix factorization-based approaches,

we propose an initialization method based on deep learning,

where Deep Matrix Factorization (DMF) is used for pertaining

the initial feature matrices for our learning model. We propose

a DMF-based model by integrating and exploiting the trust

relationship for overcoming the data sparsity. Finally, a series

of experiments verify the superiority of our proposed methods

by extracting user data from online social networks Epinions

and Flixster. From the experiment results, our proposed meth-

ods have higher recommendation accuracy compared with

other baseline methods. In conclusion, the main contributions

of this paper are listed as follows:

1) The deep learning techniques are integrated with the social

trust relationship to improve the recommendation performance.

2) The Linear Representation DMF (LRDMF) and Non-Lin-

ear Representation DMF (NLRDMF) are adopted to improve

the initialized accuracy of matrix factorization. The user prefer-

ences and the derivations of users on items are taken into consid-

eration as social trust relationship, and they have been integrated

in the DMF for overcoming data sparsity issue.

3) We propose a joint optimization function to enforce the

user factor matrix as close as possible to the latent representa-

tion of the trust relationship in the hidden layers of the deep

Marginalized Denoising Autoencoder (Deep-MDAE). In addi-

tion, we integrate the community regularization in the joint

optimization function to take the neighbours’ effects into con-

sideration. The two factorized matrices obtained from DMF

are utilized for initializing the updating variables of Deep-

MDAE.

4) The data sets are extracted from Epinions and Flixster.

From the recommendation results, our DMF trust based meth-

ods obtain higher recommendation accuracy compared with

other methods, especially in the case of sparse data and cold-

start users.

C. Organization of the Paper

This paper is organized as follows. The related work is dis-

cussed in Sectin 2. The problem formulation is given in

Section 3. The proposed DMF algorithm is analyzed in Sec-

tion 4. The proposed social trust based DMF method is pre-

sented in Section 5. The experiments are shown and analyzed

in Section 6. The conclusions are drawn in Section 7.

D. Notations

In this paper, the operator ð�Þ{ and ð�ÞT stand for the pseudo-

inverse and the transpose of a matrix, respectively. IIM stands

for an M �M identity matrix. k � kF denotes the Frobenius

norm. � stands for the Hadamard products. E stands for the

expectation operator, and tr stands for the trace operator.

II. RELATED WORK

Collaborative filtering has been widely used in recommender

systems [13]. However, the sparse data and the cold-start prob-

lem exist in the collaborative filtering-based approaches [8].

Many frameworks have been proposed by researchers for solv-

ing the problems in the collaborative filtering-based approaches.

The interpolation technique has been applied to fill the missing

entries in the user-item rating matrix [14] for overcoming the

problem of sparse data. The memory-based collaborative
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filtering approaches are also known as the neighbour-based col-

laborative filtering approaches. The user-item rating matrix is

utilized to generate recommendation items. First, various simi-

larity metrics are adopted to calculate the similarity among dif-

ferent users or items. Then the neighbours of active users or

target items can be found. The sum of weight of the neighbours

belonging to active users or target items can be regarded as the

prediction ratings. The typical memory-based collaborative fil-

tering approaches are divided into user-based and item-based

collaborative filtering approaches. However, the memory-based

collaborative filtering approaches do not scale well to commer-

cial recommender systems. In addition, the model-based collab-

orative filtering approaches provide a scalable solution for the

scenario with relatively sufficient data.

Model-based collaborative filtering approaches utilize the

machine learning skills to train prediction model. Users’

behaviours are depicted by prediction model, and then model-

based collaborative filtering approaches can predict the items’

ratings assigned by users via the learned prediction model.

However, the entries in user-item rating matrix are not all

used. Typical model-based collaborative filtering approaches

include Bayesian network-based approaches, clustering

model-based approaches, potential semantic model-based

approaches, limited Boltzmann machine-based approaches

and association rules-based approaches.

Matrix factorization is also a widely used method based on

collaborative filtering [17]. In practice, we cannot directly fac-

torize matrices in most of the cases because of its low recom-

mendation accuracy. Deep learning [29] has been applied to

improve the performance of matrix factorization, as well as to

find an appropriate way to represent matrices in low dimension

and relieve the data sparsity and cold-start problems partly. Trust

information has been derived from [8] recently, and then the

trust-aware recommendation becomes a developing area to

enhance the recommendation performance of learning based

methods.

A. Matrix Factorization Based Methods

Matrix factorization-based recommendation approaches [18]

have been widely adopted by researchers. The main reason is

that the matrix factorization technique can effectively deal

with the user-item rating matrix with large scale. The matrix

factorization technique assumes that users’ behaviors are

influenced by only a few implicit factors. Matrix factorization

simultaneously maps the feature vectors of users and items

into low dimension hidden feature space, in which the inner

product between users and items can be directly calculated.

Constrained non-negative matrix factorisation (CNMF) incor-

porates the additional constraints as regularization of the error

function on the prime problem [19]. However, there exists an

apparent problem for CNMF, i.e., it concerns the problem in the

global scope. However, for a local or pairwise situation, there is

a lack of consideration. For solving this problem, a method

named graph regularized nonnegative matrix factorization

(GNMF) has been proposed in [20]. The geometrical informa-

tion is represented by constructing a nearest neighbor graph, and

the graph structure is incorporated into a new factorization

objective function.

Recently, Relative Pairwise Relationships Non-negative

Matrix Factorisation (RPR-NMF) has been proposed in [21].

The penalties imposed on relative pairwise relationship can be

written as triplets. By adjusting the conditions of factors,

RPR-NMF is able to implement on more recommendation

issues conveniently.

Besides, there are various forms of matrix factorisation meth-

ods as well, such as nonnegative matrix factorization (NMF),

SVD++, Bayesian probabilistic matrix factorization (BPMF),

probabilistic matrix factorization (PMF) and maximum-margin

matrix factorization (MMMF) [22]. Each of implicit eigenvec-

tors of NMF constraint must be positive. The PMF uses probabi-

listic graph models with Gaussian noise to represent implicit

eigenvectors of users and items. BPMF assumes that users’ and

items’ hyperparameters are a priori, and they obey the Gaussian-

Wishart distribution. The Markov chain Monte Carlo method

has been performed for approximate reasoning. SVD++ gener-

ates recommendations based on both the explicit and the implicit

effect of ratings.

B. Deep Learning Based Methods

Matrix factorization is an ideal way to integrate trust-aware

recommendations. In fact, factorizing user-item rating matrix

directly in a reasonable way is almost impossible. Because of

the complex connections among users and items, we need a

more effective approach to capture these connections. Based on

deep learning, some architectural paradigms, including multi-

layer perceptron (MLP), autoencoder, recurrent neural network

(RNN), convolutional neural network (CNN), restricted Boltz-

mann machine (RBM), neural autoregressive distribution esti-

mation (NADE), adversarial networks, attentional models and

deep reinforcement learning (DRL) have been proposed in [23].

Compared with traditional algorithms such as matrix factor-

ization, the merits deep learning based methods consist of

three aspects. 1) It can deal with nonlinear mapping effi-

ciently, which can capture complex interactions among users

and items. 2) It is useful for learning the underlying factors,

that is convenient for us to extract key information from mas-

sive data. 3) It has improvement on sequence modeling.

Among all deep learning based recommendation methods,

MLP is a simple but powerful idea to achieve desirable accu-

racy by approximating objective function. The functions of

Neural network matrix factorization (NNMF) representing the

sum of vectors are selected to learn, and the function is set as

a feed-forward neural network [24]. Neural collaborative fil-

tering (NCF) [25] has became a useful tool in recommendation

systems recently, and it generalizes traditional matrix factori-

zation to NCF. Researchers trained this network by adopting

weighted square loss or binary cross-entropy loss functions.

Autoencoder is also a common technique in deep learning.

Among the various variants of autoencoder, denoising autoen-

coder is the most studied one. Many researchers consider col-

laborative filtering from autoencoder aspect. User or item

factor matrices are set as input [26], and they are desired to
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recover in the output layer. The algorithm proposed in [27] has

extended AutoRec proposed in [26] by denoising and has used

side information to strengthen the robustness and refine the

two difficulties we mentioned before. The autoencoding varia-

tional matrix factorization and graph convolutional matrix fac-

torization autoencoder approaches have been proposed in [28].

A hierarchical Bayesian model has been proposed in [29],

which runs the deep representation learning for the content

information and collaborative filtering for the user-item rating

matrix jointly. The recommendation performance has been

improved significantly when deep learning is embedded in the

recommendation systems [30].

Besides, CNN [31] and RNN [32] also achieve excellent

performance in recommendation systems such as sequential

recommendation. The DMF has been used for clustering by

learning hidden representations in [33]. In addition, some

works such as [34], [35] has tended to use both explicit and

implicit information, or complete/missing data model to create

a joint model for prediction with a new loss function. They

obtain excellent recommendation results based on DMF. How-

ever, the trust relationship is not considered in the approaches

mentioned above.

C. Trust-Aware Methods

Although the matrix factorization methods mentioned

above can effectively deal with the user-item rating matrix

with large scale, it cannot effectively solve the cold-start prob-

lem because of the intrinsic sparsity of the user-item rating

matrix [36]. In recent years, some matrix factorization-based

recommendation algorithms solve the cold-start problem by

integrating additional sources of information. For example,

users’ tag information is integrated in a matrix factorization

framework to improve the recommendation performance [37].

Based on the common interests among friends, users tend to

accept recommendations from their friends. Many researchers

have improved the quality of recommendation performance

by integrating the information of social networks in a matrix

factorization framework. The typical recommendation

approaches based on social networks includes: social trust

ensemble (STE) [38], SocialMF [39], TidalTrust [41] and

MoleTrust [42]. SDAE proposed in [43] gives a joint objective

function enforcing latent representations of social relation-

ships and users to be as close as possible in the hidden layer of

marginalized DAE. A deep learning based matrix factorization

scheme for trust-aware recommendation has been proposed

in [44]. Deep learning has been applied to initialize input, and

a social trust ensemble learning model involving both influ-

ence of friends and communities has been adopted. Due to the

efficiency of autoencoder, DAE is selected as the main method

to solve the two problems stated above with trust informa-

tion [45]. Users are described by not only the rating informa-

tion but also the explicit trust information, and this method is

named as TDAE. They also extract the implicit trust informa-

tion to boost the performance, and the improved algorithm is

called TDAE++. Besides, the trust relationships are also

added to the input and output layer of autoencoder to map the

nonlinear relationships. Now, how to distinguish a neighbor is

trust-worthy? A part of researchers also propose models for

neighbors selection, such as the availability evaluation module

and the trust evaluation module in [46].

D. Similarity Metrics

Various similarity metrics have been applied in different

scenarios, e.g., the user similarity metrics for friends recom-

mendation in online social networks (OSNs) [47], [48], and

the topological similarity metrics for link prediction and com-

munity detection [49]. The local similarity metrics utilize the

local topological information to measure the similarity

between nodes in networks, such as common neighbors (CN),

Adamic-Adar (AA), resource allocation (RA) and preferential

attachment (PA) [50]. The local path (LP) [51] index has been

designed based on the path information. The widely used met-

ric based on the structural similarity in networks is local ran-

dom walk [52]. Random walk can to quantify relevance

between nodes, and it is usually implemented for link predic-

tion and recommendation tasks. In addition, a series of simi-

larity indices including Jaccard similarity, cosine similarity,

and Pearson correlation coefficient are used for measuring the

interest similarity between users in OSNs [53]. Recently, the

technology of network embedding has attracted lots of atten-

tion, such as DeepWalk and Node2vec [54]. They learn the

low-dimensional vector representation of each node in net-

works [55], and then compute the similarity between vectors

via different similarity metrics for the recommendation and

prediction tasks.

In recent years, deep learning techniques can extract latent

features and representations from the user-item rating matrix,

which has been proved as an efficient method to improve the

recommendation accuracy. Trust relationship matrix has been

used for collecting the persons that the user trusts when this

mechanism has been integrated in the recommender systems.

The trust relationship matrix can be used for deducing the user

preferences from his/her trust persons. This mechanism is

extremely effective for the cold-start users, who have little

information to deduce their preferences. Thus how to integrate

the deep learning technique with the trust relationship

becomes an important problem to solve. The matrix factoriza-

tion technique is one of the important techniques for recom-

mending the items to the target users in recommender

systems. DMF has been used for improving item recommen-

dation accuracy for target users to enhance the latent represen-

tations in hidden layers [34]. However, the trust relationship

has not been used to further improve the recommendation per-

formance. The autoencoder has been used for item recommen-

dation [44], [56], which exploits the user-item rating matrix

and the trust relationship matrix, respectively. However, none

of them exploits both the deep structure for learning the model

parameters of user-item rating matrix and the trust relationship

matrix jointly. In this paper, we amalgamate the DMF of the

user-item rating matrix into the autoencoder of the trust rela-

tionship matrix to achieve better recommendation perfor-

mance in recommender systems.

514 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021



III. PROBLEM FORMULATION

In recommender systems, we assume that U ¼ fu1; u2; . . . ;
uMg represents user set and I ¼ fi1; i2; . . . ; iNg represents the
item set. The ratings assigned by users on items are represented

as a user-item rating matrix RR 2 RM�N . RRm;n is the rating of

item n assigned by userm. Ratings are often represented as inte-

gers between 1 and 5. We normalize the ratings for mapping the

ratings into the interval of ½0; 1�. In a rating network of users and
items, each userm has a set of neighborsNm, and tm;v represents

the social trust value that the user m assigns on user v in the

range ½0; 1�. If the value is zero, it means no trust relationship

exists. Otherwise, it denotes full trust. In terms of the binary trust

networks, the trust values among users are represented as a trust

relationship matrix TT 2 RM�M . TTm;v in TT represents the social

relationship from userm to user v, and TT is asymmetric.

The rating network consists of nodes and edges. Users and

items are represented as nodes in a network. The edges between

users represent their trust relationships, and the edge weights

between users and items denote the ratings on the items assigned

by the users. An example of social rating network is shown in

Fig. 1(a), and the corresponding user-item ratingmatrix is shown

in Fig. 1(b). It can be seen from the ratingmatrix that only part of

the user-item ratingmatrix can be used for recommendation, and

the other ratings are not known.

Therefore, the trust-aware recommendation task is described

as follows: given a userm and an item n, we aim to predict the

rating on item n from user m by using the user-item rating

matrixRR and the trust relationship matrix TT .
Next, we will introduce the basic matrix factorization

approach from a probability perspective. It should be noted

that the basic matrix factorization approach only use the

known part of the user-item rating matrix RR to predict the

unknown part of the user-item rating matrix RR.

Matrix factorization is an efficient model for predicting miss-

ing values in a given matrix. This problem is also known as

matrix completion [15], which has attracted increasing atten-

tions from researchers in the field of recommender systems [16].

Matrix factorization model represents both users and items by

using a low-dimensional latent feature space. i.e., the user-item

rating matrix is modeled as a product of two user and itemmatri-

ces with low rank. The scenario that the matrix factorization

technique adopted is that the user-item interactions are influ-

enced by a few key features, and the application of each feature

will influence a user’s interactive experience [17]. The trust-

aware relationship is not used for predicting missing values in

the user-item ratingmatrix.

The probabilistic linear model with Gaussian observation is

adopted. The conditional distribution over the observed rating

is defined as

p RjP;Q; s2
� �

¼
Y

M

m¼1

Y

N

n¼1

N Rm;njP
T
mQn; s

2
� �� �Imn

; (1)

where Nðxjm; s2Þ is the probability density function of the

Gaussian distribution, and it is determined by the mean m and

variance s2. Imn is the indicator function, and it is equal to 1

if user m has rated item n, otherwise, it is 0. We assume that

user and item feature vectors have zero-mean spherical Gauss-

ian priors, and then the objective of matrix factorization is to

maximize the posterior distribution over the user and item fea-

tures, i.e., training and learning above latent variables by mini-

mizing the following equation as follows

C ¼
1

2
min
P;Q

X

M

m¼1

X

N

n¼1

Imn Rm;n � P T
mQn

� �2

þ
�P

2
Pk k2Fþ

�Q

2
Qk k2F ;

(2)

where �P and �Q are both regularization terms for avoiding

the overfitting of our model, and k � k2F is the Frobenius norm.

We initialize PP and QQ randomly. Then we can perform the

stochastic gradient descent technique [18] in PP and QQ to mini-

mize the objective function given by (2). The update formula-

tion is given as follows

P ðtþ1Þm ¼ P ðtÞm � g1

@C

@P ðtÞm
;

Qðtþ1Þn ¼ QðtÞn � g2

@C

@QðtÞn
;

(3)

where g1 > 0 and g2 > 0 are learning rates. A probabilistic

foundation for regularizing the learned variables is given in [57],

and some recent recommended approaches have adopted this

form for the item recommendation in social networks [38]–[40].

IV. DEEP MATRIX FACTORIZATION

FOR RECOMMENDATION SYSTEMS

As shown in Fig. 1(b), the matrix that we need to factorize

is the user-item rating matrix, whose entries are assigned by

the users (the corresponding column) to the items (the corre-

sponding row). The two factorized matrices are corresponding

to the users and items, which are called latent user and item

Fig. 1. Example of trust-aware recommendation. (a) Item-rating in a social
network. (b) User-item rating matrix.
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feature matrices, respectively. Learning models by matrix fac-

torization is a mature approach for solving recommendation

problem when only part of the user-item rating matrix can be

used. In general, PP 2 RK�M and QQ 2 RK�N are latent user

and item feature matrices, and the column vectors PPm 2 R
K

and QQn 2 R
K represent use-specific and item-specific latent

feature vectors, respectively. Hence, we divide the user-item

rating matrix into two sub-matrices PP and QQ with the con-

straints ofK-dimensional features:

R � PTQ: (4)

The definition of NMF satisfies that factors S ¼ P T (We

define S ¼ P T for the simplicity of the derivation in the fol-

lowing paragraph.) andQ are non-negative. The approach pro-

posed in [58] has extended the applicability of NMF, which is

called Semi-NMF. It is a NMF variant which both positive

and negative signs can exist in the user-item rating matrix R
and the first factor S. However, only positive signs can exist

in the second factor Q.

A. Linear Representations

In order to solve the recommendation problem, a Semi-

NMF exploiting deep learning framework named as Deep

Semi-NMF is proposed inspired from [57]. Based on the unsu-

pervised learning pattern, the matrix can be factorized into

multiple factors. The differences between traditional Semi-

NMF and the proposed Deep Semi-NMF frameworks are

shown in Fig. 2. As shown in Fig. 2(a), there is a linear trans-

formation between the new representation Q and the original

user-item rating matrix R deriving from Semi-NMF. As dem-

onstrated in Fig. 2(b), multiple hidden representations of the

identical hierarchy are learned by Deep Semi-NMF, which

uncovers the final low-dimensional representation of the origi-

nal user-item rating matrix. The cost function can be written as

Cdeep ¼
1

2
R� S1S2 � � �SLQLk k2F

þ
1

2
S1S2 � � �SLk k2Fþ

1

2
QLk k2F : (5)

In general, training a deep neural network should cost lots

of time. The factor matrices Sl and Ql in the proposed Deep

Semi-NMF framework need to be approximated in an acceler-

ated way, and thus we pre-train each layer of this neural net-

work. Then the initial approximation of factor matrices Sl and

Ql can be achieved. As reported in [59], the deep autoencoder

networks have been pre-trained to reduce the training time

greatly. For example, the original user-item rating matrix can

be decomposed into R ¼ S1Q1, where S1 2 R
M�k1 and Q1 2

R
k1�N . In the similar way, the feature matrix can be decom-

posed into Q1 ¼ S2Q2, where S2 2 R
k1�k2 and Q2 2 R

k2�N .

This procedure can be done until the ðl� 1Þth feature matrix

is decomposed into QL�1 ¼ SLQL, where SL 2 R
kL�1�kL and

QL 2 R
kL�N . Thus we pre-train all the layers. Afterwards, the

weight of each layer, i.e., Sl and Ql, can be fine-tuned by

exploiting alternating minimization, and then the reconstruc-

tion error of the model can be reduced dramatically.

1) Updating Step for Weight Matrix S: We fix the remain-

ing weights for the lth layer, and Sl makes the cost function

(5) achieve the minimum, i.e., the partial derivation on Sl is

set to be zero

@Cdeep

@Sl
¼ 0: (6)

Thus the updates for Sl can be expressed as

Sl ¼
F

{R~Q{
l

I þ �1ð~Q
T
l
~QlÞ
�1 ; (7)

where F ¼ S1S2 � � �Sl�1, and ~Ql is the inference of the lth
layer’s feature matrix.

2) Updating Step for the Feature Matrix Q: Since the non-

negativity of Ql needs to be enforced, the feature matrix Ql

can be updated in a similar way as given in [58]. The feature

matrix Ql can be formulated as

Ql ¼ Ql �
F

TR
� �pos

þ F
T
F

� �neg
Ql

F
TR

� �pos
þ F

T
F

� �neg
Ql þ �2Ql

" #h

; (8)

.

We set h to be a small number for preventing (8) to be zero.

0 takes place of matrix A with negative elements, and this

matrix is defined as Apos. 0 takes place of matrix A with posi-

tive elements, and this matrix is defined as Aneg:

8i; j; Apos
ij ¼

Aij

�

�

�

�þ Aij

2
; Aneg

ij ¼
Aij

�

�

�

�� Aij

2
: (9)

At first, the Semi-NMF algorithm [58] has been used to approxi-

mate the factors greedily. Then the factors are fine-tuned until

the convergence criterion is reached. In this paper, the maximum

iteration number is fixed at 1000. If the difference between pre-

vious update and the current update is smaller than a threshold

10�6, we stop the iteration. Thus we can train a Deep Semi-

NMF model as described above. The pseudo code of the sug-

gested training algorithm is summarized in Algorithm 1.

Thus the linear representation of Deep Semi-NMF (LRDMF)

can be written as

RLR ¼ ŜLQ̂L: (10)

Fig. 2. Difference between traditional and the proposed Semi-NMF model.
(a) Semi-NMF model. (b) Deep Semi-NMF model.
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The Semi-NMF model actually is the special case of Deep

Semi-NMF model with a single layer. The cost function can

be written as

Csnmf ¼
1

2
R� SQk k2Fþ

1

2
Sk k2Fþ

1

2
Qk k2F ; (11)

subject to Q � 0. The pseudo code of Semi-NMF model with

a single layer is summarized in Algorithm 2.

B. Non-Linear Representations

According to the neurophysiology, the human visual system

will process it automatically in a hierarchical and non-linear

way when person looking at an image. Specifically, the corre-

sponding neurons in the brain process the complex image fea-

tures sequentially [60]. The authors in [61] exploit an

adaptable non-linear image representation algorithm to reduce

the statistical and the perceptual redundancy of representation

elements for image processing. Inspired from the way of

image processing, we introduce the non-linear representation

into deep Semi-NMF model for recommendation.

In the previous section, the original user-item rating matrix

has been decomposed in a linear way. However, the latent

attributes of the non-linearity are ignored in the model.

Besides, the linear representation cannot account for the non-

linear relationship efficiently. As a consequence, the non-lin-

ear functions should be introduced between the layers in order

to extract feature for each latent attribute.

We utilize a non-linear function gð�Þ between every implicit

representation ðQ1; . . . ; QL�1Þ for approximating the non-lin-

ear manifolds on which the user-item rating matrix R
lies [33]. In other words, the Deep Semi-NMF model has an

enhanced explainability by using a non-linear squashing func-

tion. Therefore, we can reconstruct the original user-item rat-

ing matrix in an explicit way. This method has been proved

in [62] under the scenario of multilayer feedforward network

structures. If the hidden units are provided sufficiently and

explicitly, any interest function can be approximated by arbi-

trary squashing functions with any desired accuracy. Deep

Semi-NMF is just an instance of multi-layer feedforward

network.

It is straightforward to introduce non-linearity in Deep

Semi-NMF model, and thus the lth feature matrix Ql can be

modified as

Ql � gðSlþ1Qlþ1Þ: (12)

The cost function of the model is rewritten as

C	 ¼
1

2
R� S1gðS2gð� � � gðSLQLÞÞÞk k2F : (13)

Remark 1: It should be noted that the model (13) is more

general compared with model (5). The feature vectors of users

and items of model (5) are assumed to have zero-mean spheri-

cal Gaussian priors. However, the model (13) does not have

this constraint.

By using the chain rule, the derivation of lth feature layer

can be described as

@C	

@Ql

¼ ST
l

@C	

@SlQl

¼ ST
l

@C	

@gðSlQlÞ
� rgðSlQlÞ

� �

¼ ST
l

@C	

@Ql�1

�rgðSlQlÞ

� �

:
(14)

Therefore, the derivation of the first feature layer Q1 is con-

cordant with the model of one layer

@C	

@Q1

¼
1

2

@Tr �2RTS1Q1 þ ðS1Q1Þ
TS1Q1

h i

@Q1

¼ ST
1 S1Q1 � ST

1R

¼ ST
1 ðS1Q1 � RÞ:

(15)

Similarly, the derivation for the weight matrices Sl can be

expressed as

@C	

@Sl
¼

@C	

@SlQl

QT
l

¼
@C	

@gðSlQlÞ
� rgðSlQlÞ

� �

QT
l

¼
@C	

@Ql�1

�rgðSlQlÞ

� �

QT
l ;

(16)

Algorithm 1: Deep Semi-NMF.

Input: RR 2 RM�N , the size of different layers

Output: different layers with deletedthe parameter matrices. i.e.,

weight matrices SSi and feature matrices QQi

Initialize different Layers

for Different layersdo

SSl; QQl  Semi-NMF (QQl�1,layer(i))
end for

repeat

for Different layers
~QQl  casesQQl if l ¼ LSSlþ1

~QQlþ1 otherwise cases
FF 

Ql�1
l¼1 SSl

SSl  
FF
{RR ~QQ

{

l

IIþ�1ð ~QQ
T
l
~QQlÞ
�1

QQl  QQl � ½
½FFTRR�posþ½FFT

FF�negQQl

½FFTRR�posþ½FFT
FF�negQQlþ�2QQl

�h

end for

untilStopping criterion is satisfied.

Algorithm 2: Semi-NMF with a single layer.

Input: RR 2 RM�N , the number of componentsK
Output: weight matrix SS 2 RM�K and feature matrix QQ 2 RK�N

Initialize QQ
repeat

SS  FF
{RR ~QQ{

IIþ�1ð ~QQ
T ~QQÞ�1

QQ QQ� ½ ½FFTRR�posþ½FFT
FF�negQQ

½FFTRR�posþ½FFT
FF�negQQþ�2QQ

�h

untilStopping criterion is reached.
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and

@C	

@S1

¼
1

2

@Tr �2RTS1
~Q1 þ ðS1

~Q1Þ
TS1

~Q1

h i

@S1

¼ ðS1
~Q1 �RÞ~QT

1 :
(17)

By using these derivations, the cost function corresponding

to the weight of the model can be minimized with gradient

decent optimizations by using Nesterov’s optimal gradi-

ent [63]. Based on the non-linear representation of Deep

Semi-NMF (NLRDMF), the original user-item rating matrix

can be written as

RNLR ¼ Ŝ1Q̂1: (18)

C. Stochastic Optimization

Unfortunately, for Semi-NMF or NMF, it is difficult to

compute for large datasets since the computational complexity

of these algorithms would grow quadratically in proportional

to the number of items n. In addition, the whole training data-

set is required to be resided in main memory. In recent years,

the stochastic optimization techniques have been proposed to

mitigate these two problems. In each iteration, only a small

portion of the dataset is processed. Thus several iterations are

required to process the whole dataset, and this method is

known as mini-batch [64]. The number of mini-batches is set

to be H. The cost function of the stochastic Deep Semi-NMF

can be expressed as

~C ¼
1

2

X

H�1

h¼0

R½h� � S1gðS2gð� � � gðSLQ
½h�
L ÞÞÞ

	

	

	

	

	

	

2

F
; (19)

subject to 8h, where Qh � 0, and R½h� is the subset of the

training set. i.e., a small batch of training set. R½h� contains b ¼
n
H examples. The stochastic optimization techniques such as

Adam and SGD [65] are adopted for updating all the parame-

ters in the Deep Semi-NMF model. This is an approximation

implementation over the whole training set, but the stochastic

optimization techniques take effect even for a small batch

sizes (32 samples).

V. SOCIAL TRUST ENSEMBLE

The social trust networks will affect users’ strategic deci-

sions when users select items. In this section, we analyze this

phenomenon, and propose an extended Deep Semi-NMF

model based on users’ trusted friends. First, we integrate the

trust degree to improve the recommendation accuracy. Then,

we exploit the autoencoder to extract the latent representation

in the trust relationship matrix T 2 RM�M to further enhance

the recommendation accuracy.

A. Trust Degree Ensemble

As mentioned in Section III, a trust relationship matrix T 2
R

M�M is used for representing the trust values among users.

Users tend to allocate the scores to their trusted friends in

most social networks, and these scores correspond to the trust

degrees between user-friend pairs. However, there is no

explicit trust values measuring the trust degree in existing

online social networks. Consequently, it is significant to con-

struct a model to measure the trust degree of the social net-

works without trust values.

Generally speaking, most users tend to trust their friends, as

well as the recommendations provided by their friends. How-

ever, target users may not well satisfy with the recommenda-

tions from their trusted friends since the difference between

them exists, including their potential interests, preferences or

habits. In this case, we take the trust degree into consideration,

it contains the similarity and the social based trust degrees.

The trust degree trustðvi; vjÞ assigned to vi from vj is calcu-
lated as

T vi;vj ¼ ð1� bÞT I
vi;vj
þ bTO

vi;vj
; (20)

where T I
vi;vj

and TO
vi;vj

stand for similarity and the social based

trust degrees, respectively, and b is a weight coefficient.

The social behavior in a social network is usually modeled

as the trust relationship, such as the followers of a person and

the message forwarding in microblog. Thus the similarity

based trust degree T I
vi;vj

can be modelled as

T I
vi;vj
¼

simðvi; vjÞ � trustðvi; vjÞ
P

m2Sm
simðvi; vjÞ � trustðvi; vjÞ

; (21)

where simðvi; vjÞ is the similarity between user vi and user vj,
which is calculated via cosine similarity between their corre-

sponding vectors P vi and P vj . trustðvi; vjÞ is the trust value

assigned to vj from vi. If the trust value is given, we set

trustðvi; vjÞ ¼ 1. i.e., it represents the existence of a social

relationship from vi to vj. Otherwise, trustðvi; vjÞ ¼ 0. Svi is

the user set, including the users connected by vi.
The social similarity based trust degree between two nodes

measures the effect of local network topologies. When two

nodes in a social network have two or more overlapped neigh-

bours, they tend to have the community similarity which is a

higher level of node similarity. The adjacent node sets of

nodes vi and vj are defined as NðviÞ and NðvjÞ, respectively.
The social similarity based trust degree is defined as

TO
vi;vj
¼

P

t2NðviÞ;NðvjÞ
1

DðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

t2NðviÞ
1

DðtÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

t2NðvjÞ
1

DðtÞ

q (22)

where DðtÞ represents the degree of node t.
Remark 2: It should be noted that (21) and (22) are only

applicable to the scenario of two users who connect with each

other directly. In terms of the scenario of two users who do

not connect directly, the trust degree is calculated by using

multiplication as the trust propagation operator. In addition,

we only consider the shortest path if multiple trust propagation

paths exist in a network.

We contribute to integrate the trust degree into Deep Semi-

NMF model. In terms of the representation of Deep Semi-

NMF approaches, the user’s preference is the only factor

which determines the estimated rating assigned to an item,
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and it can be described as: R̂m;n ¼ P T
mQn. The recommenda-

tions from the target users’ trusted friends should also be taken

into consideration. Additionally, we distinguish the favors of

user m’s trust friends and user m, instead of using the favors

of user m directly. Namely, after obtaining user m’s favors on

item n, i.e., P T
mQn, we adjust it by the biases from his/her

trusted friends’ favors. As a consequence, the difference of the

estimated ratings between he/she and his/her trust friends is

expressed as

Bm;n ¼
X

v2Sm

Tm;vðP
T
vQn þ Dm;v � P T

mQnÞ; (23)

where Dm;v indicates the average bias on the rating betweenm
and v.

For example, there are two users m and v, and they have

different rating assignment behaviors. User m is generous and

he/she usually assigns high scores to the items, while user v is
critical and usually assigns low scores to the items. We

assume the ratings for item n from these two users are 5 and

3, respectively. They have different preferences on item n at

first glance. However, if the derivations on the ratings and

their rating assignment behaviors are analyzed, the score 3 is

almost the highest score allocated by v in his/her rating assign-
ment history. From this perspective, we can conclude that both

m and v have preferences for item n.
Additionally, we need to consider the biases of users on

items. For instance, when we predict the rating assigned on

the item n by the user m, if we know that the average rating

over all items assigned by m is 3, and m assigns the rating 2.5

to item n, which is 0.5 lower than the average rating. More-

over, user m is critical, and he/she usually rate 0.4 lower than

the mean. Finally, the estimated rating of n from m would be

2.1 (2.5-0.4). Therefore, we extend (23) with the biases of

users and items as follows

Bm;n ¼
X

v2Sm

Tm;vðP
T
vQn þ Dm;v � PT

mQnÞ

þ avgþ biasm þ biasn;
(24)

where the parameters biasm and biasn indicate the biases of

user m and item n, respectively. Thus based on (24), the cost

function for LRDMF integrated trust degree (LRDMF-TD)

can be rewritten as

LðP;QÞ ¼
1

2
min
P;Q

X

M

m¼1

X

N

n¼1

ImnðRm;n �RLR
m;nÞ

þ
X

v2Sm

Tm;vðP
T
vQn þ Dm;v � PT

mQnÞ

þ
�P

2
Pk k2Fþ

�Q

2
Qk k2F ; (25)

RLR
mn denotes the estimated rating on item n assigned by user

m via LRDMF-TD.

In order to prevent over-fitting and reduce the complexity of

the model, �P ¼ �Q is set in our experiments. It can be seen

that all users are considered in the model for minimizing the

whole difference when the social trust relationship are consid-

ered. The global minimum of L cannot be achieved because

of its inherent inner structure [66] of the matrix factorization

model. Fortunately, based on the gradient descent on Pm and

Qn for userm and item n, the local minimum of the cost func-

tion can be expressed as

@L

@Pm
¼
X

N

n¼1

ImnðRm;n � RLR
m;nÞ �

X

v2Sm

Tm;vQn þ �PPm;

(26)

@L

@Qn

¼
X

M

m¼1

ImnðRm;n �RLR
m;nÞ þ

X

v2Sm

Tm;vðP
T
v � P T

mÞ þ �QQn:

(27)

The cost function for NLRDMF integrated trust degree

(NLRDMF-TD) can be rewritten as

LðP;QÞ ¼
1

2
min
P;Q

X

M

m¼1

X

N

n¼1

ImnðRm;n � RNLR
m;n Þ

þ
X

v2Sm

Tm;vðP
T
vQn þ Dm;v � PT

mQnÞ;
(28)

where RNLR
mn denotes the estimated rating on item n assigned

by user m by NLRDMF-TD. The derivation of gradient

descent on Pm and Qn for NLRDMF-TD is similar as (26)

and (27), respectively

@L

@Pm
¼
X

N

n¼1

ImnðRm;n � RNLR
m;n Þ �

X

v2Sm

Tm;vQn þ �PPm;

(29)

@L

@Qn

¼
X

M

m¼1

ImnðRm;n � RNLR
m;n Þ þ

X

v2Sm

Tm;vðP
T
v � P T

mÞ

þ �QQn: (30)

B. Autoencoder Ensemble

In this subsection, we exploit a variant of autoencoder,

denoising autoencoder (DAE), to extract the latent representa-

tion in the hidden layer of this network. The latent representa-

tion of the social relationship can be enhanced from the trust

relationship matrix T 2 RM�M based on DAE. Then the latent

representation of the users can be approximated as much as

possible by the learned latent representation based on DAE.

1) Marginalized Denoising Autoencoders: Autoencoder is

one kind of neural network, and it attempts to copy its input to

its output after training the autoencoder which has a hidden

layer in the interior of itself. A basic autoencoder consists of

two components. An encoder is expressed as an activation

function dð�Þ mapping an input data T into a hidden layer, and

the representation of this hidden layer is fðT Þ. A decoder is

expressed as a deactivation function fð�Þ mapping the hidden

representation back into the output, and the representation of

this reconstructed version of T is fðdðT ÞÞ. In order to learn
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the most significant features of data distribution from the input

trust relationship matrix T , the activation and deactivation

functions, such as sigmoid and identify functions, should be

selected properly. In this section, the identify and the sigmoid

functions are selected as the activation and deactivation func-

tions, respectively.

A DAE is a variant of autoencoder whose input is the cor-

rupted data, and the output is the original, uncorrupted data

based on the training of DAE. The randomly generated artificial

noise, such as binary masking noise or Gaussian noise, can be

injected into the input data with a probability p. From a deep

learning perspective, multiple DAEs can be stacked sequen-

tially [26]. The input of the lth DAE is the output of the l� 1th

DAE performing as a hidden representation. Therefore, the

DAEs contained in the stacked DAEs (SDAE) have to be trained

in an iterative way. This layer by layer operation has high

computational burden due to the learning of themodel parameter

in each layer training [56]. In order to overcome the defects of

SDAE, a modified version, SDAEwith marginalized corruption,

is performed in [26]. In contrary to the two-level encoder and

decoder in SDAE, we utilize a weight matrixW to map the cor-

rupted input T i into the reconstructed output by minimizing the

squared loss function as follows

1

2I

X

I

i¼1

T i �W ~T i
	

	

	

	

2

F
; (31)

where I is the number of samples in the input data,W 2 RM�M

is the mapping consisting of the reconstructed weights, and ~T i is

the corrupted version of the original, uncorrupted T i. c passing
with different corruptions have been taken into the input data to

reduce the variance. Then the c-times version of T can be repre-

sented as �T ¼ ½T ; T ; . . .; T � 2 RM�cM . The corrupted version

of �T can be defined as ~T 2 RM�cM . We can rewrite (31) as

min
W

�T �W ~T
	

	

	

	

2

F
: (32)

When c approximates the positive infinity, there are infinity

copies of corrupted input data. The mapping weight matrix W
has the following closed-form solution

W ¼ E½U�E½V ��1; (33)

where U ¼ ~T ~T T , V ¼ �T ~T T . Thus we do not have to solve the

highly non-convex optimization problem in each layer when

we train each layer based on iterative procedure to learn the

model parameters. In the procedure of obtaining the weight

matrix W , the computational complexity for training a mar-

ginalized DAE is reduced significantly. From a deep learning

perspective, multiple marginalized DAEs can be stacked

sequentially [26]. The input of the lth marginalized DAE is

the output of the l� 1th marginalized DAE, which performs

as a hidden representation.

2) Latent Representation of Trust Relationship Considering

User Preferences: In order to integrate social relationship with

the user preferences, we propose a framework that integrating

the Deep Semi-NMF with marginalized SDAE to further

improve the recommendation accuracy. The framework is

shown in Fig. 3. The trust friends of user m can be represented

as Tm 2 R
M , an m-dimensional binary vector, corresponding

to the mth row of T . In order to compute the corrupted version
~T 2 RM�cM of the trust relationship matrix �T 2 RM�cM , the

generated binary masking noise is injected with a probability p
based on the deep learning strategy of DAE [56]. Generally, T is

sparse, and only the non-zero values of �T representing the trust

relationship are corrupted by the artificial noise.

We take both the weight matrix W and the user factor

matrix S into consideration for improving the recommenda-

tion accuracy. The latent representation of the trust relation-

ship, which should be as close as possible to the user factor

matrix S 2 RM�K , can be enhanced from the trust relation-

ship matrix T 2 RM�M based on the DAE. The orange double

arrow indicates the coupling of the trust relationship repre-

sented byW and the user preference represented by S.
3) Latent Representation of Trust Relationship: We map

an m-dimensional binary vector Tm 2 R
M into a latent space

represented as T 0m ¼ STTm 2 R
K , m ¼ 1; 2; . . .;M, where

S 2 RM�K is the user factor matrix, and K is the number of

latent factors. Different from the similarity measurement in

(21), the user similarity can be characterized by the inner

product. Thus the similarity in the latent space can be

expressed as the inner product of the user factor matrices of

two users in the users’ latent space

simðTmT vÞ ¼ T 0mT
0
v ¼ ðS

TTmÞ
TSTT v

¼ T T
mSS

TT T
v :

(34)

In order to integrate the weight matrix W and the user factor

matrix S, (34) can be formulated in a matrix form as

min
W;S

T TSSTT �WT
	

	

	

	

2

F
; (35)

where W 2 RM�M is the weight matrix mapping the trust

relationship matrix T into the hidden layer, and the latent

Fig. 3. Framework of mixed model. The orange double arrow indicates the
coupling of the trust relationship represented by WW and the user preference
represented by SS.
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representation of the trust relationship matrix T in the hidden

layer corresponds to the product WT 2 RM�M . In order to

learn the weight matrix W based on the corrupted version ~T 2
RM�cM , we minimize the objective function as

min
W;S

T TSSTT �WT
	

	

	

	

2

F
þ �T �W ~T
	

	

	

	

2

F
; (36)

where c-times version of T is expressed as �T 2 RM�cM , and

the corrupted version of �T is expressed as ~T 2 RM�cM .

4) Community Regularization: Intuitively, community refers

to some dense groups in a network. The nodes within each com-

munity are closely connected, but the connections among vari-

ous communities are sparse. In social networks, the users who

share the same opinions or interests tend to form a commu-

nity [67]. It means that the opinion of one user can be affected

by the opinions of other users in the identical community. Thus

we need to integrate the community effect into the objective

function to improve the recommendation performance. We need

to introduce some trust based parameters used in the community

detection algorithm.

Trust Potential. As we know, the trust degree of two users in

a social network decrease as the distance of two users

increases. Thus we need to define a parameter to measure the

trust degree of inter-node objectively. Given a social network

GðV;EÞ, user vi 2 E is randomly selected from this network.

We adopt UðviÞ ¼ v1; v2; . . .; vn to denote the users closely

connected with vi in this network. The trust potential of user

vi at user vj is defined by the Gaussian potential-function

as [68]

pvi;vj ¼ exp
T 2

vi;vj

2s2

 !

; (37)

where the user interaction range is control by the parameter s,

and s is determined by the network details. The trust potential

for user vi is expressed as

pvi ¼
X

vj2UðviÞ

exp
T 2

vi;vj

2s2

 !

: (38)

Local High-Potential User. A community usually consists of a

cluster center and its neighbours. In order to detect a community

in a social network, we need to identify the high-potential users

in the local network as the initial cluster centers. Given the adja-

cent users of user v as NðvÞ ¼ u1; u2; . . .; un. User v is a local

high-potential user if it satisfies

pðvÞ 
 max pðv; u1Þ; pðv; u2Þ; . . .; pðv; unÞ: (39)

Trust Condensation. We define trust condensation to iden-

tify if a cluster has a good structure. Given a cluster Ci and its

center node ui 2 C, the trust condensation of C is defined

as [68]

CT ðCi; uiÞ ¼

wlowClow þ wupCup if Ci; Ci � Ci 6¼ f

Clow if Ci 6¼ f; Ci � Ci ¼ f

Cup if Ci ¼ f; Ci � Ci 6¼ f

8

>

<

>

:

(40)

where Clow ¼
P

vi2Ci
pðui; viÞ and Cup ¼

P

vi2Ci�Ci
pðui; viÞ.

Ci and Ci stand for the lower approximation set and the upper

approximation set of clustering Ci, respectively. The weight

for the lower approximation set and the upper approximation

set of clustering Ci is defined as wlow and wup, respectively

and wlow þ wup ¼ 1. The trust potential of center user ui on

user vi is denoted as pðui; viÞ.
For all vi 2 V , the potential difference s in Ci and Cl is

defined as s ¼ pðvi; ClÞ � pðvi; CjÞ. If s 
 b, i.e., the poten-

tials of vi in two clusters are similar, we assign vi to the upper

approximation set of the intersection of Ci and Cl; otherwise,

to the lower approximation set of Cl. Based on the definition

of trust condensation, we can update the cluster as

ui ¼ uju 2 Ci ^ CT ðCi; uÞ ¼ max
x2Ci

CT ðCi; xÞ: (41)

Overlapping Clusters. Given two clusters Ci and Cj, their

overlapping clustering degree is defined as [68]

OverðCi; CjÞ ¼
jCi

T

Cjj

minðjCij; jCjjÞ
; (42)

where minðjCij; jCjjÞ gives the size of the smaller cluster of

Ci and Cj. The range of overðCi; CjÞ falls into [0,1].
The overlapping community detection algorithm consider-

ing trust-based characteristic can be summarized as follows.

1) The trust degree between different users and the trust

potential of each user in a social network are computed via

(20) and (38), respectively.

2) The high trust potentials of the users in a social network

can be identified via (39).

3) According to the trust potentials, the users in the net-

works can be classified and placed into clustering upper

approximation and the clustering lower approximation sets by

exploiting K-medoids clustering, respectively. The clustering

center can be updated based on (41) after computing clustering

upper approximation and the clustering lower approximation

sets. The classification can be terminated until the clustering

centers reach a stable state.

4) Different clusters can be merged if most of the users in

different clusters are overlapping.

As we know, the users in the same community tend to share

similar preferences on items with their trusted friends, who

are usually regarded as the neighbors of the target user. We

can utilize the meaningful information of these neighbours to

improve the prediction accuracy. The neighbors of user u can

be defined as

NðuÞ ¼ fvjv 2 C ^ u 2 C; u 6¼ vg; (43)

where C is the community that contains user u. It should be

noted that multiple communities can contain user u, and thus
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all the communities containing u should be taken into

consideration.

The behavior of the given user u would be affected by

his/her neighbors NðuÞ because of the community effect. It

means that the behavior difference between the given user and

his/her neighbours should be minor. This phenomena can be

expressed in a mathematical form by minimizing the follow-

ing formulation:

P u �
1

NðuÞj j

X

v2NðuÞ

T u;vP v

	

	

	

	

	

	

	

	

	

	

	

	

2

F

: (44)

The above equation can be utilized to minimize the prefer-

ence between a user and his/her neighborhood to an average

level. It means that a user’s preference should be similar to the

general preferences of all neighbours NðuÞ.
5) Parameters Training: By integrating the matrix factori-

zation technique and the community effect with (36), we have

the joint objective function as follows

min
W;S;Q

L ¼ R� SQk k2F þ T TSSTT �WT
	

	

	

	

2

F

þ �T �W ~T
	

	

	

	

2

F
þ �ð Sk k2F þ Qk k2F Þ

þ
m

2

X

m

u¼1

ST
u �

1

NðuÞj j

X

v2NðuÞ

T u;vS
T
v

	

	

	

	

	

	

	

	

	

	

	

	

2

F

; (45)

where m is regularization parameter, and the coefficient � of

Frobenius norm of S and Q are utilized for controlling the

overfitting problem of model parameters. The third term cou-

ples the trust relationship with user preferences as mentioned

in the former subsection.

Since the optimization function in (45) is a non-convex

problem involving the matrices W , S and Q, we utilize a sub-

optimal strategy to solve this problem. In each iteration, we

fix two variables and update one variable as an alterative sub-

optimal strategy.

By discarding the irrelevant term with respect to W in (45),

we can reformulate the objective function by only considering

W and fixing S and Q by minimizing the following optimal

problem as

min
W

T TSSTT �WT
	

	

	

	

2

F
þ �T �W ~T
	

	

	

	

2

F
: (46)

According to (33), W has a closed solution W ¼
E½U �E½V ��1, where U 2 RM�M , and V 2 RM�M . They can

be updated using the equations as follows

U ¼ ~T ~T T þ TSSTTT T ; V ¼ �T ~T T þ TT T : (47)

Then, by discarding the irrelevant term with respect to

matrices S and Q in (45), the objective function (45) can be

rewritten as

LðS;QÞ ¼ tr½ðR� SQÞðR� SQÞ�T

þ tr½ðT TSSTT �WT ÞðT TSSTT �WT ÞT �

þ
m

2

X

m

u¼1

ST
u �

1

NðuÞj j

X

v2NðuÞ

T u;vS
T
v

	

	

	

	

	

	

	

	

	

	

	

	

2

F

þ �tr½SST þQTQ�:

(48)

By taking the partial derivations of (48) with the matrices S
and Q, we have

@LðS;QÞ

@S
¼ 2ð�RQT þ SQQT Þ

þ 2TT TSST ðTT TS þ TT TSST Þ

� 2T ðT TWTT TS þWTT TSÞ þ 2�S

þ m ST
u �

1

NðuÞj j

X

v2NðuÞ

T u;vS
T
v

	

	

	

	

	

	

	

	

	

	

	

	

2

F

;

@LðS;QÞ

@Q
¼ 2ð�RTS þQSTS þ �QT Þ:

(49)

Then, we can update the model parameter S and Q based on

the classical gradient descent method, which are expressed as

Sðtþ1Þ ¼ SðtÞ � h1
@Lt

@SðtÞ
;

Qðtþ1Þ ¼ QðtÞ � h2
@Lt

@QðtÞ
; (50)

where t stands for the tth iteration, and h1 and h2 stand for the

learning rates. The maximum number of iterations is fix at

1000. The terminal rule is that the difference between two

adjacent iterations satisfies Lðtþ1Þ � LðtÞ=LðtÞ1e� 05, where

LðtÞ is the value of (48) in the tth iteration.
6) DMF-Based Initialization for Marginalized DAEs:

From a deep learning perspective, multiple marginalized DAEs as

shown in Fig. 3 can be stacked sequentially, which is called Deep-

MDAEs. The input of the lth marginalized DAE, which performs

as a hidden representation, is the output of the ðl� 1Þth marginal-

ized DAE. If there are L layers in the Deep-MDAEs, the deepest

layer will be the ðLþ 1Þ=2th layer. In different hidden layers, we
have different latent representations for trust relationships. Thus

the latent representations of the deepest layer in the Deep-MDAEs

should be as close as the user factor matrix S. As shown in (33),

the close-form expression of the weight matrix W ¼
E½U�E½V ��1, which has been updated based on (47). However,

in this paper, we update U by using U ¼ ~T ~T T until we reach the

ðLþ 1Þ=2th layer, i.e., the deepest layer. In the ðLþ 1Þ=2th
layer, we updateU by usingU ¼ ~T ~T T þ TSSTTT T , whereS is

update based on the LRDMF and NLRDMF methods in (10) and

(18), respectively. Then, the model parameter S and Q can be

updated based on (50). The final recommendation matrix can be

calculated by R̂ ¼ ŜQ̂. The Deep-MDAE initialized by LRDMF

and NLRDMF without community effect are called LRDMF-

DMDAE and NLRDMF-DMDAE, respectively. The Deep-
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MDAE initialized by NLRDMF with community effect is called

NLRDMF-DMDAECE.

The steps of DMF-DMDAECE are summarized as follows:

1) We perform the deep matrix factorization for the known

part of the user-item rating matrix R to obtain better initializa-

tions of latent user and item feature matrices;

2) We calculate the trust degree based on (20) including the

similarity and the social based trust degrees, respectively;

3) The DMF-TD algorithms can be achieved by optimizing

(25) and (28);

4) We perform the overlapped community detection algo-

rithm to detect the community in a trust relationship network;

5) We formulate a new joint objective function (45) by tak-

ing trust information and community effect into consideration;

6) We construct the marginalized DAEs to optimize the

objective function (45);

7) We utilize the results of deep matrix factorization to ini-

tialize the marginalized DAEs;

8) We obtain the final result by training the marginalized

DAEs.

VI. EXPERIMENTS

In the field of trust-aware recommendation, the publicly

available and suitable dataset is rare, we mainly adopt the fol-

lowing two datasets:

1) Epinions: Epinions is available freely [42], which is com-

posed of 49 290 users and 139 738 items. The number of ratings

and trust relationships contained in Epinions are 664 824 and

487 181, respectively. The scale of rating is from 1 to 5. We

build a social trust network by using these records. Each user in

Epinions keeps a trust relationship with others. In addition, the

density of the user-item ratingmatrix is less than 0.01%.

2) Flixster: This is a social network allowing users to assign

scores for movies [39]. It consists of 1 049 445 users who have

rated 492 359 different items. The total number of ratings is

8 238 597. The total number of trust relationships is 26 771 123.

The density of the ratingmatrix is lower than 0.0016%.

The rating matrixes extracted from Epinions and Flixster

are both sparse. The density of Movielens, which consists of

6040 users, 3900 movies, and 1 000 209 ratings, is 4.25%, and

the density of Eachmovie, which consists of 74 424 users,

1648 movies, and 2 811 983 ratings, is 2.29% [38]. Therefore,

Epinions and Flixster are both ideal sources for make our

trust-aware recommendations.

We use three metrics, the Root Mean Square Error (RMSE),

the precision and F-Measure, to measure the performance of our

proposed methods, i.e., LRDMF-TD, NLRDMF-TD, LRDMF-

DMDAE, NLRDMF-DMDAE and NLRDMF-DMDAECE

comparing with other the state-of-the-art recommendationmeth-

ods. The metrics RMSE for measuring the error in recommenda-

tion is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

m;nðRm;n � �Rm;nÞ
2

Ttest

s

; (51)

where Rm;n denotes the rating assigned to item n by user m,
�Rm;n denotes the predicted rating assigned to item n by user

m via a method, and Ttest denotes the number of tested ratings.

Meanwhile, most recommendation approaches cannot deal

with the task that predicting all the ratings in the test data

under the scenario of high sparse data. Therefore, the metric

coverage rate can be adopted to measure the proportional of

huser; itemi pairs, and the values can be predicted as

coverage ¼
S

Ttest

; (52)

where S represents the number of ratings being predicted, and

Ttest represents the number of ratings being tested. Moreover,

we integrate RMSE and coverage to form a full metric follow-

ing the F-Measure’s example. Therefore, the RMSE has to be

converted into the metric of precision, whose value is distrib-

uted in the range of [0, 1]. We formulate the precision as:

precision ¼ 1� RMSE
4

. It can be inferred from this equation

that the maximum possible error is 4, since all rating values

are between 1 and 5. The definition of F-Measure is given as

FMeasure ¼
2� precision� coverage

precisionþ coverage
: (53)

The initializations of most existing matrix factorization

methods are straightforward, i.e., P and Q are initialized as

dense matrices consisting of random numbers. We propose

specific initialization methods in this paper, and compare it

with random initialization, K-means initialization, normal-

ized-cut (Ncut) initialization [69] and SVD-based initializa-

tion [70], autoencoder initialization [44] in order to verify the

superiority of initialization with LRDMF and NLRDMF based

approaches. Moreover, we remove the community detection

algorithm in [44] for fair comparison, and then the method

in [44] is called Auto-TD.

The dimension of the feature matrices is set to be K ¼ 80.

The DMF model consists of two representation layers (1260-

625), and the scaled hyperbolic tangent stanhðxÞ ¼ atanhðbxÞ
with a ¼ 0:7159 and b ¼ 2

3
is used as the non-linearity function.

For DMDAE based methods, the regularization parameter � is

0.1, and the number of the stackedMDAEs is 10. For community

detection, we use 2-trust-cliques. For Epinions and Flixster data-

set, the regularization parameter are set as m ¼ 10 and m ¼ 5,

respectively. We set the parameter s to 1.886, the clustering

overlapping threshold to 0.75, Wup is set to 0.1 and the weight

parameter b ¼ 0:6. The percentage of the input data corrupted

by the binarymasking noise is 50%.

It can be seen from Fig. 4 that the RMSEs of LRDMF and

NLRDMF are much smaller than the RMSEs of other

approaches. In particular, the RMSEs of DMF based approaches

are smaller than those of the Auto-TD approach proposed

in [44]. This is because that LRDMF and NLRDMF extract

more abstract features from the original space compared with

other approaches, and the initialized latent feature matrices

learned by LRDMF and NLRDMF make (25) and (28) more

closer to the global minimum. The RMSE of NLRDMF is

smaller than that of LRDMFbecause of the non-linearity learned

by NLRDMF. The RMSEs of trust DAE based methods are

smaller than those of the trust degree based methods. This is
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caused by the reason that the deep structure of the DAE based

methods enforces the latent represent of the trust relationship as

much as the user factor matrix S. NLRDMF-DMDAECE per-

forms best of all since we take the community effect into

consideration.

In order to find the best dimensionK, the RMSEs versus vari-

ous dimensions for NLRDMF-TD and NLRDMF-DMDAE are

depicted in Fig. 5. �P and �Q are fixed at 0.1. It can be seen that

there is a turning point around 80 for Epinions, and there is a

turning point around 70 for Flixster. The main reason is that a

relative larger dimension can improve the prediction accuracy.

However, when the number of dimension is too large, the

overfitting may exist which leads to the degradation of the pre-

diction accuracy.

In order to have an intuitive expression about the relation-

ship between the value of �P ¼ �Q and the best dimension K,

we draw different values of �P ¼ �Q ¼ 0:2; 0:1, respectively,
with varying the best dimension K. It can be seen from Fig. 5

that when �P ¼ �Q ¼ 0:1, our proposed framework

NLRDMF-DMDAECE performs best of all.

In our model, the LRDMF and NLRDMF approaches are

used to reduce dimension and extract features from the user-

item rating matrix. We compare these two approaches with

not only classical algorithms such as principal component

analysis (PCA) [71] and locally linear embedding (LLE) [72]

but also with other NMF variants such as multi-layer

NMF [73] and NeNMF [74] for pretraining in order to validate

the effectiveness of feature extraction. It can be seen from

Fig. 6 that compared with the classical approaches, the four

NMF variants approaches can improve the prediction accuracy

greatly. The RMSEs of LRDMF-TD and NLRDMF-TD

approaches are smaller than those of multi-layer NMF and

NeNMF approaches. This is because that LRDMF-TD and

NLRDMF-TD approaches extract better features compare

with Multi-Layer NMF and NeNMF approaches. The RMSEs

of LRDMF-DMDAE and NLRDMF-DMDAE methods are

smaller than those of LRDMF-TD and NLRDMF-TD meth-

ods. This is caused by the reason that the deep structure of the

LRDMF-DMDAE and NLRDMF-DMDAE methods enforces

the latent represent of the trust relationship as much as the

Fig. 4. Effect of different initialization for training model.

Fig. 5. Effect of different values with dimension K. (a) Epinions.
(b) Flixster.

Fig. 6. RMSE versus values of dimension with different approaches. (a) Epi-
nions. (b) Flixster.
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user factor matrix S. More latent representations in the hidden

layers have been learned compared with the trust degree. The

RMSE of NLRDMF-DMDAECE is the smallest of all because

it takes both trust information and community effect into

consideration.

We compare our proposed approach with the following

baseline methods to show the superiority of our proposed

methods. It should be noted that NLRDMF approach is used

for the initialization of DMFTrust since it has a better predic-

tion accuracy compared with LRDMF.

1) UserCF: This is a typical user-based collaborative filter-

ing method, and it utilizes the users’ similarity for predicting

missing values.

2) ItemCF: This is a typical item-based collaborative filter-

ing method, and it capture the items’ similarity for predicting

missing values.

3) TidalTrust: A trust inference algorithm is used for

recommendation [41].

4) MoleTrust: This algorithm can promote trust in social

networks, and the trust weight corresponds to the similarity

weight [42].

5) BMF: This is the basic matrix factorization method pro-

posed in [17], and the trust social network is not considered.

6) STE: This method combines users’ preferences with their

trusted friends’ favors [38].

7) SocialMF: This method fuses the trust propagation in

recommendation systems [39]. The parameter � is set to be 5,

which provides the best recommendation performance in this

experiment.

8) CDL: This is a deep learning-based method proposed

in [29]. However, the content information and the trust net-

work are not used.

9) NLRDMF: The Non-Linear Representation DMF part of

NLRDMF-TD is considered, while Trust Degree (TD) is not

considered.

10) TD: The Trust Degree (TD) part of NLRDMF-TD is

considered, while the Non-Linear Representation DMF is not

considered.

11) NLRDMF-TD: The proposed NLRDMF-TD method

that considers both Non-Linear Representation DMF and the

Trust Degree (TD).

12) DMDAE: The Deep MDAE part of NLRDMF-DMDAE

is considered, while NLRDMF is not considered. The basic

matrix factorization is used for initialization.

13) NLRDMF-DMDAE: The proposed NLRDMF-DMDAE

method that considers both Non-Linear Representation DMF

and Deep MDAE.

14) NLRDMF-DMDAECE: The proposed NLRDMF-

DMDAECE method that considers community effect.

In this section, we mainly analyze the comparison results

with different approaches and datasets. Specifically, we com-

pare the above methods with our proposed methods by using

Epinions and Flixster datasets, respectively, which have dif-

ferent data sparsity. In terms of the parameters, the dimension

of latent feature matrix is fixed atK ¼ 80 for Epinions dataset

and K ¼ 70 for Flixster dataset. As a result, we can see from

Table I that the NLRDMF-TD and NLRDMF-DMDAE out-

perform other methods, and the STE and SocialMF methods

outperform the BMF method, which only adopts the user-item

rating matrix for recommendation. Besides, the TidalTrust

and MoleTrust methods are superior to BMF method. It can

be known that the performance of collaborative filtering-based

approaches are not well enough. It relies on the trusted

friends’ comments, and thus it is not suitable for sparse data.

It can be known that UserCF and ItemCF cannot work well

at this situation. TD method performs worse than the tradi-

tional UserCF and ItemCF based methods. The NLRDMF-

DMDAECE performs best of all.

Experimental has been implemented to analyze the inde-

pendent contributions benefited from the two steps, i.e., DMF

and trust degree, in Table I and Table II. It can be seen that the

performance of the trust degree (TD) based method is worse

than that of the traditional UserCF and ItemCF methods. The

NLRDMF performs better than the recent developed deep

learning based method, and outperforms other traditional

matrix factorization based methods as well. The coverage of

NLRDMF is five times of that of TD, and the F-measure of

NLRDMF is three times of that of TD. Thus we can conclude

that “deep” is more important and beneficial than trust.

We regard cold-start users as those who have rating ass-

ignment behaviors less than 5 times [42]. Thus how to rec-

ommend items to cold-start users is still a challenge for

TABLE I
COMPARISON RESULTS WITH ALL USERS
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recommender systems. In the Epinions, most users belong to

cold-start users. Therefore, it is meaningful for recommending

cold-start users with high effectiveness. In order to validate

the performance superiority of our proposed methods com-

pared with other methods, the cold-start users are picked out

from the two datasets for comparing the recommendation per-

formance of these methods. The final comparison results are

shown in Table II. Our proposed methods outperform other

methods for cold-start users. This indices that our proposed

methods are more suitable for dealing with cold-start users.

We can also obtain from both Table I and Table II that the

improvement on our proposed methods for cold-start users is

higher than that for all users.

VII. CONCLUSION

In this paper, based on deep learning technique and trust

relationship, a novel trust-based deep learning method is pro-

posed for recommendation by integrating community effect.

Since the matrix factorization-based approaches rely much on

the initialization of the latent feature matrices, a novel deep

architecture for matrix factorization named DMF is proposed.

This method can extract better features from the original space

to improve the initialization accuracy. Then the DMF is inte-

grated into the Deep-MDAE to extract the trust relationship.

By taking the community effect into consideration, the recom-

mendation accuracy is further improved. Our experimental

results verify that our proposed methods outperform other

baseline methods. In the future work, we will integrate the

DMF technique into collaborative filtering approaches to fur-

ther improve the recommendation performance.
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